
Chapter 2

Diffusion and mixing in granular

drainage

2.1 Introduction

Hopper drainage is perhaps one of the simplest examples of a dense granular flow,

since it requires no external forcing and happens by gravity only. Over the past forty

years, it has been extensively studied, and a number of continuum models [77, 90,

95, 108, 94, 92] have been proposed. However, these models primarily concentrated

on the steady state mean flow. This chapter documents some early work that was

carried out to study other aspects of granular drainage, particularly diffusion and

mixing, which has relevance in a number of industrial situations.

2.2 Experimental motivation

The experiment shown in figure 1-1 made use of two different colors of particles. While

the movement of the different colors allows us to visualize the mean flow, it also tells

us something about diffusion. In frames (a) and (b), there appears to be very little

mixing, but by the third frame, some of the colors appear to have blended together.

Motivated by this work, Choi et al. carried out experiments to specifically address

this issue [28]. They carried out experiments of glass beads of diameter d = 3 mm in
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a quasi two dimensional hopper of size 20 cm× 2.5 cm× 2.5 cm, with aluminum side

walls, and Plexiglas walls at the front and back. Drainage took place from a slit in

the center of the container base, the width of which could be altered to change the

overall flow rate. During the flow, the particles at the glass wall were imaged using a

high-speed digital camera, capable of taking images at 1000 frames per second.

The steady state mean flow in the experiment is characterized by a parabolic

converging region of flow above the orifice, that connects with roughly uniform flow

higher up. The measurements of particle diffusion were made in the region of uniform

flow, by imaging a 17d×87d region centered at a height of 150d above the slit. Three

of their key conclusions were:

• Particle diffusion is extremely small. Péclet1 numbers on the order of 300 were

observed, meaning that a particle would have to fall twice the height of the silo

before diffusing by a single particle diameter.

• The neighbors of a particle strongly persist: a particle at the top of the obser-

vation window will typically retain 90% of its neighbors by the bottom.

• Over a large range of different flow rates, the amount of particle diffusion col-

lapsed if plotted as a function of distance dropped, and not time.

These results are very surprising: in gases and liquids, diffusion is facilitated by

thermal fluctuations, and the amount of diffusion is proportional to the time. In

these experiments, time appears to not be the most significant factor, and altering

the flow rate gives the same results, but with time rescaled. It suggests that granular

diffusion is distinctly athermal, and that the packing geometry of the particles is the

most significant factor.

1The Péclet number characterises the ratio of advection to diffusion [105], and is typically defined
as Pe = LV/D, where V is the velocity, D is the diffusion constant, and L is a characteristic length
scale. In Choi’s experiments, this is defined as Pe = 2d∆h/〈∆x2〉, where ∆h is the distance dropped,
and ∆x is the horizontal displacement.
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(a) (b)

Figure 2-1: (a) The void model microscopic mechanism: particles movie by exchang-
ing position with voids. (b) The void model for granular flow: particles are imagined
as lying in a two dimensional lattice, and move in response to voids diffusing upwards
from the container orifice.

2.3 The void model

To explain these results requires a microscopic model for particle motion, and perhaps

the only candidate in the literature is the concept of a void, shown in figure 2-1(a).

The void mechanism has a long history, and was proposed by Eyring for viscous

flow [42] but it has re-appeared in many other situations such as the glass transi-

tion [29], shear flow in metallic glasses [128], and compaction in vibrated granular

materials [23].

The idea was first postulated in the context of granular materials by Litwin-

iszyn [77], and was subsequently studied by several other authors [90, 95, 137, 25]

(with some related work making use of cellular automata models [15, 16]). Particles

are imagined as being on a two-dimensional hexagonal lattice, as shown in figure

2-1(b). The flow is created by introducing voids at the orifice which propagate up

through the packing according to a random walk, moving up-left or up-right with

equal probability. To find the mean flow in this case, we introduce an infinite square

lattice of sites labeled (M,N) in the (x, z) plane, with a horizontal and vertical spac-

ings of d and h respectively. We consider a single void propagating upwards through

the lattice, and let VN(M) be the probability that it is at horizontal site M when it
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is in the Nth vertical layer. The random walk description allows us to write down a

recurrence relation of the form

VN(M) =
VN−1(M − 1) + VN−1(M + 1)

2
.

