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We present a general simulation approach for fluid–solid interactions based on the fully-
Eulerian reference map technique (RMT). The approach permits the modeling of one
or more finitely-deformable continuum solid bodies interacting with a fluid and with
each other. A key advantage of this approach is its ease of use, as the solid and fluid
are discretized on the same fixed grid, which greatly simplifies the coupling between
the phases. We use the method to study a number of illustrative examples involving an
incompressible Navier–Stokes fluid interacting with multiple neo-Hookean solids. Our
method has several useful features including the ability to model solids with sharp corners
and the ability to model actuated solids. The latter permits the simulation of active
media such as swimmers, which we demonstrate. The method is validated favorably in
the flag-flapping geometry, for which a number of experimental, numerical, and analytical
studies have been performed. We extend the flapping analysis beyond the thin-flag limit,
revealing an additional destabilization mechanism to induce flapping.

1. Introduction

Fluid–structure interaction (FSI) problems highlight a natural dichotomy in the
simulation approaches for solids and fluids, where fluid problems tend to be solved
using Eulerian-frame methods (Chorin 1967; Hirt et al. 1974; Versteeg & Malalasekera
1995; Tannehill et al. 1997) and solids with Lagrangian approaches (Zienkiewicz & Taylor
1967; Sulsky et al. 1994; Hoover 2006; Belytschko et al. 2013). An FSI simulation method
must therefore bridge the gap between these two perspectives. For example, one set of FSI
approaches treats both fluid and solid phases in a Lagrangian frame, with a finite-element
representation in the solid and an adaptive Lagrangian mesh in the fluid (Rugonyi &
Bathe 2001; Bathe 2007; Froehle & Persson 2015), or with both phases treated with a
mesh-free approach (Rabczuk et al. 2010). An alternative methodology is to treat the
fluid on a fixed Eulerian mesh and the solid with Lagrangian points, such as the family
of immersed boundary methods developed by Peskin (1972a,b, 1977, 2002), which have
been extensively used to simulate membranes (Griffith et al. 2009; Fai et al. 2013), and
obstacles (Coquerelle & Cottet 2008; Gazzola et al. 2011; Engels et al. 2015) via Brinkman
volume penalization.

A fully Eulerian method whereby fluid and solid are both computed on a fixed grid
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has its advantages. Computation time benefits arise from both phases being treated on a
single fixed background grid. The handling of multiple objects interacting or of topological
changes to objects can be done with level set fields (Osher & Sethian 1988; Sethian 1999;
Osher & Fedkiw 2003) rather than requiring complex on-the-fly Lagrangian remeshing.
In addition, certain common conditions such as incompressibility are easier to implement
in an Eulerian form. Lastly, fixed-grid approaches are well suited to numerical analysis,
such as a von Neumann stability analysis (LeVeque 2007).

The key challenge for a fully-Eulerian FSI method is to develop an Eulerian description
of the solid. In a small strain limit, this can be achieved by writing the equations of
linear elasticity in rate form, referred to as hypoelasticity (Truesdell 1955), which has
formed the basis of several numerical techniques (Udaykumar et al. 2003; Rycroft &
Gibou 2012; Rycroft et al. 2015). However, here our aim is to develop a large-deformation
description of the solid, the more general approach in solid mechanics (Gurtin et al. 2010;
Belytschko et al. 2013). This has attracted interest over the past three decades, with a
variety of different approaches being explored in the literature, such as the conservative
first-order method of Plohr & Sharp (1988), the deformation gradient-based method of
Liu & Walkington (2001), and the initial point set (IPS) method of Dunne (2006). See
Sec. 2.2 for further references and a comprehensive discussion.

In recent years, we have contributed to this field by developing an Eulerian-frame solid
simulation approach called the reference map technique (RMT) (Kamrin 2008; Kamrin
& Nave 2009; Kamrin et al. 2012; Valkov et al. 2015), which is based on tracking the
reference map field—i.e. where material started from—as the primary simulation variable
on the Eulerian grid. The reference map field allows the finite deformation of the solid
to be computed, from which the material stress is calculated according to a prescribed
nonlinear constitutive law. This approach has shown the ability to simulate basic FSI
and separately cover a span of desirable features. However, a single implementation
covering all needed features for robust physical simulation—e.g. (i) numerical stability, (ii)
good convergence properties for fluid and solid phases, and (iii) desirable physical traits
such as the ability to model incompressible materials, objects with sharp corners, and
activated media—has been lacking and non-trivial to produce. In this paper we present
such a method and provide a variety of physical simulations using it, which extend our
understanding of certain FSI problems.

To represent incompressible solids and fluids we have reformulated the numerical
discretization using the projection method framework of Chorin (1967, 1968). In this
method, to integrate the velocity field forward by a time step, an intermediate velocity
field is computed where the incompressibility constraint is temporarily relaxed. After this,
a Poisson problem is solved for the pressure, which is used to project the velocity to be
divergence-free. The method has been extensively developed since Chorin’s original work
(Brown et al. 2001). Here, we consider a modern second-order implementation developed
by Almgren, Bell, and coworkers (Bell et al. 1989; Puckett et al. 1997; Almgren et al. 1998).
The implementation uses the discretization of Colella (1990) for accurately calculating
advective terms. It employs the approximate projection approach of Almgren et al. (1996)
based on a finite-element discretization. The implementation was subsequently extended
to two-phase flows using a level set method (Sussman et al. 1999), which was used to
simulate an inkjet printer nozzle (Yu et al. 2003, 2007). In our approach we deliberately
keep the fluid component of the simulation to match this existing implementation, to
emphasize that the reference map technique does not require any special treatment of the
fluid. However, we show that the discretization techniques can be generalized to simulate
solids via the RMT, and we find that the advective discretization is especially well suited
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to simulating the reference map update equations in a fashion more accurate than the
approach of Valkov et al. (2015).

The projection method removes the Courant–Friedrichs–Lewy (CFL) condition (Courant
et al. 1967) associated with pressure waves. This makes it possible to simulate a wide
variety of problems in an intermediate Reynolds number regime (and potentially for high
Reynolds problems should an adaptive background grid be used). Following Valkov et al.
(2015), the level set field representing interface(s) is not explicitly updated, but is tied
to where the boundary should be in the reference map field. However, here we switch
to a regression-based extrapolation method, which is more stable, simpler, and allows
shapes with corners to be considered. Two physically-motivated examples of a flexible
rotor and a paddle are presented, and a variety of convergence and performance tests
are provided in Appendices B, C, D, & E. Our numerical tests show that the method
is first-order accurate for a typical fluid–solid simulation, with the interface being the
largest source of error. With respect to the L2 norm, second-order accuracy is achieved
for a fluid-only discretization, and for a solid-only discretization with specific choices for
numerical damping.
With the properties of the method established, we consider the flag flapping stability

problem, which has been studied extensively (Zhang et al. 2000; Watanabe et al. 2002;
Zhu & Peskin 2002; Connell & Yue 2007). We can quantitatively reproduce the phase plot
of stability for a thin flag (Connell & Yue 2007) with very good accuracy for Reynolds
numbers below 1000, and reasonably good accuracy for Reynolds numbers above 1000.
Our method also makes it possible to simulate flags with substantial thickness, which
show a different instability mechanism due to vortex shedding from the tip. The transition
between the thin and thick flag behaviors is captured and studied with our method. We
also augment the approach to allow internal actuation of the solid bodies. With this
addition, the method is well suited to biolocomotion problems and we show an example
of this by modeling a jellyfish-like swimmer. Another advantage of the method is the
ability to perform many-body contact problems quickly but in a fashion that accurately
balances momentum. We demonstrate this approach with two examples of many objects
of various sizes and densities settling under gravity. All computer code to generate the
results in this paper is released as open source software (Appendix F).

2. Theory

2.1. Overview of the reference map technique

We begin by considering the solid material, which we model using the large-deformation
hyperelastic framework (Lubliner 2008; Gurtin et al. 2010). As shown in Fig. 1(a), we
introduce an undeformed reference configuration for the solid at time t = 0 with coordinate
system X. We then consider a time-dependent map χ(X, t) from the undeformed
configuration to the deformed state in the physical frame at time t. The deformation
gradient tensor is defined as

F =
∂χ

∂X
(2.1)

and represents how an infinitesimal element of the solid has been deformed and rotated.
From here, a constitutive law

σs = f(F, ζ) (2.2)

can be used to calculate the Cauchy stress σs in the physical frame, where ζ represents
any internal state variables such as plastic deformation. The material velocity v(x, t) then
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Figure 1. (a) Overview of the hyperelastic framework, whereby an initially undeformed solid
with reference coordinate system X undergoes a time-dependent mapping χ(X, t) to its current
configuration at time t. (b) Overview of the reference map technique for simulating fluid–structure
interaction on a fixed background grid. The sign of the level set function ϕ(x, t) demarcates the
solid and fluid phases. The blur zone, used to transition from solid to fluid stress, is defined as
the region where |ϕ| < ϵ.

satisfies

ρ

(
∂v

∂t
+ (v · ∇)v

)
= ∇ · σ (2.3)

where σ = σs in this case, ρ = ρs/(detF), and ρs is the solid density in the undeformed
configuration.
The most commonly used approach to simulate hyperelastic solids is to introduce a

deforming mesh on the solid, and then solve for the nodal displacements, from which
Eq. (2.1) can be used to compute the stress (Belytschko et al. 2013). However, here we
take an alternative approach of introducing the reference map field in the physical frame
ξ(x, t) that represents the inverse mapping of χ. The field is initialized as ξ(x, 0) = x,
and satisfies the advection equation

∂ξ

∂t
+ (v · ∇)ξ = 0. (2.4)

The deformation gradient tensor is computed from the reference map field according to

F =

(
∂ξ

∂x

)−1

, (2.5)

from which the Cauchy stress is evaluated. Equations (2.2), (2.3), (2.4), & (2.5) then
form a minimal system of equations for finite-strain hyperelasticity in an Eulerian frame.
The reference map ξ(x, t) and velocity v(x, t) can be represented on a fixed grid. At
each timestep Eqs. (2.5) & (2.2) can be used to evaluate the Cauchy stress, after which
Eqs. (2.3) & (2.4) can be integrated forward in time. So far, this prescription is general,
and could be solved using a variety of discretization approaches such as a finite-difference
method, finite-volume method, or a discontinuous Galerkin method.

