
Chapter 3

Dynamics of Random Packings1

3.1 Introduction

In the previous chapter, it was shown that the spot model can provide a reasonable

mathematical model of mean flow and particle motion in granular drainage. However,

since particles are off-lattice, and there is nothing to prevent them from overlapping,

it quickly generates unphysical packings.

One of the primary motivations of the spot model comes from a consideration

of the local packing geometry, and it would therefore be advantageous if the spot

model could be refined to correctly simulate the local packing rearrangements. We

therefore proposed the model shown in figure 3-2, whereby each spot-induced block

displacement (a) is followed by a relaxation step (b), in which the affected particles

and their nearest neighbors experience a soft-core repulsion (with all other particles

held fixed). The net displacement in (c) involves a cooperative local deformation,

whose mean is roughly the block motion in (a). It is not clear a priori that this

procedure can produce realistic flowing packings, and, if so, whether the relaxation

step dominates the simple dynamics from the original model.

To answer these questions, we calibrated and tested the spot model against a

large-scale DEM simulation of granular drainage, shown in figure 3-1. Simulations are

1This chapter is based on reference [112], Dynamics of Random Packings in Granular Flow,
published in Physical Review E in 2006. See http://pre.aps.org/ for more details.
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(a) (b)

Figure 3-1: A simulation of the experiment in Ref. [28] by discrete element simu-
lations. (a) First, 55,000 glass beads are poured into a quasi-two-dimensional silo
(8 beads deep) and let come to rest. (b) Slow drainage occurs after a slit orifice is
opened. (The grains are identical, but colored by their initial height.)

advantageous in this case since three-dimensional packing dynamics cannot easily be

observed experimentally. We begin by running the DEM simulation, briefly described

in section 3.2. We then calibrate the free parameters in the spot model by measuring

various statistical quantities from the DEM simulation, as described in 3.3. In section

3.4, we describe the computational implementation of the spot model, before carrying

out a detailed comparison to DEM in section 3.5.
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(a) (b) (c)

Figure 3-2: The mechanism for structural rearrangement in the spot model. The ran-
dom displacement rs of a diffusing spot of free volume (dashed circle) causes affected
particles to move as a block by an amount rp (a), followed by an internal relaxation
with soft-core repulsion (b), which yields the net cooperative motion (c). (The dis-
placements, typically 100 times smaller than the grain diameter, are exaggerated for
clarity.)

3.2 DEM Simulation method

The basic geometry is equivalent to that used in the velocity correlation study in

section 2.8, except that we consider a single drainage of the container, with no recy-

cling of particles using periodic coordinates. The silo has width 50d and thickness 8d

with side walls at x = ±25d and front and back walls at y = ±4d, all with friction

coefficient µ = 0.5. The initial packing is generated by pouring N = 55,000 particles

in from a fixed height of z = 170d and allowing them to come to rest under gravity,

filling the silo up to Ho ≈ 110d. We also studied a taller system with N = 135,000

generated by pouring particles in from a height of z = 495d, which fills the silo to

Ho ≈ 230d. We refer to these systems by their initial height Ho. Drainage is initiated

by opening a circular orifice of width 8d centered at x = y = 0 in the base of the

silo (z = 0). A snapshot of all particle positions is recorded every 2× 104 time steps

(δt = 1.75 × 10−6 s). Once particles drop below z = −10d, they are removed from

the simulation.
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Figure 3-3: Comparison of velocity correlations calculated over the time period
0.52 s < t < 1.57 s. Calculations are based on particle velocity fluctuations about the
mean flow in a 16d× 16d region high in the center of the container. For Ho = 110d.