If we now introduce a continuum analogue η such that VN(M) = η(dM, hN) then we

see that

η(x, z) =
η(x− d, z − h) + η(x+ d, z − h)

2

and by taking the limit h, d → 0, in a way that 2bh = d2 where b is a constant, we

arrive at a partial differential equation

∂η

∂z
= b

∂2η

∂x2
.

This is a diffusion equation, but with the time replaced by the vertical coordinate z.

For the case of a point orifice, which would be represented by an initial condition of

the form η(x, 0) = δ(x), we would obtain the result

η(x, z) =
1√

4πbz
ex2/4bz. (2.1)

The density of voids at a point is proportional to the vertical velocity, and hence

the void model predicts Gaussian velocity profiles, with a width proportional to
√
z.

This has been verified in several experimental studies [84, 83, 114, 27], and appears

in good agreement with figure 1-1. The result depends on a single parameter b which

is derived from geometrical considerations alone, and it controls the width of the

velocity profile.

As described by Nedderman and Tüzün [95], this prediction for the velocity field

v can also be derived entirely from a continuum standpoint, from two reasonable

physical postulates:

• The material is incompressible, so that ∇ · v = 0.

• Particles drift towards regions of higher vertical velocity, so that vx = −b∂vz

∂x
.

38



Thus

0 = ∇ · v

=
∂vx

∂x
+
∂vz

∂z

=
∂

∂x

(
−b∂vz

∂x

)
+
∂vz

∂z

from which we see that
∂vz

∂z
= b

∂2vz

∂x2

which is equivalent to the void model continuum prediction.

2.4 Diffusion in the void model

The void model was originally proposed to explain the mean flow in granular drainage,

but the microscopic mechanism proposed in figure 2-1 also tells us how particles will

move, and allows us to make predictions about the amount of mixing. In this section,

we provide a mathematical description of this subject, comparing with experimental

results of Choi [28]. Choi’s third result about diffusion being proportional to distance

dropped is immediately satisfied, since mixing occurs only in response to particle flow,

and has no explicit time scale, but it remains to be seen whether the other two results

remain true.

Continuing the analysis of the previous section, we introduce a quantity PN(M)

to be the probability that a particle is at horizontal location M when it is in the

Nth layer. We assume that the voids do not interact, and pass through the material

independently of one another. A particle at (M,N) can move to either (M−1, N−1)

or (M +1, N − 1) depending on the direction the first void to arrive at (M,N) comes

from. Thus the ratio of the probability of moving left to moving right is equal to the

ratio of the probability of a void being at (M − 1, N − 1) to being at (M + 1, N − 1),
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and hence

P((M,N) → (M − 1, N − 1)) =
VN−1(M − 1)

VN−1(M − 1) + VN−1(M + 1)

=
VN−1(M − 1)

2VN(M)

P((M,N) → (M + 1, N − 1)) =
VN−1(M + 1)

VN−1(M − 1) + VN−1(M + 1)

=
VN−1(M + 1)

2VN(M)
.

Thus we can write down a recurrence relation of the form

PN−1(M) = PN(M − 1)
VN−1(M)

2VN(M − 1)
+ PN(M + 1)

VN−1(M)

2VN(M + 1)
.

Introducing a continuum analogue ρ such that PN(M) = ρ(dM, hN) gives

2ρ(x, z − h) = η(x, z − h)

(
ρ(x− d, z)

η(x− d, z)
+
ρ(x+ d, z)

η(x+ d, z)

)
.

The fastest way to find a continuum equation for ρ is to introduce the quantity

σ = ρ/η. We see that

2σ(x, z − h) = σ(x− d, z) + σ(x+ d, z)

and thus in the continuum limit d, h→ 0 with 2bh = d2, we obtain

−∂σ
∂z

= b
∂2σ

∂x2
.

