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Outline

Monday Tuesday

e A model of dense granular drainage e Development of the Voro++ library
e Voronoi analysis of granular flow e Network analysis for CO> capture

e Neighbor relations e Alternative models and methods

Wednesday Thursday

e Topological Voronoi analysis e Continuum representations of deformation
e Lloyd's algorithm and meshing e The reference map technique

e Insect wing structure e Fluid—structure interaction




Neighbor relations and tniangulation

e In lecture 1 we did an
exercise to determine
neighbor relationships using
two approaches:

e an intuitive understanding
of neighbors

e neighbors defined via
Voronoi cells

The lecture room



(Left/right defined from
speaker's perspective)

Neighbor relations and tniangulation

e | took pictures of everyone Right | eft
from either side of the lecture
room

e Knowing the room geometry,
this is enough to reconstruct
everyone position

e Four pictures taken:

e Camera on left/right of
lecture room

e Camera pointing toward left/
right seating

The lecture room





https://flic.kr/p/2q36tyK



https://flic.kr/p/2q35A8M

Right seating from right side
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https://flic.kr/p/2q35A86



https://flic.kr/p/2q36ttu

Left seating from right side
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Go through each image
and measure the
horizontal position of
each circle in pixels



(Left/right defined from
speaker's perspective)

Determining camera orientation

e Three points are used to find the precise
camera angle 6. and field of view

Right L eft

e They are A and B (room corners) and C

(clock)

‘v Known baseline ‘

e At least two target points are visible in
each photo, which is sufficient

C

A

v

The lecture room




Data collection

e Program files for performing the
triangulation are in the triangulate

directory of the Git repository

e [he file ang.dat contains the horizontal

pixel positions of each circle in each
Image

e [he file has four sections labeled with
headers IMO, ..., IM3 for each image

e [he header line contains the pixel
positions of the three calibration targets

IM2 (4944 7628 -)

6 2277

69 2675
68 2935
65 3233
1 3287

70 3550
67 3741
2 3752

64 3920
60 3950
66 4067
3 4258

59 4407
58 4465

(57 4600}

\Targets A and C located at
4944 and 7628, respectively.
Target B is not visible.

4 4724
49 4747
63 4881
56 4937
61 4937

— Circle 57 located at
pixel position 4600

Excerpt of ang.dat



Neighbor data

e Each participant submitted a note
with

A. An intuitive list of neighbors

B. A list of neighbors based on
Voronoi cell adjacency

C. An estimate of the Voronoi cell
area

e [his data was entered into a file
called nei.dat

e See the triangulate directory in the

GitHub repository for more
information on analysis




Voronoi
tessellation




Delaunay
triangulation




Initial neighbor
relation data (A)




Voronoi neighbor
relation data (B)
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Fluid—structure interaction and
the reference map technique

Joint work with Ken Kamrin, Boris Valkov, Chen-Hung Wu, Yue Yu,
Luna Lin, Nicholas Derr, Dan Fortunato, Xiaolin Wang, and Yue Sun



Two different representations

Coupling?
Solid simulation Fluid simulation
Lagrangian approach: grid moves with the Eulerian approach: fluid velocity
material represented on a fixed grid
(Natural for finite-strain elasticity) (Natural for the Navier-Stokes equations)

Lin et al., Scientific Reports 5, 11309 (2015)



Fluid—structure coupling approaches

1. Immersed boundary method

Lagrangian solid and Eulerian fluid are
coupled using interpolation techniques

2. Conforming meshes

Fluid grid constantly deforms to
match the moving solid surface

3. Fully Lagrangian approach

Fluid represented via particles that
represent small volume elements

Image credits: (1) Thomas Fai and Charles Peskin, (2) Per-Olof Persson, (3) Dan Negrut



Particle-based methods: well-suited for
computer graphics and rendering

Spray

. Particles |

From Moana, Walt Disney Animation Studios (2016)



Aim of the talk

® \What about a fully Eulerian method? Possible
advantages:

® FEulerian grids are simple and efficient to compute
on

® Easier coupling to other physical processes

® Avoid meshing difficulties for complex geometrical
Interactions

® Many theoretical results for convergence & stability

Key challenge: how can large solid
deformations be represented?