3.3 Calibration of the model

We begin by calibrating the spot radius Rs by examining velocity correlations and

comparing to the theoretical predictions of figure 2-4. The velocity correlations in

the DEM simulation are shown in figure 3-3. Since the shapes of the two curves do

not match, partly due to relaxation effects, we fit the simulation data to a simple

decay, C(r) = αe−r/β with β = 1.87d. We also fit a simple decay of the same form

to the theoretical prediction, finding β = 0.72Rs, so we infer Rs = 2.60d as the spot

radius. Thus a grain has significant dynamical correlations with neighbors up to three

diameters away.

Next, we infer the dynamics of spots, postulating independent random walks as a

first approximation. We assume that spots drift upward at a constant mean speed,

vs = ∆zs/∆t, (determined below), opposite to gravity, while undergoing random

horizontal displacements of size ∆xs in each time step ∆t. The spot diffusion length,

bs = Var(∆xs)/2∆zs, is obtained from the spreading of the mean flow away from the
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Figure 3-4: Comparison of the mean velocity profile, for three different heights calcu-
lated over the time period 4.37 s < t < 5.25 s once steady flow has been established.
The spot model successfully predicts a Gaussian velocity profile near the orifice and
the initial spreading of the flow region with increasing height, although the DEM flow
becomes more plug-like higher in the silo.

orifice. In DEM simulations, the horizontal profile of the vertical velocity component

is well described by a Gaussian, whose variance grows linearly with height, as shown

in Fig. 3-4. Applying linear regression gives Var(uz) = 2.28zd+1.60d2, which implies

bs = 2.28d/2 = 1.14d. To reproduce the spot diffusion length, we chose ∆zs = 0.1d

and ∆xs = 0.68d.

The typical excess volume carried by a spot can now be obtained from a single

bulk diffusion measurement. From the previous chapter, we know that the particle

diffusion length, bp, is given by

bp =
Var(∆xp)

2∆zp

=
Var(w∆xs)

2w∆zs

= wbs.

We measure bp in the DEM simulation by tracking the variance of the x displacements

of particles that start high in the silo as a function of their distance dropped. We
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find bp = 2.86 × 10−3d and thus w = 2.50 × 10−3. During steady flow in the DEM

simulation, a typical packing fraction of particles is 57.9%, so a spot with radius

Rs = 2.60d influences on average 81.7 other particles. Thus we find that a spot

carries roughly 20% of a particle volume: Vs = 81.7Vpw = 0.205Vp.

The three spot parameters so far (radius, Rs, diffusion length, bs, and influence

factor, w) suffice to determine the geometrical features of a steady flow, such as

the spatial distribution of mean velocity and diffusion, but two more are needed to

introduce time dependence. The first is the mean rate of creating spots at the orifice

(for simplicity, according to a Poisson process). In the DEM simulation, particles exit

a rate of mean rate of 4.40× 103 s−1, so spots carrying a typical volume Vs = 0.205Vp

should be introduced at a mean rate of νs = 2.15×104 s−1. The second remaining spot

parameter is the vertical drift speed, or, equivalently, the mean waiting time between

spot displacements, ∆t, which can be inferred from the drop in mean packing fraction

during flow. In the DEM simulation, we find that there are initially 9,400 particles in

the horizontal slice, 50d < z < 70d, which drops to 8,850 during flow. Choosing the

spot waiting time to be ∆t = 8.68× 10−4 s reproduces this decrease in density in the

spot simulation. The spot drift speed is thus vs = 0.1d/∆t = 115d/s = 34.5 cm/s,

which is roughly ten times faster than typical particle speeds in Fig. 3-4.