2.2. Other related approaches

The reference map is a standard definition in solid mechanics (Gurtin et al. 2010), and
it has been used in problems of inverse design (Govindjee & Mihalic 1996; Fachinotti
et al. 2008), but it is not widely employed as a primary simulation variable in the physical
frame. Fixed-grid approaches by Plohr & Sharp (1988), Trangenstein & Colella (1991),
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and Liu & Walkington (2001) have been developed that use the deformation gradient
tensor F as a primary simulation variable. Takagi and coworkers have developed a related
approach based on using the left Cauchy–Green deformation tensor B = FFT as the
primary simulation variable since this quantity features in many constitutive laws (Takagi
et al. 2011; Sugiyama et al. 2011; Ii et al. 2012). Methods based on F and B have
the advantage of requiring a single spatial derivative to compute acceleration, whereas
our approach requires two, in Eqs. (2.5) & (2.3). However, the reference map contains
additional information for locating the boundary and has fewer components to store.
Using F requires that a gauge constraint is imposed to ensure that it remains a valid
gradient of a material mapping.
Cottet et al. (2008) and Maitre et al. (2009) independently developed simulation

approaches using the reference map, and stated its potential to be used as part of a
general fluid–structure simulation. Further work by Milcent & Maitre (2016) simulated
an immersed interface with full membrane elasticity. Bellotti & Theillard (2019) coupled
the reference map to the level-set method for improved tracking of interfaces in two-phase
flow simulation.

The IPS method of Dunne (2006) is closely related to our approach. The IPS method is
based on using finite elements to track the solid displacements u as the primary simulation
variable. However, the reference map field (referred to by Dunne as the set of initial
positions) emerges as part of the computational procedure, via the relationship u = x− ξ.
The IPS method has been developed further (Dunne et al. 2010; Richter 2013; Wick 2013),
and has the advantage that the Eulerian field u can be used to track the deformation of
the fluid–structure interface, in a similar manner to the approach we discuss in Sec. 3.2.

2.3. Incompressible fluid–structure interaction

In this paper we employ the reference map technique to simulate incompressible fluid–
structure interactions. We shall use the terms τ , τs, and τf to refer only to the deviatoric
part of the stress, as the pressure field is now deformation independent and separately
calculated. We make use of a globally defined velocity field v(x, t) that satisfies the
incompressibility constraint

∇ · v = 0. (2.6)

We consider a solid immersed within the fluid, and introduce a level set function ϕ(x, t)
(Sethian 1999; Osher & Fedkiw 2003) that is the signed distance to the solid–fluid interface
with the convention that ϕ < 0 in the solid and ϕ > 0 in the fluid. The reference map
ξ(x, t) is defined within the solid region only.
Let the fluid have density ρf and dynamic viscosity µf . The fluid stress deviator at

any gridpoint is given by

τf = µf (∇v + (∇v)T). (2.7)

Kinematic viscosity is defined as νf = µf/ρf . The deviatoric stress is then defined as a
smooth transition between the fluid and solid stresses,

τ = τs +Hϵ(ϕ)(τf − τs), (2.8)

where

Hϵ(ϕ) =


0 if ϕ ⩽ −ϵ,
1
2 (1 +

ϕ
ϵ + 1

π sin πϕ
ϵ ) if |ϕ| < ϵ,

1 if ϕ ⩾ ϵ,
(2.9)

is a smoothed Heaviside function with a transition region of width 2ϵ. Here we use a
twice-differentiable form for Hϵ that has been employed in previous studies (Sussman
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Figure 2. (a) Arrangement of the fields within a simulation grid cell. The reference map ξi,j ,
velocity vi,j , and level set field ϕi,j are held at the cell center, while the pressure is held at the cell
corners. The level set field is bracketed to emphasize that it is not time-evolved independently, but
is instead derived from the reference map. (b) Arrangement of the edge velocities and reference
maps that are computed at the half-timestep to evaluate the advective terms.

et al. 1994, 1999; Yu et al. 2003, 2007). For more details on the choice of ϵ and the precise
form of Hϵ, see Appendix D. In order to calculate τ it is necessary to smoothly extend ξ
in the region 0 < ϕ < ϵ, which is done using extrapolation methods that will be described
in the following section. The density is also defined as a smooth transition between the
solid and fluid, as

ρ = ρs +Hϵ(ϕ)(ρf − ρs). (2.10)

Formally, our limit of interest is when ϵ→ 0, when there is a sharp interface between the
fluid and solid. In our numerical method, we choose ϵ to scale proportionally with the
grid spacing, and thus we approach this limit as the simulation resolution is increased.

3. Numerical Method

The numerical procedure is based on the projection method of Chorin (1967, 1968) for
solving the incompressible Navier–Stokes equations. Specifically, we consider a modern
second-order method described by Almgren et al. (1998) that is especially effective at
dealing with advection, and incorporates a number of algorithmic advancements from
Chorin’s original treatment.

The simulation domain is a rectangle of sizeW by H, and is divided into anM×N grid
of rectangular cells of size hx by hy. Following the work of Colella (1990), the velocity, the
reference map, and the level set are held at cell centers and are indexed as vi,j , ξi,j , and
ϕi,j , respectively, for i = 0, . . . ,M − 1 and j = 0, . . . , N − 1 (Fig. 2(a)). The components
of the velocity field are written as v = (u, v). Pressures are held at cell corners and are
indexed as pi,j for i = 0, . . . ,M and j = 0, . . . , N . In addition, the grid is padded by two
layers of cells in each direction whose values are populated to enforce different boundary
conditions.
Superscripts are used to denote timesteps. To advance the simulation forward from

timestep n to n+ 1 with interval ∆t, the following procedure is used. The reference map
field is updated using

ξn+1 − ξn

∆t
= − [(v · ∇)ξ]

n+1/2
(3.1)

and an intermediate velocity v∗ is computed using

v∗ − vn

∆t
= − [(v · ∇)v]

n+1/2
+

1

ρ(ϕn+1/2)
∇ ·
[
τ (ξn+1/2,vn)

]
. (3.2)
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Here, the advective derivatives [(v · ∇)ξ]n+1/2 and [(v · ∇)v]n+1/2 are evaluated at the
middle of the timestep using a second-order explicit Godunov scheme, described in Sec. 3.1.
Once the advective derivatives are evaluated, Eq. (3.1) allows ξn+1 to be computed. This
allows the time-centered reference map to be defined as ξn+1/2 = (ξn + ξn+1)/2 after
which v∗ is computed using Eq. (3.2). From here, the Poisson problem for pressure is
evaluated using

∇ · v∗ = ∇ ·
(

∆t

ρ(ϕn+1/2)
∇pn+1

)
. (3.3)

Following Almgren et al. (1996) and Puckett et al. (1997), Eq. (3.3) is solved using a
finite-element formulation, described in Sec. 3.4. After this, the velocity is projected to
be divergence-free using

vn+1 = v∗ − ∆t

ρ(ϕn+1/2)
∇pn+1 (3.4)

where the gradient of pn+1 is evaluated using a second-order centered difference formula.

3.1. Advective terms

To evaluate the advective terms appearing in Eqs. (3.1) and (3.2), a second-order
explicit Godunov scheme is used. The same scheme is applied to both the velocity v and
reference map ξ. Throughout this section, we denote a to be a generic scalar component
of either of these two fields. We also refer the reader to recent work by Jain & Mani
(2017), which introduces an alternative numerical treatment for reference map advection.

3.1.1. Godunov upwinding

To begin, the gradients of the reference map and velocity at each cell center are
evaluated using the fourth-order monotonicity-limited scheme of Colella (1985) described
in Appendix A.1. Once the gradients are calculated at the center of each cell, edge-centered
velocities and reference maps are created at t+∆t/2 using Taylor expansions to each
of the four edges, which are indexed using half-integers as shown in Fig. 2(b). As an
example, an extrapolation of the reference map to a vertical edge from the left (with
superscript L) is given by

ξ
L,n+1/2
i+1/2,j = ξni,j +

∆t

2
(∂tξ)

n
i,j +

hx
2
(∂xξ)

n
i,j

= ξi,j +
1

2

(
hx − uni,j∆t

)
ξnx,i,j −

∆t

2
(ṽξy)

n
i,j , (3.5)

where Eq. (2.4) has been substituted for the ξt derivative. The extrapolation of the
velocity from the left to this edge is

v
L,n+1/2
i+1/2,j = vn

i,j +
∆t

2
vn
t,i,j +

hx
2
vn
x,i,j

= vn
i,j +

1

2

(
hx − uni,j∆t

)
vn
x,i,j −

∆t

2
(ṽvy)

n
i,j −

∆t

2
ani,j , (3.6)

where Eq. (2.3) has been substituted to replace the vn
t,i,j term, and ani,j is defined according

to

ani,j =

[
− 1

ρ(ϕ)
∇p+ 1

ρ(ϕ)
∇ · τ

]n
i,j

. (3.7)

Equivalent procedures are used to compute extrapolations from the right, down, and up
with superscripts R, D, and U , respectively. To ensure tangential stability the terms with
tildes in Eqs. (3.5) & (3.6) are computed differently using the procedure in Appendix A.2.
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After this procedure, each edge has velocities and reference maps from the two cells that
adjoin it, and a Godunov upwinding procedure is used to select which values to use. On
the vertical edge at (i+ 1/2, j),

a
n+1/2
i+1/2,j =


a
L,n+1/2
i+1/2,j if u

L,n+1/2
i+1/2,j > 0 and u

L,n+1/2
i+1/2,j + u

R,n+1/2
i+1/2,j > 0,

a
R,n+1/2
i+1/2,j if u

R,n+1/2
i+1/2,j < 0 and u

L,n+1/2
i+1/2,j + u

R,n+1/2
i+1/2,j < 0,

F(a
L,n+1/2
i+1/2,j , a

R,n+1/2
i+1/2,j ) otherwise.

(3.8)
where a is a generic component. Thus if the velocity field points rightward then the
components are taken from the left cell, and if the velocity field points leftward then
the components are taken from the right cell. The function F is used when the two
velocities are ambiguous. For the horizontal velocity F(β, γ) = 0 (Case A), and for all
other components F(β, γ) = (β + γ)/2 (Case B). On an edge where a velocity boundary
condition is applied (e.g. a no-slip condition) the corresponding edge velocity is set to
exactly match the condition. In this paper we restrict to cases of localized solid objects
that do not extend to the boundary and thus we do not apply special boundary condition
treatment for edge reference map fields.