Talk outline

1. The reference map technique

A conceptual overview of the method

2. Reference map simulation for incompressible fluids

A numerical implementation for simulating flag-flapping
and multi-body contact

3. Applications and extensions

T hree-dimensional simulation, higher-order discretizations




Finite strain elasticity theory

L,

Mapping
x(X, t)

Initial configuration Current configuration
at time O at time ¢

e Consider a mapping from the initial state to the current state, and examine a small region:

. F

e Iransformation described by the deformation gradient F =

OX
oX
e Specify arbitrary constitutive law to obtain stress o = f(F)



_ _ éx. 1) L%
Reference map simulation (O Q)

Reference Current

e Introduce reference map field &£(x, t)
e Initial condition is &£(x,0) = x

e Evolve £ according to

O Reference
gt TV V)e=0 map field
® Deformation map computed as £(x, t)

ox [ 0O¢ !
T (&)

® Use constitutive law o = f(F) and

Newton’s second law Fixed grid
av
O =V .0 |
dt Global velocity field v(x, t)

K. Kamrin, C. H. Rycroft, and J.-C. Nave, J. Mech. Phys. Solids 60, 1952-1969 (2012).



Representing the boundary

® Introduce a function ¢(£) describing
the boundary

Extrapolated

® Define ¢ <0 In the solid and ¢ > 0 In reference

the fluid map

| | £(x, t)

® For example for a circle of radius R at

the origin

p(&) =& — R

® Requires extrapolating £ into a layer

of grid points in the fluid Fixed grid

1
Solid—fluid interface ¢(&(x,t)) =0

K. Kamrin, C. H. Rycroft, and J.-C. Nave, J. Mech. Phys. Solids 60, 1952-1969 (2012).



Stress computations in
fluid and solid

e [he stress tensor:
0 = Wofid + (1 — W)0osolid
e [he transition function:

0 for x € solid
w(x) =< Hs(p(x)) for x € blur region
1 for x € tluid

_1 | |17T_¢
H5(¢)—§(1| o | WSIH WT>

B. Valkov, C. H. Rycroft, and K. Kamrin, J. Appl. Mech. 82, 041011 (2015).

Blur region |®(X, )| < wr

Fixed grid

1
Solid—fluid interface ¢(&(x,t)) =0



Reference map simulations

Neo-Hookean solid and compressible fluid simulated with explicit timestepping procedure
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(Colors show pressure field; non-dimensionalized units) (129 by 129 numerical grid; 2 min computation time)



Reference map simulations

Neo-Hookean solid and compressible fluid simulated with explicit timestepping procedure
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Reference map simulations

Neo-Hookean solid and compressible fluid simulated with explicit timestepping procedure
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Talk outline

A conceptual overview of the method

A A
M A 2. Reference map simulation for incompressible fluids

A numerical implementation for simulating flag-flapping
and multi-body contact

T hree-dimensional simulation, higher-order discretizations




Toward iIncompressibility

e Typical fluids of interest (e.g. water) have very low compressibility
® Pressure waves travel at very fast speeds c on the order of km/s

@ Courant—Friedrichs—Lewy (CFL) condition states the simulation
timestep At must satisfy At < Ax/c

® Impose incompressibility: a good model, and also removes the CFL
condition

Incompressible Navier—Stokes equations:
(8: + (v-V))v = —(Vp)/p+ vV

Constraint: V-v=20
Ax: grid spacing



Chorin's projection method for incompressible fluid
mechanics (1968) *

Vv
. . . . 825
Incompressible Navier—Stokes equations: & %fg
QO Q ;\',O
(0 + (v-V))v = —(Vp)/p+ vV £& 3% e
$ . nee”
veros’,
Constraint: V-v=0 i P sotution®
vn
® Let v, be the velocity at timestep n. First take an intermediate step
Vo, —V
i L — _(VnV)Vn_I_I/VQVn
At
® [hen
Vorl1—Vs  VPpp1 (*)
At 0
e Taking divergence and enforcing V -v,11 = 0 gives Poisson problem for pressure
pv ’ V*
VePni1 =
Pn+1 At

e Calculate v,+1 using (*)

A. J. Chorin, Numerical solution of the Navier—Stokes equations, Math. Comp. 22, 745-762 (1968). o : density, v : viscosity



A modern implementation
of Chorin’s method

® Since original paper, many
improvements to Chorin's method
have been Introduced