Substituting back for σ gives

ρz

η
− ρηz

η2
= −b ∂

∂x

(
ρx

η
− ηxρ

η2
)

)
= −b

(
ρxx

η
− 2ηxρx

η2
− ηxxρ

η2
+ 2

η2
xρ

η3

)
.
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Using the continuum equation ηz = bηxx gives

ρz = −bρxx + 2b

(
ηxρx

η
+
ηxxρ

η
− η2

xρ

η2

)
= 2b

∂

∂x

(
ρηx

η

)
− bρxx.

Thus the particle probability density follows an advection-diffusion equation. The

amount of advection is proportional to the logarithmic derivative of η, meaning that

particles preferentially drift towards regions of faster flow, which appears reasonable.

However, this equation also predicts the diffusion of a particle is controlled by the

same constant, b, as the diffusion of the voids. This appears to be at odds with Choi’s

experimental results, since we would expect the particles to diffuse on a much smaller

length scale than the voids.

This can be seen more clearly by considering the explicit case of drainage from a

point orifice, where η takes the form of equation 2.1. In that case, the advection is

given by ηx/η = −x/2bz and the above PDE becomes

ρz = −2
∂

∂x

(ρx
2z

)
− bρxx.

It is natural to consider the initial condition ρ(x, z0) = δ(x− x0), corresponding to a

particle initially located at (x0, z0). In section A.1 of appendix A, two methods are

provided to show that the exact solution of this equation is

ρ(x, z) =
1√

4πbz
(
1− z

z0

) exp

 −(x− x0z
z0

)2

4bz
(
1− z

z0

)
 . (2.2)

Thus the solution is always a gaussian, with variance bz(1− z/z0) and mean x0z/z0.

A typical solution is shown in figure 2-2. The mean drifts linearly towards the orifice.

The variance is initially zero when z = z0, corresponding to the delta function initial

condition. It then increases to a maximum value of bz2
0/4 when z = z0/2. As z → 0,

the variance begins to decrease, since the particle must exit from the point orifice.
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Figure 2-2: A typical solution to equation 2.2 using parameters x0 = 1.6, z0 = 2, and
b = 1. Cross-sections are plotted for z = 0.1 (shown in blue), z = 0.3, 0.5, . . . , 1.7
(shown in magenta), and z = 1.9 (shown in red).
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The crucial result of figure 2-2 is that the particle’s probability density will attain

a width comparable of that of the mean flow, which is completely at odds with the

experimental results that predict a particle’s diffusion should be much more localized.

In the experimental geometry of figure 1-1, the void model would predict that the

colored bands would rapidly mix in the flowing region, when in fact they remain

coherent even after a large amount of flow has taken place. We are therefore led to

the conclusion that while the void model predicts a reasonable mean flow, it is based

on a flawed model of the microscopic physics.

2.5 The spot model

Although the void model microscopic mechanism appears unrealistic, the spreading

gaussian velocity profiles seen in experiment suggest that the notion of a diffusing

quantity may still be worthwhile. It is therefore natural to ask if one could formulate

an alternative model that would still predict the diffusing velocity profiles, but would

have a better microscopic basis. Reconsidering the void mechanism, it is clear that

one of its main problems is that particles are allowed to move too independently of one

another: after a single void has passed, a particle will lose two of its original neighbors,

which seems at odds with the persistent particle cages seen in experiment. In reality,

a single particle in a granular packing is strongly constrained by its neighbors, and if

it is going to move, it must do so cooperatively.