3.1.2. Marker-and-cell (MAC) projection

The edge velocities calculated in Sec. 3.1.1 may not be precisely divergence free. We
therefore apply an intermediate MAC projection step to ensure that the discrete flux
entering any grid cell is exactly zero. Let ve be the edge velocities, and let q be a
cell-centered scalar field. We aim to make

ve −
1

ρ
∇q (3.9)

divergence free. Taking the divergence of Eq. (3.9) yields

∇ ·
(
1

ρ
∇q
)

= ∇ · ve, (3.10)

which is discretized as

1

h2x

(
qi+1,j − qi,j
ρi+1/2,j

− qi,j − qi−1,j

ρi−1/2,j

)
+

1

h2y

(
qi,j+1 − qi,j
ρi,j+1/2

− qi,j − qi,j−1

ρi,j−1/2

)
=
ui+1/2,j − ui−1/2,j

hx
+
vi,j+1/2 − vi,j−1/2

hy
. (3.11)

Edge-based densities appearing in this equation are computed via linear interpolation
from the two adjacent grid cells. At boundaries where a velocity boundary condition
is applied, any derivative on the left hand side of Eq. (3.11) is omitted if it contains q
values that are out of range. If a pressure condition is applied, then a Dirichlet condition
of q = ∆t p/2 is applied, where the factor of two arises because the edge velocities are
time-centered.
Equation (3.11) results in a large linear system Aq = b where A is a sparse matrix, b

is the source term, and q is a vector of the components qi,j , which we solve using the
geometric multigrid method with a standard V-cycle iteration (Demmel 1997). Since the
q field typically varies smoothly in time, the initial guess for the multigrid method is
computed as a linear interpolation from the previous two timesteps. Multigrid V-cycles are
performed until the root mean squared (RMS) element in the residual vector r = Aq − b
reaches a required tolerance TMAC. We assume that velocities and densities are within
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several orders of magnitude of unity. Then an appropriate scale for an element of the
residual is rs = 4(h−2

x + h−2
y )∆t, and a tolerance of TMAC = 104rsϵm is used, where ϵm is

the machine epsilon for double precision floating point arithmetic. Once the tolerance level
is reached, one further V-cycle is performed to further improve accuracy. See Appendices
C & F for more details on the multigrid code library and performance.

3.1.3. Evaluation of the derivative

Once the MAC projection has been performed the time-centered advective terms for
the velocity and reference maps are evaluated as

[(v · ∇)a]
n+1/2
i,j =

u
n+1/2
i+1/2,j + u

n+1/2
i−1/2,j

2

a
n+1/2
i+1/2,j − a

n+1/2
i−1/2,j

hx

+
v
n+1/2
i,j+1/2 + v

n+1/2
i,j−1/2

2

a
n+1/2
i,j+1/2 − a

n+1/2
i,j−1/2

hy
(3.12)

where a is a generic field component.

3.2. Level set update and reference map extrapolation

The simulation makes use of a cell-centered level set function ϕi,j for tracking the
fluid–solid boundary. The level set routine is stored in a narrow band of points of width
2ϕW surrounding the interface (Sethian 1999; Rycroft & Gibou 2012) that is chosen to
be large enough to contain the entire blur zone and perform finite-difference calculations
at all points in this region. The level set is used to extrapolate the reference map fields in
the narrow band, and to calculate the mixing of stress and density according to Eqs. (2.8)
& (2.10), respectively. Unlike typical applications of the level set method, the ϕ field is
not explicitly updated, but is instead continually given by the reference map field using
the procedure first described by Valkov et al. (2015).

3.2.1. Level set construction

For a given shape, define a continuous function of the reference map ϕ0(ξ) such that
ϕ0 < 0 for reference map values in the solid, ϕ0 > 0 for reference map values outside the
solid, and ϕ0 = 0 on the interface. During the timestep, the reference map field ξn+1 is
computed inside the solid using Eq. (3.1), from which the half-timestep reference map is
defined as ξn+1/2 = (ξn + ξn+1)/2. Both fields are extended into the narrow band fluid
region using the extrapolation methods described in Sec. 3.2.2.
To construct the new level set function ϕn+1/2, an auxiliary function ψn+1/2 is first

computed in the narrow band such that ψn+1/2 = ϕ0(ξ
n+1/2). The zero contour of

ψn+1/2 will lie at the fluid–solid interface, but this function itself may not satisfy the
signed-distance property. To recover the signed-distance property, the level set ϕn+1/2

is constructed from ψn+1/2 using the reinitialization procedure described by Rycroft &
Gibou (2012). This procedure first considers points (i, j) that straddle the interface, so
that one of their orthogonal neighbors has a ψn+1/2 value of an opposite sign. Each
straddling point is considered. The bicubic interpolant ψ

n+1/2
c is computed, and the

modified Newton–Raphson approach of Chopp (2001, 2009) is used to find the shortest
distance vector ∆x from each straddling point to the interface ψ

n+1/2
c (x) = 0, after which

the level set function is initialized to ±|∆x|. In extremely rare cases the root-finding
method can fail, in which case the routine falls back on the first-order method described
by Sethian (1999). For further details, see the paper by Rycroft & Gibou (2012).

With the straddling points of ϕn+1/2 now initialized, the remaining points are filled in
using the second-order fast marching method of Sethian (1999). In the fluid, the positive
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ϕn+1/2 values are computed in order of increasing value, until reaching a cutoff ϕW that
defines the width of the narrow band. The same procedure is used to fill in the negative
ϕn+1/2 values in the solid, until reaching a cutoff −ϕW . After this procedure, the level
set function is now a signed-distance function inside the narrow band. Note that these
routines work reliably even if the function ψn+1/2 has a loss of regularity as some points:

since the entire ϕn+1/2 field is directly constructed, there is no possibility for instabilities
to grow over time, as can happen in update procedures based on partial differential
equations (PDEs). Identical methods are used to construct ϕn+1 from ξn+1.

3.2.2. Extrapolation

During the construction of the level set function, a list of fluid gridpoints sorted in order
of increasing value, 0 < ϕ1 < ϕ2 < . . . is constructed, which is used for extrapolating
the reference map ξ from the solid into the fluid narrow band. Previous approaches to
do this have employed PDE-based methods by defining a normal vector n = ∇ϕ and
extrapolating outwards from the object in the direction of n (Aslam 2004; Rycroft &
Gibou 2012). While these methods are well suited to mathematical analysis, they require
considerable bookkeeping for performing the finite difference calculations of ϕ and ξ due
to the fields only existing at certain grid locations. In previous work we have found this
to be a source of difficulty (Valkov et al. 2015).

In the current work, we make use of the following alternative extrapolation procedure.
Consider the points in increasing order of ϕ value. For a particular point (i, j) at physical
location xi,j :

(i) Set r = 3.
(ii) Use least-squares regression to fit a linear map ξlm(x) = Ax+By +C using all

available reference map values at (i′, j′) such that |i− i′| ⩽ r, |j − j′| ⩽ r. Weight each
value in the regression according to ϕi,j − ϕi′,j′ .
(iii) If the linear map is degenerate then increment r and return to Step 2. Otherwise,

continue.
(iv) Set ξi,j = ξlm(xi,j).

This procedure is simpler than the PDE-based methods since it does not require extensive
bookkeeping. Since the method uses all available values in a neighborhood, this repeated
averaging results in substantial blurring if the extrapolation is continued far away from
the interface. However, here, only values near the interface are required, and the averaging
is beneficial, serving to damp out high-frequency modes that could be the source of
instability. In Step 3, degeneracies occur only when the available points are colinear, in
which case there is insufficient information to determine the linear map. In this case, Step
4 causes the algorithm to retry using more neighboring points.

The approach described here makes it possible to simulate objects with sharp corners.
The reference map is smoothly defined within the object, and using the above procedure
allows it to be smoothly extended into the fluid domain from which solid stresses in the
blur zone can be computed. The function ϕ0(ξ) that defines the object boundary need
not be smooth itself, and can describe a shape with corners.†

3.3. Computation of stress

In order to evaluate the stress divergence terms that appear in Eqs. (3.2) & (3.7), the
stresses are first computed on the edges of each grid cell. The stress term in Eq. (3.7) is

† The IPS method of Dunne (2006) has a similar capability to handle corners, although it
is based on a harmonic continuation of the solid velocity, which is used to update the solid
displacement field u, from which the boundary can be located by examining u− x.
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computed as

∇ · [τ (ξn)] =
[τx]

n
i+1/2,j − [τx]

n
i−1/2,j

hx
+

[τy]
n
i,j+1/2 − [τy]

n
i,j−1/2

hy
(3.13)

where τx = (τxx, τxy) and τy = (τxy, τyy) are the components acting on the vertical and
horizontal edges, respectively.

3.3.1. Solid stress

To begin, the components of the Jacobian are computed using the second-order finite-
difference formulae(
∂ξ

∂x

)
i−1/2,j

=
ξi,j − ξi−1,j

hx
,

(
∂ξ

∂y

)
i−1/2,j

=
ξi,j+1 + ξi−1,j+1 − ξi,j−1 − ξi−1,j−1

4hy
(3.14)

after which the deformation gradient is evaluated as

Fi−1/2,j =

((
∂ξ

∂x

)
i−1/2,j

)−1

. (3.15)

From here, any constitutive law τs = f(F) could be used to evaluate the deviatoric stress,
τs. In the current work, we employ the plane-strain incompressible neo-Hookean law,

τs = f(F) = G
(
FFT − 1

31(trFF
T + 1)

)
, (3.16)

where G is the small-strain shear modulus.

3.3.2. Fluid stress

To evaluate the fluid stress, the gradients of the velocity on vertical edges are computed
as (

∂v

∂x

)
i−1/2,j

=
vi,j − vi−1,j

hx
, (3.17)(

∂v

∂y

)
i−1/2,j

=
vi,j+1 + vi−1,j+1 − vi,j−1 − vi−1,j−1

4hy
. (3.18)

Equivalent stencils are used to compute velocity gradients on horizontal edges, after which
the fluid stress is given by

τf = µf (∇v + (∇v)T) (3.19)

where µf is the viscosity. Equation (3.19) is our standard approach for computing the
fluid stress. However, we have also investigated a simplified calculation. Since ∇ ·v = 0, it
follows that in the bulk of the fluid, the second term in Eq. (3.19) has zero contribution
to ∇ · τf . Hence an alternative formula is

τ
(simp)
f = µf∇v. (3.20)

This formula only requires evaluating the simpler stencil in Eq. (3.17). However, Eq. (3.20)
is not strictly valid in the blur zone since taking the divergence in Eq. (2.8) results in a
non-zero contribution from the second term of Eq. (3.19).
Once all edge stresses are computed, the divergence is computed using

[∇ · τ ]i,j =
τi+1/2,j − τi−1/2,j

hx
+

τi,j+1/2 − τi,j−1/2

hy
. (3.21)
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3.4. Finite-element projection

To solve the Poisson problem in Eq. (3.3), we make use of a finite-element formulation.
The pressure is comprised of piecewise bilinear elements, and the velocity and density are
piecewise constant on the grid cells. For a given pressure element ψ the weak formulation
of Eq. (3.3) is

−
∫
Ω

v∗ · ∇ψ dx dy +
∫
Ω

∆t

ρ(ϕn+1/2)
∇pn+1 · ∇ψ dx dy = −

∫
Γ1

ψvBC · n dS (3.22)

where Γ1 is the section of the boundary where inflow and outflow conditions are prescribed.
Consider a particular bilinear element function ψ located at a pressure point pi,j in the
bulk of the domain. The first term of Eq. (3.22) is

hy(u
∗
i,j + u∗i,j−1 − u∗i−1,j − u∗i−1,j−1)

2
+
hx(v

∗
i,j − v∗i,j−1 + v∗i−1,j − v∗i−1,j−1)

2
. (3.23)

For the constant-density case when ∆t/ρ can be taken out as a prefactor, the second
term of Eq. (3.22) is

λapi,j + λb(pi−1,j + pi+1,j) + λc(pi,j−1 + pi,j+1) + λd
∑
k=±1
l=±1

pi+k,j+l, (3.24)

where

λa =
4(h2x + h2y)

3hxhy
, λb =

−2h2y + h2x
3hxhy

, λc =
−2h2x + h2y
3hxhy

, λd =
−h2x − h2y
6hxhy

. (3.25)

The expression in Eq. (3.24) can be generalized for the case of non-constant density.
Dirichlet conditions on pressure may also be imposed as essential boundary conditions
(Johnson 2009). The resultant linear system is solved using the same multigrid library
introduced in Sec. 3.1.2 using an error tolerance of TFEM = λa10

4ϵm. In cases where no
Dirichlet conditions are used, the pressure field is projected at each step so that it has
zero mean.