® Reference map technique is built
upon a modern implementation of
Chorin's method

. 1
Intermeglil;;e: V. = v, + At G[(v : V)V]n+1/2 + ;V : O'n) Reference
C & =&, - At[(v-V)E] 40
- map step:
Projection .y — Evz V.1 =V Atvp
step: P o i T h



Fluid advection term

® J[o handle advective term, first
construct edge velocities at the
half-timestep At /2 using Taylor
expansions

® For example

y _VIAté‘lexé)v
T T 26t T 2 ax

Intermediate 1
v. =V, + At [-|(v-V)v + -V .o
step: ! ([( Vins1/2 o n) Reference

map step:

Eni1 =& - At (v v>£]n—|—1/2

Projection At At
) step: V-v, = 7V2pn—|—1 Vnpr1l — Vi ) V Pnt1




Fluid advection term

® Each edge obtains two velocities
from its neighboring cells

® [lo capture flow of information, use
Godunov upwinding procedure

® For x component:

Vi f vip >0 and v +v; >0
Ve = ¢ VS if vi <0 and vl +vy <0
0 otherwise

< AX >

Intermediate 1
& — At 1 * v _v )
step: V*— Vn T ([(v Witz + 0 U”) Reference

map step:

Sn—i—l — én - At [(V ' v)g]n—l—l/Q
Projection At At
] step: V- V, — 7V2pn—|—1 Vp+1 = Vi 0 an—I—l




Fluid advection term

SN

® \With edge velocities in place, Ox
advection term evaluated using
finite differences

® Achieves second-order spatial
accuracy

Intermediate

1
step: Vi = Vp + At G[(V ' v)"]n+1/2 =+ ;V - O'n)

Projection At At
. step: Vv, = FVZPnH Vp+1 = Vi 5 V Ppi1

Reference
map step:

Eni1 =& - At (v v>£]n—|—1/2




Reference map
advection term

® Same procedure for velocity works
for the reference map field

@ Construct half-timestep edge
extrapolations using formulae such

as
At 0§  Ax 9

2 8t 2 Ox

T

Intermediate 1
= vy At [[(v-V =2
step: V* VT ([(v Vint1/o + 0 U”) Reference

map step: €nr1 =&, - At(v: v>£]n—|—1/2

Projection At At
. step: V-V, = FVZPn—I—l Vh+1 = Vi« 5 V Pni1




Stress calculation

® First, compute the deformation
gradient tensor F on each edge
using finite differences of ¢

Intermediate 1
= vyt At [[(v-V “v.
step: V¥~ Vn T ([(v Wnty2 + 0 U”) Reference

map step: €nr1 =&, - Atf(v: V)f]nﬂ/z

Projection At At
) step: Vv, = FVZPn—I—l Vint+1 — Vi 0 VPnt1




Stress calculation

® First, compute the deformation
gradient tensor F on each edge
using finite differences of ¢

® Use constitutive law o = f(F) to
compute the edge stresses (merging
fluid /solid stress as needed)

: 1
Intermedil:ate. V., = v, + At ([(v , V)V]n+1/2 N v a'n)
step: 0 Reference .
\ map step: Snir = &n - ALV VI
Projection .y — Atvz Voii =V Atv
step: t Pt Mt = W 7 T Y P



Stress calculation

ONE:

® First, compute the deformation e Ox
gradient tensor F on each edge
using finite differences of ¢

® Use constitutive law o = f(F) to ¢
compute the edge stresses (merging @
fluid /solid stress as needed)

e Compute V .o

Ax
: 1
Intermeglil;;e: V. =V, + At G[(V Vi1 T ;V | U”) Reference
| i €n+1 — €n - At [(V ' v)g]nJrl/Q
- map step:
Projection .y, — Evz vy AtV
step: t Pret Mt = M my Y P



The projection step

® Use finite-element method to
compute the pressure field pn+1

® Requires solving large linear system
of equations: use a custom
multigrid method

< AXx >
Intermediate !
V., =V, + At {-[(v:-V)v +-=-V-0o
step: g ([( ) ]”H/z p n) Reference i1 =&, - At|(v-V)E]
o map step: “"tt >0 T
Projection o = _ Evz Voii =V AtV
step: T Preet M = ey Ve