Based on these ideas, Bazant formulated the spot model [17] shown in figure 2-

3(a). In this model, which can be applied in both two or three dimensions, particles

are no longer constrained to lie on a lattice. They move in response to spots, shown

by the blue circle, which correspond to a small amount of excess free volume spread

across several particle diameters. When the spot is displaced by an amount, it causes

a correlated motion in the opposite direction of all particles within range. In the

simplest model, the displacement of each particle ∆xp is a fraction of the spot’s

displacement ∆xs, so that ∆xp = −w∆xs. The diameter of the spot D corresponds

to a length scale characteristic of local particle rearrangement. Experimental evidence
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(a) (b)

Figure 2-3: The blue circle shown in (a) represents a spot, which corresponds to a
small amount of free volume spread across spread across several particle diameters.
When the spot is displaced by the blue arrow, it causes a small, correlated motion in
the opposite direction of all particles within range, as shown by the red arrows. The
size of the particle displacement is typically on the order of a hundredth of a particle
diameter, but is shown as much larger here for clarity. Granular drainage is modeled
by imagining a container full of off-lattice particles, and then injecting spots at the
orifice, which propagate upwards according to a random walk.

suggests that a scale of three to five particle diameters is important in dense granular

flow, and we typically take D in this range. In granular drainage, particles will only

flow from an orifice of diameter ∼ 3d − 5d, since for smaller orifices, particles will

tend to jam. Granular flows often exhibit boundary layers of slower velocity with a

length scale in this region.

In a typical three-dimensional monodisperse granular material made up of spheri-

cal particles, the packing fraction is approximately φ = 60%. For D = 5d, the number

of particles that are influenced by a single spot is therefore

N =
4
3
π

(
5d
2

)3 × 60%
4
3
πd3

≈ 75.

When the spot moves, it causes N particles to move by a fraction w in the opposite

direction, and thus it makes sense to define the volume of the spot as

Vs = NwVp
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where Vp is the particle volume. When spots enter a region, they cause a drop in the

packing fraction, and comparing this drop with experimental data on flowing packings

allows us to gain an order-of-magnitude estimate on the volume carried by a spot. In

the DEM simulations presented later in this thesis, and in work carried out by other

authors [134, 67, 98, 99, 100] it is typical to expect the packing fraction to decrease by

5% from a static to a flowing state. Since spots could overlap, a reasonable estimate

is to attribute ∆φ/φ ≈ 1% as an upper bound on the drop attributed with a single

spot. In his paper [17], Bazant argued that

w =
∆φ

φ2
.

However, the current author believes that

w =
∆φ

φ

is a more appropriate definition, and for a full comparison between these two different

perspectives, the reader should refer to section A.2 of appendix A. However, since φ

is an order one quantity, both approaches would give an order of magnitude estimate

for w in the range 10−2 to 10−3. Correspondingly, we expect Vs/Vp to have an order

of magnitude between 1 and 0.1.

The granular drainage experiment can be modeled by introducing spots at the

orifice which propagate upwards according to a random walk, as shown in figure 2-

3(b). At each stage, we assume that a spot makes a fixed step ∆zs upwards, and

makes a random step ∆xs in the remaining horizontal dimensions. The spot diffusion

length is defined by

bs =
Var(∆xs)

2dh |∆zs|

where dh is the number of horizontal dimensions. The particle diffusion length is

given by

bp =
Var(∆xp)

2dh |∆zp|
=
w2 Var(∆xs)

2dhw |∆zp|
= wbs

and thus we see that the spot model predicts that particle diffusion occurs on a scale
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approximately two to three orders of magnitude smaller than the spot diffusion. The

spot model therefore appears to qualitatively explain all the experimental features

seen by the Choi experiments. Like the void model, it predicts parabolic velocity

profiles, and that diffusion will be driven by geometry, but it also successfully captures

the strongly correlated motion and small diffusion of the particles. The spot model

remains simple enough for mathematical analysis, and as described by Bazant [17],

makes a number of predictions about particle motion in granular flow. Perhaps most

importantly, it suggests that particles in a granular flow should exhibit spatial velocity

correlations. Consider the spatial velocity correlation tensor

Cαβ(r1, r2) =

〈
vα(r1)v

β(r2)
〉√

〈vα(r1)〉 〈vβ(r2)〉

where vα(r) is the α component of instantaneous velocity at position r, and the an-

gular brackets refer to time averages. We can simplify this by considering a single

horizontal velocity component u, and exploiting translational and rotational symme-

try to write

C(r) = C(r) =
〈u(0)u(r)〉√
〈u(0)〉 〈u(r)〉

.