3.5. Parameter choices and stability

Our test cases involve four physical parameters: solid shear modulus G, solid density ρs,
fluid viscosity µf , and fluid density ρf . In the solid, the shear wave speed is cs =

√
G/ρs.

The CFL condition requires that the simulation timestep be less than or equal to

∆tI =
1

cs
min{hx, hy} =

√
ρs
G

min{hx, hy}. (3.26)

In addition, performing a von Neumann stability analysis shows that the timestep must
be less than or equal to

∆tII =
ρf

2µf (h
−2
x + h−2

y )
(3.27)

in order to resolve the viscous fluid stress. Inside the solid, we find that simulating stress
using only Eq. (3.16) results in an instability—this should be expected since we are
effectively solving a hyperbolic system using centered finite differences. To rectify this, we
incorporate an extra small artificial viscous stress inside the solid. Based on dimensional
considerations, the artificial viscosity should satisfy

µe = κeρscs max{hx, hy} (3.28)
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where κe is a dimensionless constant. In addition, we also find that artificial viscosity is
useful in the fluid–solid transition region. We therefore define the extra viscous stress as

τe(x) = µe(1−H(ϕ(x)))(1 + qϵH ′
ϵ(ϕ))∇v (3.29)

where q is a dimensionless constant. Based on a variety of tests, we use q = 1 and κe = 0.4
throughout the paper. Since the purpose of this extra stress is to stabilize the numerical
system, we employ the simpler form of fluid stress given in Eq. 3.20. Since µe scales
linearly with grid spacing, and the simpler fluid stress only introduces a discrepancy in
the blur zone, any errors that are introduced will reduce to zero as the grid is refined.
The corresponding timestep restriction is

∆tIII =
ρs

2µe(1 + q)(h−2
x + h−2

y )
. (3.30)

With these definitions in place, the simulation timestep ∆t is chosen to be smaller than
the minimum of the three conditions in Eqs. (3.26), (3.27), & (3.30), so that

∆t = min{αpad∆tI, αpad∆tII, βpad∆tIII}. (3.31)

Here, αpad and βpad are padding factors that are smaller than one. For this paper we use
αpad = 0.4 and βpad = 0.8, so that the restrictions arising from the two physical stresses
(I & II) are applied more stringently than the one for the artificial stress (III). Note that
in the limit as hx, hy → 0, the artificial viscosity vanishes.

4. Results

Since our purpose is to demonstrate the numerical method as opposed to apply it to a
specific problem, we make use of non-dimensionalized quantities for all of the results that
we present. To connect the results to reality, the simulation parameters and output can
be multiplied by appropriate length, time, and mass scales. Our results also focus on the
case of equal grid spacing, hx = hy = h.

4.1. A spinning flexible rotor

The first example demonstrates our method’s ability to handle sharp solid corners
within a non-trivial FSI setting. It consists of a spinning flexible regular seven-pointed
star that is centered on the origin and has vertices at (L cos 2πk

7 , L sin 2πk
7 ) for k ∈ Z,

with length scale L = 0.62, density ρs = 3, and shear modulus G = 24. The resolution
is 800 × 800, the simulation domain is [−1, 1)2 and periodic boundary conditions are
used. The fluid and rotor are initially stationary. The region r = |x| < 0.16 is used as
a pivot. To excite the fluid, the pivot is rotated with an oscillatory motion with angle
θ(t) = π(1− cos t). This is done by applying an external tether force to the pivot region of

fteth(x) = −KtethHϵ(rteth − r)(x−Rθ(t)ξ(x)) (4.1)

where rteth = 0.16 and Rθ(t) is a rotation matrix with angle θ(t). The spring constant
is set to Kteth = 10−2ρs∆t

2, which ensures that the natural frequency of the tether
satisfies the timestep restriction imposed by the method. The fluid has density ρf = 1
and viscosity µf = 10−3. The RMS angular velocity of the rotor is ωRMS = π/2, and
hence a characteristic tip velocity is ωRMSL. Hence, we define the Reynolds number for
this simulation as

Re =
ρfL(ωRMSL)

µf
≈ 600. (4.2)
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Figure 3. Snapshots of vorticity ω in a simulation of a flexible seven-pointed rotor being spun
with an oscillatory motion in a fluid. The thick black line marks the fluid–structure interface.
The thin dashed lines are contours of the components of the reference map and indicate how the
rotor has deformed. The dark blue dotted circle shows the pivot region. Simulation parameters
are (ρf , µf , ρs, G) = (1, 10−3, 3, 24).

The simulation was run from t = 0 to t = 4π using sixteen threads on a Linux computer
with dual 10-core 2.2 GHz Intel Xeon E5-2630 processors. For the given parameters, the
timestep of ∆t = 1.105× 10−4 was determined by the extra viscous stress in the solid.
Simulation output was saved at regular intervals of π/150. The total wall clock time for
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the simulation was 6.53 h. A total of 114,000 timesteps were performed, with each taking
206 ms to compute. A substantial fraction of the computation time is spent performing
the two linear solves. The MAC projections take on average 13.75 V-cycles and require
43.1 ms per timestep. The finite-element projections take on average 11.91 V-cycles and
require 48.1 ms per timestep.

Snapshots of vorticity ω = ∂xv−∂yu in the simulation are shown in Fig. 3. The vorticity
is computed on each grid cell corner, using centered finite differences of the velocities in
the four adjoining grid cells. As the star begins to rotate, each point deforms clockwise,
and vortices are shed from the points, which are visible at t = 4π/15. By t = π, the
rotor is stationary, and the points are now deformed anti-clockwise due to the angular
deceleration. As time progresses, the disturbance to the fluid becomes larger. By t = 2π,
the rotational symmetry of the fluid flow is lost, due to interactions across the periodic
boundaries, which break the seven-fold symmetry. By t = 4π, after two complete cycles
of the oscillatory motion, there are vortices present throughout the fluid. Supplemental
Movie 1 shows the complete simulation. To visualize the fluid motion, the movie also
shows a number of tracers with trajectories x(t). The tracers are initialized at random
positions in the fluid and are updated using the ordinary differential equation

dx

dt
= vbic(x(t)), (4.3)

where vbic is the bicubic interpolation of the velocity field, and the time integration is
performed using the second-order improved Euler method (Süli & Mayers 2003).

4.2. Flag flapping

Besides numerical convergence, as a test of the robustness of our approach and its
accuracy across Reynolds numbers, we consider the example of flag flapping, a problem that
has been studied extensively from experimental, numerical, and analytical perspectives
(Zhang et al. 2000; Watanabe et al. 2002; Zhu & Peskin 2002; Connell & Yue 2007).
Following the problem description and notation of Connell & Yue (2007),† we introduce a
thin filament of length L, thickness h≪ L, density ρs, and Young’s Modulus E, clamped
at its left endpoint and submerged in fluid of kinematic viscosity νf and density ρf , flowing
rightward with speed V at infinity. Three dimensionless numbers can be introduced to
study the dynamical behavior of the filament: the mass ratio µ = ρsh/ρfL, Reynolds
number Re = V L/νf , and nondimensional bending rigidity KB = EI/(ρfV

2L3). Unlike
the previous numerical approaches that consider the filament to be a one-dimensional
beam, our method uses a true continuum solid formulation so we can consider cases
beyond the thin filament limit, such as a thick flag for which the parameter h does not
necessarily satisfy h≪ L.

We first seek to determine if our method correctly captures the transition of the filament
dynamics from stable to flapping in the limit of a thin filament. We consider a filament
with L = 1, h = 0.05, KB = 0.001, in a fluid of density ρf = 1. To set KB, we use the
fact that in the linear elastic regime E = 3G, and the moment of inertia is I = h3/12. We
vary ρs and νf in order to test a range of µ and Re. The simulation domain is set to be
a [−1, 5]× [−1, 1) rectangle with assigned rightward velocity of speed V = 1 on the left
boundary, vanishing pressure on the right boundary, and periodic boundary conditions on
the top and bottom boundaries. We use a 1824× 608 grid to represent the domain. The

† For consistency with Connell & Yue (2007) we fully adhere to their notation. However we
draw attention to the reader that h (filament thickness) has a different meaning than h (grid
spacing) used in all other sections. Furthermore, µ (mass ratio) is distinct from µf (dynamic
viscosity).



16 C. H. Rycroft, C.-H. Wu, Y. Yu, and K. Kamrin

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

200 600 1000 1400 1800 2200 2600 3000

M
a
ss

ra
ti
o
µ

Reynolds number Re

0

0.03

0.06

0.09

0.12

A

Figure 4. Plot showing the steady-state oscillation amplitude A of a thin flag with aspect ratio
20 and bending rigidity KB = 0.001, as a function of the Reynolds number Re and mass ratio µ.
The colors shown are based on a bilinear interpolation of a two-dimensional grid of simulations.
The axis ticks show the sampled values of Re and µ, with more simulations being performed
in parameter ranges of interest. The thin dotted lines are contours at spacings of (n/50)2 for
n ∈ N. The thick solid line is the stable-to-flapping transition formula, Eq. (4.6) of Connell &
Yue (2007).

filament is modeled as a rectangle 0 < x < 1,−h/2 < y < h/2 with semicircular end caps.
The filament is anchored at (0, 0) using the tethering methodology described in Sec. 4.1,
with θ(t) = 0 and rteth = h/4 in this case. We track the filament tip by introducing a
tracer x(t) that starts from (1, 0) and is integrated according to Eq. (4.3). To prevent
integration errors building up over time, the position of the tracer is periodically reset
to satisfy ξbic(x(t)) = (1, 0) using a Newton–Raphson root-finding method, where ξbic is
the bicubic interpolant of the reference map field. The results of this section are based
upon 556 simulations with different parameters that were run on a variety of Linux and
Apple servers at Harvard University and the Lawrence Berkeley National Laboratory.
Depending on parameters and computer speed, each simulation took approximately 3–12
days using 4–6 threads. Simulations with smaller Re generally take longer, since resolving
the fluid viscosity requires a smaller timestep.
To systematically evaluate the behavior of the filament, we store the perpendicular

tip deflection y(t) over the interval t ∈ [120, 160]. Since the typical filament oscillation
period is approximately 1.7, the simulations correspond to almost one hundred complete
oscillations, and hence the interval [120, 160] is sufficient for the oscillation amplitude to
reach a steady state. The normalized Fourier transform is given by