3.4 Spot model simulation

Having calibrated the five parameters (Rs, bs, w, νs, vs), we can test the spot model by

carrying out drainage simulations starting from the same static initial packing as for

the DEM simulations. For efficiency, a standard cell method (also used in the parallel

DEM code) is adapted for the spot simulations. The container is partitioned into a

grid of 10× 3×Nz cells, each responsible for keeping track of the particles within it,

withNz = 30 forHo = 110d andNz = 60 forHo = 230d. When a spot moves, only the

cells influenced by the spot need to be tested, and particles are transferred between

cells when necessary. Without further optimization, the multiscale spot simulation

runs over 100 times faster than the DEM simulation.
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The flow is initiated as spots are introduced uniformly at random positions on

the orifice (at least Rs away from the edges) at random times according to a Poisson

process of rate νs. (The waiting time is thus an exponential random variable of

mean ν−1
s .) Once in the container, spots also move at random times with a mean

waiting time, ∆t = vs/∆zs. Spot displacements in the bulk are chosen randomly

from four displacement vectors, ∆rs = (±∆xs, 0,∆zs), (0,±∆xs,∆zs), with equal

probability, so spots perform directed random walks on a body-centered cubic lattice

(with lattice parameter 2∆zs = 0.2d). We make this simple choice to accelerate

the simulation because more complicated, continuously distributed and/or smaller

spot displacements with the same drift and diffusivity give very similar results. Spot

centers are constrained not to come within d of a boundary; this distance was an

arbitrary choice, and altering it allows the boundary layer velocities in the simulation

to be tuned; a careful study of this issue remains a subject for future work. Once a

spot reaches the top of the packing, it is removed from the simulation.

The particles in the simulation move passively in response to spot displacements

without any lattice constraints. Consider a spot initially located at rs, being displaced

by an amount ∆rs. When it moves, all particles within a ball of radiusRs are displaced

by an amount −w∆rs. Two different formulations were considered for the positioning

of this ball:

1. Center the ball at the end of the spot displacement, at rs + ∆rs

2. Center the ball at the midpoint of the spot displacement, at rs + ∆rs

These two formulations are somewhat analogous to different definitions of stochastic

differentials, with the first resembling the Itō formulation and the second being closer

to the Stratinovich form [17, 111]. Since the diameter of the spot is larger than the

spot step size, one might expect that the differences between the two approaches

would be negligible in the simulation, but it turns out that it can have an important

effect. The first definition is the more theoretically straightforward of the two, and

also appears to be directly analogous to the void model: if a void moves from location

A to location B, then the particle displacement should be centered on B. However,
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Discrete Element Method
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t = 1.05 s t = 2.10 s t = 3.15 s t = 4.20 s

Figure 3-5: Time evolution of the random packing (from left to right) in DEM (top)
and the spot simulation (bottom), for the Ho = 230d system, starting from the same
initial state. Each image is a vertical slice through the center of the silo near the
orifice well below the free surface.
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spot simulations using this method created some undesirable results, with the particles

appearing to peel away from the walls.

To see why this may happen, it is helpful to consider the horizontal random walk

motion of a spot. For simplicity, consider the x component of the spot motion, and

assume that in this direction the spot is constrained to lie on lattice points labeled

from 1 to N . Using the random walk prescription described above, we see that a

spot at an internal lattice point n has a 1
4

probability of moving to n − 1, and a 1
4

probability of moving to n + 1. There is also a 1
2

probability of staying at n, if the

spot’s motion at this step was in the y direction, leading to a zero displacement in the

x direction. A spot at the boundary lattice point N has a 1
4

probability of moving to

N − 1 and a 3
4

probability of staying at N .

High in the container, the spots will be uniformly distributed on theN lattice sites.

Particles will move rightwards if a spot at a lattice site from 2 to N moves leftwards.

Using the Itō approach, the particle displacements from these spot motions will be

centered on the final positions of the spots, namely lattice sites 1 to N − 1. By

a similar argument one can see that leftwards particle motion will be centered on

lattice sites 2 to N . We therefore see that there is a disparity between the ranges over

which the two motions are applied: rightwards particle motion occurs up to lattice

site N − 1, but leftwards motion occurs up to lattice site N . This difference causes

a inward-pointing net displacement of particles near the boundary, causing them to

peel away from the walls.