In the spot model, the velocities of two nearby particles will be correlated if they

fall within the displacement of the same spot. If we assume that spot displacements

occur randomly, then C(r) will be given by the probability that a spot influencing a

particle at 0 influences a particle a distance r away as well. The correlations in two

dimensions are given by

C(r) =

 1− r
√

1−(r/2R)

πR
− 2

π
sin−1

(
r

2R

)
for r < 2R

0 for r ≥ 2R

and in three dimensions by

C(r) =


(
1 + r

4R

) (
1− r

2R

)2
for r < 2R

0 for r ≥ 2R.
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Figure 2-4: Plots of the theoretical velocity correlations for the uniform spot potential,
in two and three dimensions.

These are plotted in figure 2-4 – if the spot model for particle motion exists, then we

would expect to see correlations that have a decay length similar to the spot size. Choi

searched for these correlations in the tall silo experimental geometry, and the results

are shown in figure 2-5 – we do indeed see correlations decaying on an intermediate

scale, although local ordering effects are visible. Since the measurement is taken at the

wall, many particles locally arranged in a hexagonal crystalline formation. It would

be expected to see higher correlations at values of 1d,
√

3d, and 2d since particles

which are locally crystallized will have very strong geometrical constraints with their

neighbors.
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Figure 2-5: Velocity correlations in the x direction for Choi’s granular drainage ex-
periment.

2.6 Discrete Element Simulation and comparison

to experiment

While the experiments of Choi provided important insight into granular diffusion, they

have one unavoidable drawback: measurements can only be made of the particles at

the glass wall. It is hoped that the low friction coefficient of the glass causes particles

near the wall to have similar velocities to those in the bulk, but the presence of the

wall will have a significant effect on the packing geometry. It is a well-known fact that

packing properties of monodisperse spherical particles are very different in two and

three dimensions, with particles in two dimensions exhibiting a much larger tendency

to form hexagonal crystalline arrangements. It is therefore natural to ask whether

the velocity correlations of figure 2-5 are also present in the bulk.

Carrying out large-scale particle-based simulations would therefore be particularly

advantageous, since they can provide us with complete three-dimensional information
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about packing arrangements. However, simulating granular materials is a difficult

task that has only become computationally practical in the last five to ten years.

The most obvious problem is the large number of particles that must be considered,

even for a fairly small system. The simulation of particles made of hard materials is

also very difficult. One approach is to model the particles as inelastic hard spheres,

which interact according to a coefficient of restitution. Simulations of this type are

event-driven, with the code calculating the next time until a collision occurs between

any two particles in the system. Simulation studies have used this method to look

at dense granular flows [48, 46, 47], but they have only been able to consider a fully

flowing packing, since some particles in static regions undergo “inelastic collapse”

where they will want to undergo an infinite number of collisions in over a finite time.

An alternative model is to treat particles as interacting via a spring with a very

high spring constant, and then simulate the resulting positions using a traditional

fixed timestep – this is referred to as a Discrete Element Method (DEM). The high

spring constant means that the equations are stiff, and require a very small timestep,

but the approach has become computationally feasible in the past five years, par-

ticularly since the interactions between particles are short range, which allows the

code to be efficiently parallelized, to take advantage of the recent and growing trend

toward multicore and parallel computing. In 2001 and 2002 Grest, Landry, Plimp-

ton, and Silbert at Sandia National Laboratories implemented a parallel DEM code

called GranFlow, written in Fortran 90. This has since been incorporated into the

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [1] which

is written in C++. GranFlow is used in the work presented here and in chap-

ters 3 and 5, while LAMMPS was used in the later work of chapters 6 and 7.