ỹ(k) =
1

40

∫ 160

120

eikty(t)dt. (4.4)

The maximum Fourier amplitude is given by

A = max
k∈[0.1,50]

|ỹ(k)|. (4.5)

Typically the oscillation frequency is 2π/1.7 ≈ 4, and the range of k in Eq. (4.5) is chosen
to cover broadly the possible values. If A ≈ 0 the filament is in the stable (no-flapping)
regime and otherwise the filament is flapping, with A serving as a scalar measure of the
amplitude of the dominant flapping mode. Since our initial conditions are symmetric, the
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Figure 5. Simulations of a thin flexible flag anchored at (0, 0) in a fluid with mean
velocity v = (1, 0), at t = 160. The flag has an aspect ratio of 20. Three simulations
with different parameters are shown: (a) stable with (µ,KB ,Re) = (0.04, 0.001, 400), (b)
limit-cycle flapping with (µ,KB ,Re) = (0.16, 0.001, 1400), and (c) chaotic flapping with
(µ,KB ,Re) = (0.32, 0.001, 3000). The thick black lines mark the fluid–structure interfaces.
The thin dashed lines are contours of the components of the reference map and indicate how the
flags deform. The small dark blue circles show the anchored regions. The colors show vorticity,
using the same scale as Fig. 3.

breakage of symmetry occurs due to numerical noise introduced by the multigrid solver, on
the scale of the parameters TMAC and TFEM introduced previously. We also investigated
explicitly breaking symmetry by applying an initial perturbation to the perpendicular
velocity in the filament tip, but the calculations of A were insensitive to this. Connell &
Yue (2007) proposed an analytical formula for the stable-to-flapping transition line:

µ =
1.3Re−1/2 +KB4π

2

1− 0.65Re−1/22π − 0.5KB8π3
. (4.6)

Connell & Yue (2007) validated this equation numerically using a direct fluid–filament
coupling procedure, a procedure that itself was validated against experiments (Zhang
et al. 2000; Watanabe et al. 2002). The above formula is obtained without consideration
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Figure 6. Plot showing the steady-state oscillation amplitude A as a function of the Reynolds
number Re and mass ratio µ, for (a) flags with KB = 0.002 and aspect ratio 10, and (b) flags
with KB = 0.004 and aspect ratio 5. The colors shown are based on a bilinear interpolation
of a two-dimensional grid of simulations, using the same scale as Fig. 4. The axis ticks show
the sampled values of Re and µ, with more simulations being performed in parameter ranges of
interest. The thin dotted lines are contour at spacings of (n/50)2 for n ∈ N. The thick solid line in
(a) is the stable-to-flapping transition formula for thin flags, Eq. (4.6) of Connell & Yue (2007).
For (b), the formula is out of range and the entire parameter space is in the stable region.

of certain effects, such as possible variations of tension along the flag and the presence
of global lift forces attempting to realign the flag with the flow, although methods to
include these phenomena exist in certain limits (Argentina & Mahadevan 2005). In Fig. 4
we show the behavior of A from our numerical simulations together with the analytical
phase boundary above. For Reynolds numbers below 1000, there is very good agreement
between the locus where A goes non-zero and the analytical curve. When Re ⩾ 1000 the
transition predicted by the simulation happens at a slightly higher µ than predicted by
Eq. (4.6). The most likely explanation for this is that numerical diffusion from the fluid
advection effectively increases the fluid viscosity. However, other factors such as the finite
domain size, the extensibility of the filament, and the non-zero h may also play a role.

The behavioral switch from stable to flapping is also quite evident in the long-time flow
fields, shown in Fig. 5. Small values of µ and KB result in stable behavior, characterized
by a straight filament and fluid flow that is symmetric about the filament axis (Fig. 5(a)).
Upon crossing the transition, periodic undulatory filament motions develop with a fluid
vortex street shed from the filament (Fig. 5(b)). Increasing Re and µ even further reveals
a chaotic filamentary motion, which was also observed by Connell & Yue (2007) (Fig. 5(c),
Supplemental Movie 2). The chaotic regime coincides with a drop in A shown in the top
right of Fig. 4 because the tip deflection no longer has a clear single dominant oscillatory
mode. Because the filament is modeled as a thin continuum body of isotropic elastic
media as opposed to an inextensible beam, we observe filament extension in the initial
moments of the simulation as the imposed fluid flow applies a net rightward traction.

We explore the importance of aspect ratio by introducing R = h/L as an independent
dimensionless group. We observe that as one departs from the R≪ 1 regime, adherence
to Eq. (4.6) is diminished. In Fig. 6 we show results for R−1 = 10 and 5. In general,
thick flags have a smaller stable domain than would be predicted by the thin-filament



Incompressible Reference Map Technique 19

−0.8

−0.4

0

0.4

0.8

−0.8

−0.4

0

0.4

0.8

−1 0 1 2 3 4 5

y
(a)

y

x

(b)

Figure 7. Simulations of a thick flexible flag anchored at (0, 0) in a fluid with mean velocity
v = (1, 0), at t = 160. The flag has an aspect ratio of 5. Two simulations with different parameters
are shown: (a) vortex-shedding with (µ,KB ,Re) = (0.04, 0.004, 750) and (b) limit-cycle flapping
with (µ,KB ,Re) = (0.28, 0.004, 750). The thick black lines mark the fluid–structure interfaces.
The thin dashed lines are contours of the components of the reference map and indicate how the
flags deform. The dark blue dotted circles show the anchored regions. The colors show vorticity,
using the same scale as Fig. 3.

limit. We can explain this effect at least in part with bluff-body dynamics. When R is
non-negligible, the thickness of the flag allows the solid geometry to act as a bluff body
over which the fluid is driven to flow. Flow over a fixed cylinder of diameter D undergoes
a transition from a laminar flow to a periodic vortex street as DV/νf grows beyond ∼ 50
(Lienhard 1966). In our case, the flag thickness acts like D, and once a vortex street is
induced off the bluff back end of the flag, the oscillatory force it induces necessitates
flapping. We reiterate that this physical source of oscillatory forcing emerges only when
flags are thick enough to act as a bluff body. Consistent with this expectation, when
V h/νf = Re×R > 50 we see only flapping states for any choice of µ or Re. Figures 7(a) &
7(b) show simulation snapshots of bulky flags with low and high mass ratios, respectively.
Simulations of these two cases are shown in Supplemental Movie 3 and Supplemental
Movie 4, respectively.

4.3. Tests for a range of elastic modulus

To demonstrate that the method works across a wide range of shear moduli, we consider
a piston-like geometry where a flexible paddle is pushed through a fluid-filled cavity. The
domain is −1 ⩽ x ⩽ 1 and 0 ⩽ y ⩽ 5 and no-slip boundary conditions are used on all sides.
The grid size is 160 × 400, the fluid density is ρf = 1, the fluid viscosity is µf = 10−3,
and the solid density is ρs = 2.

A rectangular flexible paddle of width 1.6 and height 0.4 is initially centered at (0, 0.4).
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Figure 8. Snapshots of pressure p for a simulation where a flexible paddle is pushed through a
fluid-filled cavity. The paddle has shear modulus G = 100 and is anchored on its right end. The
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The displacement of the paddle is prescribed in a circular region of radius 0.15 centered
on (0.6, yp(t)), using the same tethering procedure as in Eq. (4.1). The simulation is
run for a duration of T = 20, and the circular region moves vertically according to
yp(t) = 0.4 + 4.2Y (t/T ) where

Y (τ) =

{
4τ2(3− 4τ) for t < 1/2,

1 for t ⩾ 1/2.
(4.7)

Hence, for 0 ⩽ t < 10, the paddle is dragged through the fluid, and for 10 ⩽ t ⩽ 20 the
circular region is stationary and the paddle equilibrates.

Simulations are run using shear moduli from G = 1 to G = 107, following the standard
choices for timestep and extra solid viscosity described in the main text. Figure 8 shows
a sequence of snapshots of pressure in the simulation with G = 100. As the paddle is
pushed through the cavity, it is bent downward due to the pressure of the fluid. Vortices
are shed from the paddle tip, creating regions of low pressure visible at t = 10 and t = 20.
Figure 9 shows a sequence of snapshots at t = 6.6 for the full range of shear moduli. For
G = 1 and G = 10 the paddle deformed so strongly that there is little pressure build-up
in the upper part of the domain. However for G ⩾ 103 the pressure build-up is large,
and fluid must push through the thin gaps on either side of the paddle. For G = 107,
the paddle becomes near-rigid, so that the fluid flow becomes almost symmetric even
though the paddle’s motion is only prescribed on the right side. In these simulations
the timestep is set by the limit from the extra solid viscous term (Eq. (3.30)). The total
number of timesteps scales according to

√
G and thus the simulation for G = 107 takes

approximately 3,100 times more computational resources than that for G = 1.

4.4. Solid actuation

The method also admits a simple approach for simulating actuated solids. This feature
allows one to assign time-dependent internal deformations to subregions of a solid, which
is useful for modeling active media such as swimmers. Unlike the tethering approach
used in Section 4.1, which assigns the full motion of a region by adding an external
body force in that region, here what is done is to add extra internal stresses to achieve
a desired shape change in a subdomain, without adding net external force. To actuate
a particular (Lagrangian) solid region, Ba, one writes the desired actuated deformation
gradient Fa(X ∈ Ba, t), which can then be equivalently expressed in Eulerian frame
as Fa(X = ξa(x ∈ ba, t), t) for ba the image of Ba in the Eulerian frame. At any
point x ∈ ba, the constitutive relation is adjusted by replacing all references to F(x, t)
with F(x, t)Fa(x, t)

−1. In an isotropic hyperelastic system, for example, this effectively
distorts the region’s rest configuration to the distortional state given by Fa. If at any
moment in time a configuration of the actuated domain differs from the intended actuated
configuration, a stress given by f(F(x, t)Fa(x, t)

−1) emerges that moves the system toward
the actuated deformation (where f is defined from Eq. 3.16). One could in principle assign
a stiffer response in the actuated domain if a faster conformation is desired, but we have
found it to be sufficient to use the same underlying hyperelastic constitutive model in the
actuated and passive subregions of the solid. This approach is similar to the multiplicative
Kröner–Lee decomposition used in plasticity (Kröner 1960; Lee 1969), where a tensorial
state variable Fp is introduced and the elastic deformation gradient, which produces the
stress, is given by FF−1

p . But unlike Fp, which evolves under a constitutive flow rule, here
we assign Fa(x, t) directly.