The Stratinovich approach resolves this problem, since both the leftwards and

rightwards particle displacements are centered on the half-lattice points 11
2
, 21

2
, . . . , N−

1
2
. The approach is roughly analogous to thinking of a spot continuously moving from

rs to rs + ∆rs, which continuously displaces the particles as it goes. Because of these

advantages, the approach was employed for the simulations presented here. However,

a more careful study of this issue is definitely needed. The above argument is specific

to precise description of the random walk process, and for different spot motions, it

may be that the Itō formulation is more appropriate.

To preserve realistic packings, we carry out a simple elastic relaxation after each

67



spot-induced block motion, as in Fig. 3-2(b). All particles within a radius Rs + 2d

of the midpoint of the spot displacement exert a soft-core repulsion on each other, if

they begin to overlap. Rather than relaxing to equilibrium or integrating Newton’s

laws, however, we use the simplest possible algorithm: each pair of particles separated

by less than d moves apart with identical and opposite displacements, (d − r)α, for

some constant α < 1. Similarly, a particle within d/2 of a wall moves away by

a displacement, (d
2
− r)α. Particle positions are updated simultaneously once all

pairings are considered, but those within the shell, Rs + d < r < Rs + 2d, more than

one diameter away from the initial block motion, are held fixed to prevent long-range

disruptions.

It turns out that, due to the cooperative nature of spot model, only an extremely

small relaxation is required to enforce packing constraints, mainly near spot edges

where some shear occurs. Here, we choose α = 0.8 and find that the displacements

due to relaxation are typically less than 25% of the initial block displacement, which

is at the scale of 1/10,000 of a particle diameter: 0.25w∆rs ≈ 2 × 10−4d. Due to

this tiny scale, the details of the relaxation do not seem to be very important; we

have obtained almost indistinguishable results with α = 0.6 and α = 1.0 and also

with more complicated energy minimization schemes. As such, we do not view the

soft-core repulsion as introducing any new parameters.

3.5 Results

The spot and DEM simulations are compared using snapshots of all particle positions

taken every 2 × 104 time steps. As shown in Figure 3-5, the agreement between the

two simulations is remarkably good, considering the small number of parameters and

physical assumptions in the spot model. It is clear a posteriori that the relaxation

step, in spite of causing only minuscule extra displacements, manages to produce

reasonable packings during flow, while preserving the realistic description of the mean

velocity and diffusion in the basic spot model. Only one parameter, bs, is fitted to

the mean flow, but we find that the entire velocity profile is accurately reproduced
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in the lower part of the container, as shown in Fig. 3-4, although the flow becomes

somewhat more plug-like in DEM simulation higher in the container. Similarly, we fit

w to the particle diffusion length in middle of the DEM simulation, bp = 2.86×10−3d,

without accounting for the elastic relaxation step, so it is reassuring that the same

measurement in the spot simulation yields a similar value, bp = 2.73× 10−3d.

The most surprising findings concern the agreement between the DEM and spot

simulations for various microscopic statistical quantities. First, we consider the ra-

dial distribution function, g(r), which is the distribution of inter-particle separations,

scaled to the same quantity in a ideal gas at the same density. For dense sphere

packings, the distribution begins with a large peak near r = d for particles in contact

and smoothly connects smaller peaks at typical separations of more distant neighbors,

while decaying to unity. As shown in Fig. 3-6, the functions g(r) from the spot and

DEM simulations are nearly indistinguishable, across the entire range of neighbors

for the Ho = 110d system. This cannot be attributed entirely to the initial pack-

ing because each simulation evolves independently through substantial drainage and

shearing.

Next, we consider the three-body correlation function, g3(θ), which gives the prob-

ability distribution for “bond angles” subtended by separation vectors to first neigh-

bors (defined by separations less than the first minimum of g(r) at 1.38d). For sphere

packings, g3(θ) has a sharp peak at 60◦ for close-packed triangles, and another broad

peak around 110 − 120◦ for larger crystal-like configurations. In Fig. 3-7, we reach

the same conclusion for g3(θ) as for g(r): The spot and DEM simulations evolve

independently from the initial packing to nearly indistinguishable steady states.