The code has been very successful and has been used by many groups to study

jammed granular packings [124, 125, 71], vibrated granular systems [129], and gran-

ular flows [123, 126, 24, 112, 113, 26].

The DEM simulations presented in this thesis use of a common set of conven-

tions. In all cases, we make use of a three co-ordinate system (x, y, z), and make

measurements in terms of the particle diameter d. The simulations act under gravity
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g, pointing in the negative z direction. From this, a natural simulation time unit

τ =
√
d/g is defined. Given a particle diameter d in terms of a physical length,

we can make comparisons to experiment by computing τ in terms of seconds. For

example, to make the correspondence to Choi’s simulation data, where d = 3 mm,

we have

τ =

√
3 mm

9.81 ms−2
= 0.0174 s.

The mass of the particles is referred to by m, although most of the time, it is not

necessary to consider this explicitly, since it is only important in relation to the details

of the interaction model.

The contact model is based on that developed by Cundall and Strack [32] to model

cohesionless particulates. If a particle and its neighbor are separated by a distance

r, and they are in compression, so that δ = d− |r| > 0, then they experience a force

F = Fn + Ft, where the normal and tangential components are given by

Fn = f(δ/d)
(
knδn−

γnvn

2

)
(2.3)

Ft = f(δ/d)
(
−kt∆st −

γtvt

2

)
. (2.4)

Here, n = r/ |r|. vn and vt are the normal and tangential components of the relative

surface velocity, and kn,t and γn,t are the elastic and viscoelastic constants, respec-

tively. Two different force models are considered: f(z) =
√
z for Hertzian particle

contacts and f(z) = 1 for Hookean particle contacts. ∆st is the elastic tangential

displacement between spheres, obtained by integrating tangential relative velocities

during elastic deformation for the lifetime of the contact. If |Ft| > µ |Fn|, so that a

local Coulomb yield criterion is exceeded, then Ft is rescaled so that it has magnitude

µ |Fn|, and ∆st is modified so that equation 2.4 is upheld.

Particle-wall interactions are treated identically, but the particle-wall friction co-

efficient is set independently. For the current simulations we set kt = 2
7
kn, and choose

kn = 2 × 105mg/d. While this is significantly less than would be realistic for glass

spheres, where we expect kn ∼ 1010mg/d, such a spring constant would be pro-

hibitively computationally expensive, as the time step must have the form δt ∝ k
−1/2
n
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for collisions to be modeled effectively. Previous simulations have shown that increas-

ing kn does not significantly alter physical results [71]. We make use of a timestep

δt = 10−4τ The normal damping term is set to γn = 50
√
g/d, and the tangential

damping γt is set to zero for Hookean contacts, and equal to γn Hertzian contacts.

Unless stated otherwise, the Hertzian contact model was employed for the sim-

ulations presented in this thesis. The Hertzian model is motivated by the fact that

when spheres come into contact, the amount of volume by which they overlap grows

faster than linearly, and thus the force should grow faster than linearly too. While it

may be more physically desirable to use this model, it was found here and by others

that it can sometimes lead to simulation artefacts, such as elastic “breathing modes”

propagating through the simulations. Therefore, in cases where precise information

about microscopic motion was needed, the Hookean contact model was used.

The simulations were carried out on MIT’s Applied Mathematics Computational

Laboratory (AMCL), a Beowulf cluster consisting of 16 nodes each with a dual pro-

cessor. During the simulations, snapshots of all particle positions were saved every

2τ , corresponding to 20,000 integration timesteps. The LAMMPS code is written

in C++ and can be run on any number of processors, by decomposing the compu-

tational domain into a rectangular grid of subdomains of equal size. Interactions

between particles in neighboring domains are handled using message passing. For

problems where the particles are split evenly between the subdomains, the LAMMPS

code scales very well, and doubling the number of processors can frequently result in

almost a doubling of speed.