A similar, albeit reduced-dimensional approach has been used to model muscle
contraction in swimming lampreys and other narrow-body swimmers. Tytell et al. (2010),
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Figure 10. Six successive snapshots of the flapping swimmer (Re ≈ 200), with colors showing
vorticity ω. A subregion within the solid body is actuated to bend periodically and the
remaining solid is passive. The motion induces the flapping body to swim. The thick black line
marks the fluid–structure interface. The thin dashed lines are contours of the components
of the reference map and indicate how the swimmer deforms. Simulation parameters are
(ρf , µf , ρs, G) = (1, 5× 10−4, 4, 10).

simulated a lamprey swimming in a 2D geometry. The lamprey is modeled with three
connected parallel filaments, the outer two of which obey a one-dimensionsal viscoelastic
model with an additional user-defined contractile stress (McMillen et al. 2008). Actuated
bending of the lamprey occurs through asymmetric contraction of the filaments. An
alternative approach, as used by Gazzola et al. (2015) and Patel et al. (2018), involves
direct assignation of an external bending moment on the swimmer cross-section, which in
a stiff limit equates to directly assigning the swimmer shape through time. The approach
we describe above could be seen as a 2D (or potentially 3D) generalization of approaches
like these, permitting possibly more through-thickness spatial variation in actuation. The
implementation shown here could be made more realistic by including dissipation within
the swimmer, neuro-muscular signaling, and contractile-only forcing as was done by Tytell
et al. (2010), McMillen et al. (2008) and Patel et al. (2018).

As an example, we consider a flapping swimmer (Fig. 10, Supplemental Movie 5). The
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swimmer is a rectangle of width W = 0.5 and height H = 0.052 with circular end caps,
initially centered on (0,−0.8), which we choose to be the location of the origin. We choose
the actuated domain, Ba, to be a centered subregion within the swimmer, comprising a
rectangle of width 0.28 and height 0.042 with circular end caps. The following actuation
is applied:

Fa(X, t) =

(
e−α(X,t) 0

0 eα(X,t)

)
(4.8)

where

α(X, t) = −λXyHϵ(−d) sin8 ωt = −λξy(x, t)Hϵ(−d) sin8 ωt (4.9)

and d is the signed distance from the Eulerian boundary of ba. By blurring the boundary
of the actuated domain under Hϵ(−d), it should be noted material positioned up to ϵ away
from the true boundary of ba will receive some actuation stress. The parameters used
in the simulation are ω = 2π/8, ϵ = 2.5h, and λ = (log 2.2)/0.021. Thus the maximum
stretch on the top boundary is 2.2. The simulation uses a 1200× 1200 grid in [−1.5, 1.5)2

with periodic boundary conditions. The densities, dynamic viscosity, and solid shear
modulus are (ρf , µf , ρs, G) = (1, 5× 10−4, 4, 10).
By actuating the flapper in this fashion, the Lagrangian domain Ba, which comprises

roughly half the area of the body, is forced to bend periodically in time. The unactuated
portion of the swimmer remains passive and flaps as an elastic body in response to be being
conjoined to the actuated region. The swimming flapper achieves a Reynolds numbers of
Re = V max

solid W/νf ≈ 200. Its ability to translate its center of mass by swimming evidences
that this example is not near zero Reynolds number; vortex shedding can be seen for each
flap.

4.5. Multi-body contact

Since the reference map technique does not employ moving meshes, it is particularly
well suited to problems involving many objects coming into contact. This capability
would be useful for a variety of problems, such as studying colloidal mixtures with soft,
deformable particles.
To generalize the method to N objects, we introduce independent reference maps

ξ(1), ξ(2), . . . , ξ(N) with the “(j)” suffix being used to denote any quantity associated with
object j. For the purposes of exposition, we assume each field is defined as a separate
globally defined function that is extrapolated separately, although in reality each reference
map only need be defined in a local neighborhood of each object. Each reference map
is updated using Eq. (3.1). For a given ξ(j), the solid stress τ

(j)
s is computed using the

methods of Sec. 3.3.
When two or more objects come together, their blur zones may overlap, and thus it

is necessary to generalize the definition of global stress that was given in Eq. (2.8). At
a given point, define λ(j) = 1 −Hϵ(ϕ

(j)) to be the solid fraction of object j. Then the
stress is given by

τ =


τf +

∑
i λ

(i)(τ
(i)
s − τf ) if

∑
i λ

(i) ⩽ 1,∑
i λ

(i)τ
(i)
s∑

i λ
(i)

if
∑

i λ
(i) > 1.

(4.10)

If only one object is present, this definition exactly matches Eq. (2.8). If several objects
are present, then they each contribute to the global stress, with the fluid stress filling any
unassigned fraction. In rare situations (e.g. three objects meeting at a point) the solid
fractions may total more than one. In this case, τ is taken as a weighted average of the
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solid stresses, and the fluid stress does not contribute at all. The global density field is
defined using the same mixing procedure as in Eq. (4.10).
In our tests, we have found that independently updating N reference maps and

computing a global stress according to Eq. (4.10) is sufficient to perform multi-body
simulations. However, since the simulation employs a single globally-defined velocity field,
it becomes problematic when shapes become very close together, since it is hard for them
to separate as they move according to the same underlying velocity. Similar behavior
has been noted in the literature on the immersed boundary method (Lim & Peskin 2012;
Krishnan et al. 2017), which also employs a single global velocity field for the movement
of structures. To rectify this, we introduce a small contact stress (in addition to the stress
of Eq. (4.10)) when the blur zones of two objects overlap, which penalizes the interfaces
from becoming too close together. We first define a contact force function of

f(x) =

{
1
2 (1−

x
ϵ ) if x < ϵ,

0 if x ⩾ ϵ.
(4.11)

Now, consider the stress calculation at an edge that is within the blur zones of two or
more solids. Consider a pair of the solids (i) and (j). Using finite differences, compute a
unit normal vector

n =
∇(ϕ(i) − ϕ(j))

∥∇(ϕ(i) − ϕ(j))∥2
(4.12)

where ∥ · ∥2 denotes the Euclidean norm. The contact stress is defined as

τcol = −ηmin{f(ϕ(i)), f(ϕ(j))}(G(i) +G(j))
(
n⊗ n− 1

21
)
, (4.13)

where η = 4 is a dimensionless constant, the G(i) are object-dependent shear moduli, and
the 1 term is included to make the stress trace-free. In the rare case where the edge is
within three or more solid blur zones, the calculation is repeated for each pair, and each
contribution τcol is added to the global stress.
These collision stress terms induce forces that push apart objects when they become

close. Formulating the collision interaction as an additional stress is advantageous since
it immediately ensures that total momentum of the entire simulation is numerically
conserved. The method is not sensitive to the exact functional form of f in Eq. (4.11).
An alternative formulation is to directly use the transition function, f(α) = 1−Hϵ(α),
but we find that the faster growth of the function in Eq. (4.11) when α becomes smaller
than ϵ yields better results in our test cases.

Figure 11 shows snapshots from a multi-body simulation in a non-periodic box [−1, 1]2

using a resolution of 1280 × 1280 with fluid density ρf = 1 and dynamic viscosity
µf = 10−3. Forty-two squares with shear modulus G = 2 and density ρs = 3 are inserted
at random positions in the box, with side lengths chosen uniformly over the range [0.1, 0.4].
Any squares that lie within a distance of 0.1 of another square are rejected, and are chosen
again. At t = 0, each square is set to initially spin with angular velocity chosen uniformly
from the range [−5, 5]. A gravitational acceleration of g = 0.5 in the negative y direction
is applied, so that the squares sediment at the bottom of the box. The full simulation is
shown in Supplemental Movie 6.

A benefit of the reference map technique is that it can handle both neutrally buoyant
solids, and solids that are lighter than the surrounding fluid, without any modification.
To demonstrate this, we consider a second multi-body example with 75 solids made of
rectangles of length 0.44, thickness 0.044, and rounded end caps, all of which are initially
vertically aligned. The solid densities are randomly chosen uniformly over the range
[0.4, 1.6] and a gravitational acceleration of g = 1 in the negative y direction is applied. A
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Figure 11. Snapshots of vorticity ω in a simulation of forty-two squares sedimenting in a
fluid-filled box. The thick black lines mark the fluid–structure interfaces. The thin dashed lines
are contours of the components of the reference map defined in each object and indicate how the
squares deform. Simulation parameters are (ρf , µf , ρs, G, g) = (1, 10−3, 3, 2, 1.5).

simulation grid of 640× 1280 is used on the domain x ∈ [−0.75, 0.75], y ∈ [−1.5, 1.5], the
dynamic viscosity is µf = 2× 10−3, the shear modulus is G = 1.5, and the fluid density is
ρf = 1. Figure 12 snapshots of the density, the deviation of pressure from the background
gradient due to gravity on the fluid p′ = p+ ρfgy, and the vorticity at five time points.
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In the particular random sample chosen, the average rod density is ρ̄s ≈ 0.904. Thus the
average density in the simulation is slightly lower than ρf and hence there is a small
positive gradient in p′ in the y direction at t = 0. The solids separate into two families,
with solids with ρs < ρf rising to the top of the domain, and solids with ρs > ρf sinking
to the bottom of the domain. While most rods have separated out by t = 40, it takes
a long time for the separation process to fully complete, since several rods are close to
neutrally buoyant and the reduced gravity they experience is small. By t = 120, all rods
have completely separated into two families although there is still some residual movement
visible. The density field, pressure deviation field, and vorticity field of the full simulation
are shown in Supplemental Movie 7, Supplemental Movie 8, and Supplemental Movie 9,
respectively.

5. Conclusion

Herein, we have presented a robustly accurate, yet straightforward to implement,
reference map technique, which has allowed us to study a variety of FSI problems using a
single background grid. It augments the multi-phase fluid framework of Almgren, Bell,
and coworkers (Bell et al. 1989; Puckett et al. 1997; Almgren et al. 1998) by allowing
general finite-deformation solid models to be coupled directly to a fluid. In doing so,
it maintains a number of the advantages of working on a fixed Eulerian grid that are
enjoyed in fluid simulation methods. The practicality and usefulness of this approach is
demonstrated in various tests. It is shown to capture the flapping phase diagram for thin
flags and the transition from thin- to thick-flag behaviors, which highlights the role of
new mechanisms to initiate flapping. Additional physics, such as actuation of solids, is
straightforward to implement with a user-described actuated deformation gradient. This
capability is used to model a swimming object with realistic internal driving. The ability
to model objects with sharp corners is typically a challenge in Eulerian approaches, but
here it can be done by exploiting the reference map field near the edge of the object. We
also present an improved contact algorithm, which we use to simulate situations with
many soft interacting objects submerged in a fluid.

There are a number of future directions. One of clearest applications is in biomechanics,
with the simulation of systems of many interacting, actuated cells. We also foresee
modeling solids beyond hyperelasticity, such as plasticity, thermal material models, and
growth. These modifications can be done through the inclusion of new state variables
in the solid and/or the addition of a heat diffusion equation; there are clear advantages
to implementing thermal diffusion in the Eulerian frame. Beyond extensions to three
dimensions, there are opportunities to use the approach for dimensionally-reduced models
such as membranes and shells by restricting the reference map to a lower dimensional set.
Regarding contact modeling, the reference map field could be used to instruct formulations
for more advanced contact problems, including friction and self-contact. Lastly, it is a
major goal to extend the approach to allow for non-persistent material boundary sets, as
occurs in fracture. It may be possible to represent crack surfaces through intersecting
level set fields and to couple this capability with physical traction–separation relations to
generate new surface material as cracks advance.