(All simulations use non-dimensionalized units)

Exa m p I e 2 D CO m p u ta t i O n (Colors show vorticity)

C. H. Rycroft, C.-H. Wu,
Y. Yu, and K. Kamrin,
J. Fluid Mech 898, A9 (2020).




(All simulations use non-dimensionalized units)

Exa m p I e 2 D CO m p Utat i O n (Colors show vorticity)

15 £~ contours

£’ contours

10

-10

$(€§) =0

-15 Has sharp corner even
though reference map iIs

Y. Yu, and K. Kamrin, t = 12.57 X Smooth
J. Fluid Mech 898, A9 (2020).

C. H. Rycroft, C.-H. Wu,



Test A, V =2x10"" Test C, V =0.032 Test C’, V =2 x 107"

3/4

i X i

FIGURE 13. Differences between the velocity fields in the reference simulation (using a 5040 x 5040
grid) and the coarsest simulation (using a 360 x 360 grid). Plots are shown at t = 0.5 for six of
the converegence tests. The colors in each panel are normalized differently by a maximum value
V. The thick black lines mark the fluid—structure interfaces. The thin dashed lines are contours of
the components of the reference map. Simulation parameters are (pf, iuf, ps, G) = (1,107°%,1,1).



Flag flapping stability 1|
(Connell & Yue, J. Fluid Mech. 2007)

N i
@® Examine stability of flapping |
flag in terms of four e
dimensionless parameters: - ) 1 y ? : *
0.40 -0
® Reynolds number, Re o3k -
0.30 ?Q} X
® Bending rigidity, ks Lozl o«
% 0.20 4+ . -
® Mass ratio, mu sl S o
: 0.10 + o : 5
® (Aspect ratio) os| g [N
0 10100 : 20l00 30100 40100 50[00

Reynolds number, Re



10

Flag flapping

(mu:o'46’ -:=0.00 : | X )
kg=0.001,
Re=3000) .

-10

X
(Colors show vorticity) t = 33.73



Flapping amplitude of the tall

® Irack perpendicular displacement of tail from t = 120 to t = 160

® Apply Fourier transform to find flapping amplitude A
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Flapping amplitude of the tall

® Irack perpendicular displacement of tail from t = 120 to t = 160

® Apply Fourier transform to find flapping amplitude A
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Bulky
flappers
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Multi-body
contact

(Colors show vorticity)



Multi-body
contact

-1 -0.5 0 0.5 1

(Colors show vorticity)



Actuated solids for
biolocomotion

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
t=0.00 X

(Colors show vorticity)



Active fluid
model

(Colors show vorticity)



Talk outline

A conceptual overview of the method

A numerical implementation for simulating flag-flapping
and multi-body contact

3. Applications and extensions

T hree-dimensional simulation, higher-order discretizations




Three-dimensional simulation

® Methods naturally generalize to 3D
simulation, but many computational
challenges:

® Run In parallel using domain decomposition.
Use Message-Passing Interface (MPI)
library to communicate between processors

® Key challenge in projection step to solve
very large linear systems In parallel—use
custom multigrid solver

® Multiple shapes leads to multiple reference
maps—requires special storage

Central cross-section

(8 processors, 96x96x144 grid)
Y. L. Lin, N. J. Derr, and C. H. Rycroft, Proc. Natl. Acad. Sci. 119, e2105338118 (2022). (3D rendering by Yue Sun)



Three-dimensional simulation

s

Heavy rods
(density 1.25)

s

Buoyant rods
(density 0.8)

vorticity

pressure

— Central cross-section

(8 processors, 96x96x144 grid)
Y. L. Lin, N. J. Derr, and C. H. Rycroft, Proc. Natl. Acad. Sci. 119, e2105338118 (2022). (3D rendering by Yue Sun)



Conclusions Next steps

® [he reference map technique 1s a simple,
flexible technique for simulating finite-strain

solid mechanics on a fixed grid

® Many applications for fluid—structure

. . Lattice Boltzmann : : :
Interaction, many body contact, and . . Discontinuous Galerkin
. . . . implementation implementation
modeling of complex biological materials (By Yue Sun) (By Dan Fortunato)
Chris Rycroft D
chr@math.wisc.edu g
https://people.math.wisc.edu/~chr
N
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