2.7 Comparison to experiment: velocity profiles

One of the first tasks was to validate the simulations against experiment. A simulation

was run where the parameters were chosen as closely as possible to the experiments of

Choi. Based on a particle diameter of d = 3 mm, a quasi-two dimensional container

with walls at x = ±331
3
d, y = ±41

6
d and z = 0d was created. The interparticle

friction coefficient and the front and back wall friction coefficients were set to be 0.2
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to approximately model a glass/glass contact. The side and base walls were modeled

using a friction coefficient of 0.3, to correspond with a glass/metal contact.

Throughout this thesis, initial packings were created by pouring the particles into

a container. To pour the particles, an insertion region over a range zlow < z < zhigh

is created. When the simulation starts, the insertion region is filled with particles up

to a packing fraction of 10%, by making random insertion events. When a particle

is inserted at a location (x, y, z), its horizontal velocity components are set to zero,

and its vertical velocity is set to vz =
√

2g(zhigh − z) corresponding to the speed

it would have attained had it fallen from rest at zhigh. The x and y coordinates of

the insertion events are chosen uniformly. The z coordinates are chosen so that vz

is uniformly distributed. The simulation continues, and when the particles at the

top of the insertion region have dropped to zlow, another insertion event is carried

out, and another batch of particles is created. This process creates the effect of a

steady stream of particles being introduced at a constant rate from z = zhigh. Once

the required number of particles has been introduced, the batch insertion events are

terminated and simulation continues. Typically, the system is simulated for a long

time after the last insertion event to ensure that the particles have come to rest.

For the current simulation, 174,249 particles were poured using zlow = 3331
3
d and

zhigh = 3662
3
d, to fill the container to a height of 264d. The drainage process was then

carried out by opening a slit of width 51
3
d = 16 mm in the center of the container

base. Figure 2-9(a) shows a snapshot of the system after a certain amount of flow

has taken place.

Figure 2-6 shows a comparison of the vertical velocity profiles between the simu-

lation and the experiment for two different cross sections, where the simulation data

has been converted into physical units. The match is extremely good, both in terms

of the overall shape, and the total flow rate.
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Figure 2-6: Comparison of horizontal profiles of downwards velocity between DEM
simulation and Choi’s granular drainage experiment.

2.8 Velocity correlations

Velocity correlations were also compared to experiment. However, since searching for

velocity correlations requires a large amount of data over which to gain a statistical

average, it was chosen to carry out these measurements in a smaller simulation, which

could be run for longer. Since the velocity correlations are a local effect, they should

not be dependent on the precise geometry used. Walls were placed at x = ±25d,

y = ±4d, and z = 0, and approximately 55,000 particles were poured from a height

of 170d to fill the container up to a height of 110d. For this simulation, µ = µw = 0.5,

which is a commonly-used figure when running the DEM code. To create the flow,

a circular hole of radius 4d centered on x = y = 0 was opened. The simulation was

treated as periodic in the z direction, so that particles falling out at z = 0 would be

reintroduced at z = 181d, creating a continuous flow. For making measurements of

velocity correlations, there were two regions of interest: the particles near the front

wall, whose centers satisfy y > 3.2d, and the particles in the central slice, whose
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Figure 2-7: Velocity correlations at the boundary of a DEM simulation, computed
in square test regions of side length 16d centered at three different locations. The
functional form closely matches Choi’s experimental data.

centers satisfy |y| < 2d.

The simulation was first run to calculate a mean background velocity, by averaging

the instantaneous particle velocities in cubic grid of side length 1d. Since the system

is symmetric in the x and y directions, this can be exploited to improve the accuracy

of the computed field by a factor of four. Once computed, the mean velocity at a

specific point could be found by linearly interpolating from the eight neighboring

cells.

A run was then carried out to calculate velocity correlations in three different

test squares of side length 16d, both at the boundary and in the bulk. One test

square was centered on (x, z) = (0, 88d), high in the central region of the container

where the flow is approximately uniform. In addition, an off-axis test region at

(x, z) = (14d, 88d), plus a lower test region at (x, z) = (0, 32d), were tested. We

computing the correlation statistics, the previously computed mean velocity field is

subtracted, so that the results capture the local variations.
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Figure 2-8: Velocity correlations at in the bulk slice of a DEM simulation, computed
in square test regions of side length 16d centered at three different locations.