Appendix A. Additional numerical details

A.1. Monotonicity-limited derivative

The gradients of the reference map and velocity appearing in Eq. 3.5 are computed
using the fourth-order monotonicity-limited scheme of Colella (1985). For the derivative
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of a generic component ai,j in the x direction, finite differences

Dc(a)i,j = (ai+1,j−ai−1,j)/2, D+(a)i,j = ai+1,j−ai,j , D−(a)i,j = ai,j−ai−1,j (A 1)

are introduced, from which the limiting slope is defined as

δlim(a)i,j =

{
2×min(|D−(a)i,j |, |D+(a)i,j |) if D−(a)i,jD

+(a)i,j > 0,

0 otherwise.
(A 2)

The second-order limited slope is then

δf (a)i,j = min(|Dc(a)i,j |, δlim(a)i,j)× sign(Dc(a)i,j) (A 3)

from which the fourth-order monotonicity limited derivative is defined as

δ4(a)i,j = min

(
|8Dc(a)i,j − δf (a)i+1,j − δf (a)i−1,j |

6
, δlim(a)i,j

)
× sign(Dc(a)i,j)

hx
. (A 4)

The y-derivative is evaluated similarly.

A.2. Tangential derivatives

To ensure stability, the tangential derivatives appearing in Eqs. (3.5) & (3.6) are
computed using

(ṽξy)
n
i,j =

ṽadvi,j−1/2 + ṽadvi,j+1/2

2

ξ̃i,j+1/2 − ξ̃i,j−1/2

hy
, (A 5)

(ṽvy)
n
i,j =

ṽadvi,j−1/2 + ṽadvi,j+1/2

2

ṽi,j+1/2 − ṽi,j−1/2

hy
, (A 6)

where the terms with tildes are computed using a preliminary Godunov upwinding
step where stress, pressure, and tangential derivatives are neglected (Yu et al. 2003).
Extrapolations to a vertical edge from the left are given by

ξ̃
L,n+1/2
i+1/2,j = ξi,j +

1

2

(
hx − uni,j∆t

)
ξnx,i,j , (A 7)

ṽ
L,n+1/2
i+1/2,j = vn

i,j +
1

2

(
hx − uni,j∆t

)
vn
x,i,j , (A 8)

and extrapolations to the other edges are given similarly. On each edge, the selection
procedure of Eq. (3.8) is used, with Case A used for ṽadv = (ũadv, ṽadv) and Case B used
for ξ̃ and ṽ.

Appendix B. Tests of convergence and accuracy

B.1. Overview of the test configurations

To study the accuracy of the numerical method, we performed a convergence test in
the periodic domain [−1, 1)2 using an initial incompressible velocity field of

v(x, 0) =

5∑
k=0

(−1)kvvor

(
x− −5 + 2k

6
, y − −5 + 2k

6
, 2(k + 1)

)
(B 1)

where

vvor(x, λ) = (− sinπy, cosπx)× e−λ(2−cosπx−cosπy). (B 2)

This velocity field is designed to have features with a variety of length scales. We simulated
up to t = 0.5, used a shear modulus of G = 1, a fluid density of ρf = 1, and employed the
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Test State µf ρs CEV v, L2 v, L1 v, L∞ p, L2

A Fluid only 10−3 – No 1.92 (1.00) 1.94 (1.00) 1.92 (1.00) 2.00 (1.00)
B Fluid only 4× 10−3 – No 1.98 (1.00) 1.99 (1.00) 1.98 (1.00) 2.00 (1.00)
C Solid only 10−3 1 No 0.96 (1.00) 0.97 (1.00) 0.94 (1.00) 0.96 (1.00)
C’ Solid only 10−3 1 Yes 2.13 (0.72) 2.16 (0.79) 1.20 (0.00) 1.98 (0.93)
D Square 10−3 1 No 1.31 (1.00) 1.20 (0.91) 0.77 (0.65) 0.59 (0.94)
E Circle 10−3 3 No 1.32 (1.00) 1.27 (1.00) 1.40 (1.00) 0.47 (0.95)
F Circle 10−3 1 No 1.29 (0.99) 1.28 (1.00) 1.55 (0.05) 0.61 (0.88)
F’ Circle 10−3 1 Yes 1.04 (0.99) 1.08 (0.97) 0.88 (1.00) 0.55 (0.93)

Table 1. Details of the eight convergence tests that were performed with model problem described
in the text. Tests C’ and F’ were performed using constant extra viscosity (CEV) whereby the
extra viscosity was held constant at the standard value for the lowest resolution grid, 360× 360,
as opposed to scaling linearly with the grid spacing. The last four columns give the exponents of
convergence for velocity v and pressure p under different Lq norms, based on a linear fit of the
three-parameter error model of Eq. (B 9) that incorporates a Richardson extrapolation correction.
The proportion of Richardson extrapolation correction is shown in italics in brackets.

standard choices for extra viscosity and timestep selection. Using the same initial velocity
field, we ran tests using (i) fluid only, (ii) solid only, (iii) a circle of radius 0.6 centered
on (−0.1, 0), and (iv) a square of side length 1.2 centered on (−0.1, 0). We examined the
effect of viscosity and the fluid/solid density ratio.
The configurations of eight different tests are shown in Table 1. In our tests, we also

considered two different models for the scaling of the extra viscosity. Our primary tests
A–F follow Sec. 3.5 and choose it to scale linearly with the grid size. This procedure
is consistent with standard numerical schemes; for example, in the second-order Lax–
Wendroff method (Lax & Wendroff 1960; LeVeque 2002) the stabilizing diffusive term
scales linearly with the grid spacing. However, we also considered alternative tests C’ and
F’, whereby the extra viscosity is viewed as a physical dissipation within the solid and is
therefore held constant rather than scaling with the grid spacing. It is chosen based on
the 360× 360 grid and then held constant for the higher-resolution grids.
Due to the complexity of the governing equations, it is near-impossible to

write down an analytical solution to compare against for any test configuration.
We therefore performed reference simulations using a 5040 × 5040 grid. For
each test, we then ran a suite of coarser simulations using N × N grids where
N ∈ {2520, 1680, 1260, 1008, 840, 720, 630, 560, 504, 420, 360} to compare against the
reference results. Since each N divides evenly into 5040, the grid squares of these coarse
simulations align with the reference simulations.
We calculated normalized error measures with respect to Lq norms

Ep
q =

(
1

A

∫
Ω

|pref(x)− pcoa(x)|q dx
)1/q

, Ev
q =

(
1

A

∫
Ω

∥vref(x)− vcoa(x)∥q2 dx
)1/q

,

(B 3)
where A = 4 is the area of the domain, and the ‘ref’ and ‘coa’ subscripts refer to the
reference and coarse simulation fields, respectively. The integral is calculated using a direct
sum over the field values in the coarser simulation grid. The pressure field is cell-cornered,
and hence each coarse gridpoint exactly coincides with a reference gridpoint. The velocity
field is cell-centered, so some coarse gridpoints may not align with a reference gridpoint,
in which case the reference value is computed using bilinear interpolation. The errors
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the components of the reference map. Simulation parameters are (ρf , µf , ρs, G) = (1, 10−3, 1, 1).

associated with this interpolation are O(h3) and are small compared to the errors to be
measured.

Figure 13 shows plots of the difference in velocity fields between the reference simulation
and the simulation on the coarsest grid, for six of the convergence tests at t = 0.5. The
colors in the panels are normalized differently, with differences for tests A and C’ being
much smaller than those for the other tests that are shown. In the fluid-only test A,
the largest errors are present on the diagonal line x = y, where the initial vortices are
located. Some higher errors are visible on thin curved lines, which is a consequence of the
switching between cases in the advection discretization. Test C shows the errors for the
solid-only simulation, which are about two orders of magnitude larger than test A. In
test C’ where the extra viscosity is held fixed, the additional dissipation allows a closer
match to be achieved. Tests D, F, and F’ show that the largest errors are all near the
fluid–solid interface. Unlike models C and C’, there is limited difference between models
F and F’, since the errors near the interface dominate.

B.2. Calculating convergence rates

Figure 14 shows convergence plots for the velocity in the L2, L1, and L∞ norms, plus
the pressure in the L2 norm; our discussion focuses on velocity, since the pressure can be
viewed as a Lagrange multiplier enforcing the incompressibility constraint. If the method
is of order s, and the reference solution is treated as exact, then the errors scale according
to

Ea
q (h) ≈ Bhs (B 4)
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for some constant B where a is either p or v. However, in reality the reference solution
will not be exact. In particular, one could apply Richardson extrapolation (Richardson
1911; Hairer et al. 1993; Heath 2002) and propose that the numerical solution has a Taylor
series in h, so the leading-order error term is of the form hs. Specifically, let f(h) ∈ C1(Ω)
be a representation of a component (u, v, or p) of the numerical solution computed with
grid spacing h so that it agrees with the numerical values at the grid points, and smoothly
interpolates between them. Then

f(h) = f0 + f1h
s +O(hs+1) (B 5)

for some smooth functions f0, f1 ∈ C1(Ω). Under this assumption the error scales
according to

Ea
q (h) = B(hs − hsref) +O(hs+1). (B 6)
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However, for the current method, Eq. (B 5) is not precisely true, since there are several
steps in the numerical method are not Taylor expandable to higher order. The advective
terms in the discretization rely on discrete switching between different cases, which
manifests as the lines of higher error in tests A and C’ in Fig. 13. When a grid point
leaves the solid, the ξ switches from a time-integrated value to an extrapolated value,
causing a small, discrete jump in the field, potentially contributing to errors near the
boundary.

From Fig. 13 it is apparent that most of the errors in the domain are smooth, and
regular. We therefore propose a model whereby the simulation domain is split into ΩT

where the Richardson error model, Eq. (B 6), is applied, and ΩS where the original error
model, Eq. (B 4), is applied. This leads to a three-parameter error model

Ea
q (h) = B(hs − αhsref) +O(hs+1), (B 7)

where α ∈ [0, 1] is the proportion of the Richardson error correction. Taking the logarithm
of Eq. (B 7) yields

logEa
q = C + s log h+ log

(
1− α

hsref
hs

)
(B 8)

where C = logB ∈ R. Define X = log href, and let (xk, yk) be pairs (log h, logEa
q (h))

for each lower resolution that was considered. Then s, C, and α may be determined by
solving the constrained nonlinear least squares problem

ϕ(C, s, α) =
∑
k

(
C + sxk + log(1− αes(X−xk))− yk

)2
. (B 9)

Equation (B 9) fits all 32 data sets in Fig. 14 accurately, and the Richardson term correctly
captures how most data sets curve downwards. The convergence rates, and proportion
of Richardson correction are shown in Table 1. The fluid-only tests, A & B, are the
most accurate, exhibiting clear second-order convergence across all metrics. Results for
the solid-only test C are less accurate with error measures on the scale of 10−3, and a
convergence rate of one is seen across all four metrics in Table 1. This is due to the linear
scaling of the extra viscosity, which effectively results in changing the physical parameters
as the grid spacing changes, approaching the limit of a non-dissipative process as h→ 0.
In test C’ where the extra viscosity is held fixed, and the physical parameters remain the
same, a convergence rate of two is achieved in the L1 and L2 norms. Thus second-order
accuracy of the solid discretization is achieved, but only for the case where damping is a
fixed physical parameter. It remains an open question to find a second-order discretization
for a perfectly non-dissipative solid.