The striking agreement between the spot and DEM simulations seems to apply not

only to structural, but also to dynamical, statistical quantities. Returning to Fig. 3-

3, we see that the two simulations have very similar spatial velocity correlations. Of

course, the spot size, Rs, in the Spot model (without relaxation) was fitted roughly to

the scale of the correlations in the DEM simulation, but the multiscale spot simulation

also manages to reproduce most of the fine structure of the correlation function.

At much longer times, however, the random packings are no longer indistinguish-
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Figure 3-6: Comparison of radial distribution functions for particles in the region
−15d < x < 15d, 15d < z < 45d for Ho = 110d system. Three curves are shown on
each graph, the first calculated from the initial static packing (common between the
two simulations), and the second and third calculated for over the range 1.04 s < t <
1.40 s.
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Figure 3-7: Comparison of bond angles for particles in the region −15d < x < 15d,
15d < z < 45d for Ho = 110d system. Three curves are shown on each graph, the
first calculated from the initial static packing (common between the two simulations),
and the second and third calculated for over the range 1.04 s < t < 1.40 s.
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able, as a small tendency for local close-packed ordering appears the spot simulation.

As shown in Fig. 3-8, the spot simulation develops enhanced crystal-like peaks in g(r)

at r =
√

3d, 2d, . . .. The number of particles involved, however, is very small (∼ 2%),

and the effect seems to saturate, with no significant change between 8s and 16s. This

is consistent with even longer spot simulations in systems with periodic boundary

conditions, which reach a similar, reproducible steady state (at the same volume

fraction) from a variety of initial conditions [104]. In all cases, the spot algorithm

never breaks down (e.g. due to jamming or instability), and unrealistic packings with

overlapping particles are never created.

The structure of the flowing steady state is fairly insensitive to various details of

the spot algorithm. For example, changing the relaxation parameter (in the range

0.6 ≤ α ≤ 1.0), rescaling the spot size (by ±25%), and using a persistent random walk

(for smoother spot trajectories), all have no appreciable effect on g(r). On the other

hand, decreasing the vertical spot step size (in the range 0.025d ≤ ∆z ≤ 0.1d) tends

to inhibit spurious local ordering and reduce the difference in g(r) between the spot

and DEM simulations (e.g. measured by the L2 norm). Therefore, our spot algorithm

appears to “converge” with decreasing time step (and increasing computational cost),

analogous to a finite-difference method, although this merits further study.

3.6 Conclusions

Our results suggest that flowing dense random packings have some universal geo-

metrical features. This would be in contrast to static dense random packings, which

suffer from ambiguities related to the degree of randomness and definitions of jam-

ming [134, 99]. The similar packing dynamics in spot and DEM simulations suggest

that geometrical constraints dominate over mechanical forces in determining struc-

tural rearrangements, at least in granular drainage. Some form of the spot model

may also apply to other granular flows and perhaps even to glassy relaxation, where

localized, cooperative motion also occurs [35, 142].

The spot model provides a simple framework for the multiscale modeling of liquids
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Figure 3-8: Evolution of the radial distribution function g(r) for Ho = 230d in the
region −15d < x < 15d, 15d < z < 45d. The spot simulation (dashed curves) reaches
a somewhat different steady state from the DEM simulation (solid curve), after a
large amount of drainage has taken place.
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and glasses, analogous to dislocation dynamics in crystals. Our algorithm, which com-

bines an efficient, “coarse-grained” simulation of spots with limited, local relaxation

of particles, runs over 100 times faster than fully particle-based DEM for granular

drainage. On current computers, this means that simulating one cycle of a pebble-

bed reactor [130] can take hours instead of weeks, although a general theory of spot

motion in different geometries is still lacking. In any case, we have demonstrated

that dense random-packing dynamics can be driven entirely by the motion of simple,

collective excitations.
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