Figure 2-7 shows the computed velocity correlations in the boundary slice. In all

three test regions, the functional form closely matches Choi’s correlation data, and

captures the same lattice effects. Along with the mean flow data presented in the

previous section, this provides further evidence that the simulations are a faithful

reproduction of experiment.

Figure 2-8 shows the velocity correlations in the same three test regions, but

looking in the boundary slice. We see a decaying correlation, similar in magnitude

and decay length to the result at the boundary. However, as expected, the local

ordering effects are much weaker: there is a strong signature at r ≈ d, corresponding

to particles in contact, but for larger separations, the computed function is smooth.

We can thus infer that the spot model for correlated particle motion appears to be

a general phenomenon in dense granular flow, that holds both at the boundaries and

in the bulk.

Furthermore, we see that for the three different test regions, the structure of the

correlations, and their overall correlation length, are remarkably similar. It suggests
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Figure 2-9: A snapshot of a DEM simulation of granular drainage in Choi’s experi-
mental geometry (left), compared to 2D simulations of the spot model (center) and
void model (right), all shown at t = 200τ . The total flow rates of the spot and
void models were calibrated to match DEM. The spot size and diffusion rate were
calibrated using the same process discussed in the following chapter.

that the process by which particles flow is similar throughout the container, and thus

it may be a reasonable approximation to treat spots as having a fixed radius. The

evidence also supports the later work in chapter 7 where we make use of a fixed-size

granular element throughout a granular simulation.

2.9 Comparison of DEM, spot and void simula-

tions

Figure 2-9 shows a snapshot from the DEM simulation of Choi’s geometry, and com-

pares it to simulations in two dimensions of the spot and void models. The simulation

of the void model shows an unrealistic amount of diffusion, and the interfaces between

the colored layers is rapidly smeared out, agreeing with the theoretical predictions of

previous sections.

The spot model is a significantly better match, and the interfaces show an amount
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of diffusion which matches that seen in the DEM. Although there are some discrep-

ancies, the spot model tracks the overall flow profile reasonably well. However, this

image shows one very significant drawback of the spot model as a simulation tech-

nique: looking near the orifice, we see that many particles have become overlapped.

This is seen more clearly in the progression of close-up images shown in figure 2-10.

This should be expected, since in the spot model of microscopic particle motion

shown in figure 2-3(a), there is nothing explicitly enforcing packing constraints. In

this figure, it is clear that particles near the edge of the spot may end up overlapping

with their neighbor by small amount, which may become larger and larger as more

spots pass through. The above figures show that the problem is largest in areas

undergoing a large amount of shear.

This represents a significant hurdle in using this model as a simulation technique.

The basic model of particle motion is good for a mathematical analysis, and can make

reasonable predictions about the statistics of motion of a single particle, but it cannot

be used to generate reasonable predictions about the motions of all particles in the

system. This problem is not present in the void model, since by enforcing particles

to lie on a lattice they will never become overlapped.

Several modifications to the spot model microscopic motion were proposed to

solve this problem. Making the spots carry out persistent random walks [55], adding

a diffusive term to the particle motion, and adding a rotation were all tested. While

some of these techniques mitigated the effect of the overlap, none of them were able

to create fully valid packings. This is unsurprising, since it should be expected that

in order to maintain a valid packing of particles, one must take into account the

geometry of packing structure at a local level. In the following chapter, a solution to

the density problem taking this approach will be described.
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t = 0 s t = 1.74 s

t = 3.50 s t = 5.25 s

Figure 2-10: Four close-up snapshots of the spot model simulation from figure 2-9,
taken in the region 0 < x < 7.5 cm, 2.5 cm < z < 10 cm. The overlapping particles
highlight the “density problem” of the basic spot model.
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