The remaining tests, D, E, F, and F’ all involve fluid–structure interaction. In the
L1 and L2 norms, the convergence rate is approximately 1.3 for tests D, E, and F, and
1.0 for test F’. As seen in Fig. 13 the largest deviations occur at the fluid–structure
interface. Since the blur zone is defined in terms of grid points, its width shrinks at higher
resolution. This involves altering the underlying equations over a region of size O(h), and
results in a lower rate of convergence. However, since the fluid and solid discretizations are
independently second order, is likely that an alternative boundary treatment—perhaps
using a sharp interface approach (Gibou & Fedkiw 2005; Francois et al. 2006)—could
yield improved results. Test E shows that a fluid–solid density ratio has little effect on the
convergence rate. Test D shows that the square geometry does not affect the convergence
rate in the L2 and L1 norms, but results in a lower convergence rate in the L∞ norm due
to localized effects at the corners.
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Figure 15. Snapshots of vorticity ω in a simulation of three-pronged rotor being spun with an
oscillatory motion in a fluid. The thick black line marks the fluid–structure interface. The thin
dashed lines are contours of the components of the reference map and indicate how the rotor
has deformed. The dark blue dotted circle shows the pivot region. Simulation parameters are
(ρf , µf , ρs, G) = (1, 10−2, 3, 48).

Appendix C. Performance tests over a range of resolutions

The simulations that are shown in the main text make use of high resolution to ensure
accurate results. Here, we demonstrate that the method can work over a wide range of
resolutions, and we examine its performance. We consider a three-pronged object whose
boundary is described in polar coordinates by

r(θ) = R
1 + α3 cos 3θ + α6 cos 6θ

1 + α3 + α6
. (C 1)

The simulation domain is |x| ⩽ 1, |y| ⩽ 1 and no-slip boundary conditions are used on
all sides. An N × N grid is used. Parameters of ρf = 1, ρs = 3, µf = 10−2, G = 48
are used, and the simulation duration is T = 4π. The shape is parameterized with
(R,α3, α6) = (0.8, 0.5, 0.125). The shape is rotated via a pivot centered at the origin of
radius 0.2, whose angle is set to

θ(t) =

{
π(1− cos t) if t < 2π,

0 if t ⩾ 2π,
(C 2)

following the same pinning method as in Eq. (4.1) with a stiffness constant of Kteth =
10−1ρs∆t

−2. The RMS angular velocity for T ∈ [0, 2π] is ωRMS = π/2, Hence, we define
the Reynolds number to be

Re =
ρfR(ωRMSR)

µf
≈ 100. (C 3)

Figure 15 shows a snapshot of vorticity for six different time points for an intermediate
resolution of N = 240. Since the viscosity is higher by a factor of ten from the example in
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Sec. 4.1, fewer vortices are visible. Figure 16 shows snapshots at T = 4π/3 for a range
of resolutions from N = 20 to N = 1280. At lower resolution, the accuracy of the solid
deformation and the fluid flow is reduced, but the flow is qualitatively similar, and the
simulation runs successfully.
Figure 17(a) shows a comparison of wall clock times for a Linux computer with dual

10-core 2.2 GHz Intel Xeon E5-2630 processors. The total simulation time varies over a
large range, from 8.1 s for N = 20 to 67.7 h for N = 800 when using a single thread. Using
multiple threads creates a substantial speedup, reducing the time for N = 800 to 20.9 h for
four threads and 9.4 h for sixteen threads; these times correspond to parallel efficiencies
of 80.1% and 44.9%, respectively. Some parts of the simulation (e.g. the extrapolation
routine) are not threaded, and contribute to this loss of efficiency.

Figure 17(b) shows the timestep restrictions due to the liquid viscosity, the shear wave
CFL condition, and the extra solid viscosity. For small grid sizes, the timestep is set
by the extra solid viscosity, but for n > 640 the fluid viscosity provides the strongest
restriction. Because of this, the total work scales like N3 for most of the data in Fig. 17(a),
but will eventually transition to N4 once the fluid viscosity becomes important.

A large fraction of the computation time is spent solving the two linear systems for the
marker-and-cell projection (Sec. 3.1.2) and the finite-element projection (Sec. 3.4). These
are solved using a C++/OpenMP multigrid library (Appendix F). The library works on
any grid size, and uses a hierarchy of grids where the grid dimensions are halved at each
successive level. On very small grids, it is inefficient to use threads due to the performance
overhead of thread initialization. Because of this, the library self-tunes prior to use to
determine the grid level at which to enable threading. Figure 17(c) shows the average
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Figure 17. Performance of the simulation code for the three-pronged rotor in Appendix C when
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different grid sizes, using one and sixteen threads, as a function of N .

number of V-cycles that are performed to reach the required error tolerances, showing
that there is limited variation as N changes. Figure 17(d) shows the time required to
perform a V-cycle as a function of N . As expected the single-threaded times scale like
N2, proportional to the degrees of freedom. For N ⩽ 100 the time for sixteen threads
is similar to the single-threaded performance, since the grids are not large enough for
threading to be enabled. However, for large grids, threading results in more than a 10×
speedup. Across all simulation sizes and thread numbers, the MAC and finite-element
linear systems each take between 20%–30% of the total computation time.

Appendix D. Effect of the blur zone

As described in Sec. 2, the numerical method uses a transition region of width 2ϵ to
blur between the fluid and solid stresses at an interface. The form of the blurring function
is given by Eq. (2.9) based on previous studies (Sussman et al. 1994, 1999; Yu et al. 2003,
2007), and throughout the paper we use ϵ = 2.5h. Here, we explore the effect of the blur
zone width, by running the three-pronged rotor of Appendix C using different values of ϵ.

Figure 18 shows close-ups of the vorticity field for four different values of ϵ at t = 2π. At
this time point, the clockwise motion of the rotor is arrested, which causes momentarily
large shear stresses. If ϵ = 0, so that there is a hard transition between fluid and solid
stress, then this creates numerical noise in the vorticity field near the interfaces. Since
vorticity is based on first derivatives, the variations in the underlying velocity field are
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Figure 18. Close-ups of vorticity ω the three-pronged rotor simulation at t = 2π using a
240 × 240 grid for varying values of the blur zone half-width, ϵ. The thick black line marks
the fluid–structure interface. The thin dashed lines are contours of the components of the
reference map and indicate how the rotor has deformed. The colors use the same scale as in
Fig. 15. The dark blue dotted quarter-circle shows the pivot region. Simulation parameters are
(ρf , µf , ρs, G) = (1, 10−2, 3, 48).

smaller. In these simulations the tethering force (Eq. (4.1)) is also smoothed using the
same value of ϵ, and hence numerical noise is also visible at the edge of the pivot region.
Despite the noise, the simulation with ϵ = 0 runs adequately. As ϵ increases the noise at the
interface is progressively blurred out. Figure 19(a) shows a plot of the maximum vorticity
field in the simulation over time for differing values of blur zone width, highlighting the
trade-off between additional noise for small ϵ, and excessive blurring for large ϵ. Our
default value of 2.5h is an acceptable compromise between the two limits.
The precise form of smoothed delta and Heaviside functions has been studied in the

literature, and we also considered the delta function studied by Tornberg & Engquist
(2003, 2004) where

δaltϵ (ϕ) = max
{
0, 1ϵ −

|ϕ|
ϵ2

}
. (D 1)

Equation (D 1) satisfies several discrete moment conditions (Beyer & LeVeque 1992)
and has better convergence properties for some problems. We calculated an associated
Heaviside function using integration, and ran a variant of convergence test F from
Appendix B. The measured convergence exponents are within ±0.03 of the original test.
Hence, for the current method, errors at the boundary are dominated by other processes,
such as extrapolation. Designing better smoothing and extrapolation is an interesting
avenue for further study.

Appendix E. Volume conservation

Since the reference map field represents an incompressible solid, the determinant of the
deformation gradient J = detF should remain equal to unity throughout the simulation,
but in the numerical scheme this property will only be maintained approximately. This
issue is encountered in other incompressible fluid–structure interaction approaches, such as
the immersed boundary method where the Lagrangian description of the solid is updated
from the fluid velocity and may experience volumetric changes over time (Wang et al.
2009; Griffith 2012; Vadala-Roth et al. 2020).

To investigate the magnitude of volumetric deviations, we simulate the three-pronged
rotor of Appendix C and compute the field J − 1. The field is evaluated on all cell corners
in the interior of the solid, where the bilinear interpolation of ϕ is negative. Calculating
J requires the gradient of the reference map, which is computed at each cell corner using
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centered finite differences of the four adjoining cell-centered reference map fields, some of
which may be based on extrapolation.

Figure 20 shows snapshots of J − 1 for several simulation configurations. The top row
shows three snapshots on a 240× 240 grid. Small volumetric deviations on the order of
10−2 are visible and are concentrated near the fluid–solid interface, and at the edge of the
pivot region. Figure 19(b) shows a plot of ∥J − 1∥2 as a function of time. The volumetric
deviations grow rapidly up to t = π/4 but then remain relatively stable; in particular, for
t > 2π when the pivot stops rotating, ∥J − 1∥2 tends to a constant value. The volumetric
deviations have the expected dependence on resolution: as shown in Figs. 19 & 20 the
errors are larger for N = 160 and smaller for N = 640. The values of ∥J − 1∥2 at t = 4π
scale approximately like h1.1, consistent with the convergence rates in Table 1. We find
that the MAC projection substantially improves the volume conservation of the reference
map: switching off the projection results in larger deviations overall, plus a tendency for
them to grow once the pivot stops rotating (Fig. 19). This can cause considerable errors
near the pivot, as shown in the bottom right panel of Fig. 20.

Appendix F. Computer code

All results in this paper were created using a custom C++ code that uses OpenMP for
multithreading. The code is released as an open source software package, IncRMT, via a
GitHub repository at https://github.com/chr1shr/incrmt. As discussed in Appendix
C, a large fraction of the computation time is spent solving the MAC projection and
finite-element projection to enforce incompressibility. This is done using the TGMG
(Templated Geometric Multigrid) library, which is available on GitHub at https://

github.com/chr1shr/tgmg.

https://github.com/chr1shr/incrmt
https://github.com/chr1shr/tgmg
https://github.com/chr1shr/tgmg
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