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Outline

Monday Tuesday

e A model of dense granular drainage e Development of the Voro++ library
e \Voronoi analysis of granular flow e Network analysis for CO2 capture

e Neighbor relations e Alternative models and methods

Wednesday Thursday

e Topological Voronoi analysis e Continuum representations of deformation
e Lloyd's algorithm and meshing e The reference map technique

e Insect wing structure e Fluid—structure interaction




Computation of the “maximum free sphere”

e Combine Voronoi
cells into a complete
network of edges

e Each edge labeled
with the minimum
distance to an atom

Voronoi network for EDI zeolite Voronoi network for YUG zeolite

e Use to compute the
maximum-sized
sphere that can
move between the
atoms
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“Maximum free sphere” computation o

Start “ \Target
SN

e Disable periodicity in x, and start from one edge going into the periodic image in -x direction
o (reate list of neighboring nodes and sort by constraint size
e Run modified Dijkstra algorithm:

® Set node with largest constraint

@ Update list with new neighbors and repeat



“Maximum free sphere”’ computation

N-to-N
optimal path

M-to-N
optimal path

e Carry out algorithm for all edges from -x periodic image to find optimal path
e [wo cases:

@ N-to-N: start and end edges are the same

e M-to-N: start and end edges differ — consider supercell



“Maximum free sphere”’ computation o

M-to-N
optimal path

N-to-N optimal
path in supercell

e Carry out algorithm for all edges from -x periodic image to find optimal path
e [wo cases:

@ N-to-N: start and end edges are the same

e M-to-N: start and end edges differ — consider supercell



Accessible surface area

e Previous work employs Monte Carlo sampling to
estimate surface area accessible to probe

e Extend analysis by to detect inaccessible pockets

by drawing rays from sample points to Voronol Rays exist from sampled

vertices point to accessible nodes
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Consider the sampling surface
for an intermediate probe

Inaccessible
pocket
detection

Calculate the channels in the Only nodes within channels Sample surface area
Voronoi network for the probe are accessible (green) using node information

An increase in probe size closes Without any channels, all nodes The interior cavity's surface thus
the passageway are now inaccessible becomes inaccessible



Surface area
computations

40 -

35 - W Surface area (total)

Accessible and inaccessible surface area for DDR zeolite

30 4

m Surface area (accessible)
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Counts

Accounting for inaccessible
pockets significantly alters

total surface area for zeolites
" in IZA database
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5000

Screen i ng fOr CarbOn ) Theoretical .estimate. of current. technology
) 40004 W, (amine solution scrubbing)
capture materials

3000 -

e Use porous materials as

2000 -
adsorbents:

® Pump in flue gases from 1000 -

power plant to trap CO2 while

Parasitic Energy (kJ/(kg CO,))

letting N2 and other gases v a—" e —
10 10 10 10 10 10 10
PasS Henry Coefficient of CO, (mol/(kg*Pa))
@ Heat and purge CO> from
adsorbent for seq uestration Use computational methods for:
e Pre-screening for large channels
e Current tech nology has parasitic e Surface area computations to determine absorbency
energy of 1060 kJ per kg CO» e Classification of optimal structures

L.-C. Lin et al., In Silico Screening of Carbon Capture Materials, Nature Materials 11, 633-641 (2012).



Examples of optimal structures

e Regions of blue represent those with high CO2 adsorption

e Surprisingly different channel topologies among optimal materials




Zeo++: a software library for cheminformatics

(containing all of the algorithms described plus the following)

Non-saddle
.- . .. edge
ldentification of similar and

dissimilar structures via Voronoi
"hologram’™ comparison

Network simplification
via the removal of
non-saddle edges

https://zeoplusplus.org

M. Pinheiro et al., J. Mol. Graph. Model. 44, 208-219 (2013).


https://zeoplusplus.org
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M. Pinheiro et al., CrystEngComm 37, 7531-7538 (2013).



Reqularizing point arrangements

e Lloyd's algorithm: iteratively move points to the centroids of their Voronoi cells

e Mimics pattern formation PDEs and give direct description of region
boundaries

e A e

lteration 1 lteration 2 lteration 3 lteration 15

Converges to centroidal
Q. Du et al., SIAM Review 41, 637-676 (1999). Voronoi tessellation (CVT)



Lloyd's algorithm:
example 2

e Start with 838 particles
in a spiral and run 256
iterations of Lloyd's
algorithm

e Particle positions even
out

e Asymptotically in a large
domain, the Voronoi cells
become regular hexagons




Lloyd's algorithm:
example 2

e Start with 1000 particles
iIn a domain covering a
fifth of each side, and run
1024 Lloyd iterations

e Short-range density
fluctuations are quickly
damped out

e Long-range density
fluctuations take longer to
damp out




Mesh generation
with Lloyd's
algorithm

e The Delaunay triangulation
of the particles after
applying Lloyd iterations is
a good computational mesh

e [ends to favor near-
equilateral triangles, which
are good for numerical
methods like the finite-
element method (FEM)
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Voronoi cells in club Delaunay mesh and
I .
shape after Lloyd's reference FEM solution
algorithm to Laplace equation
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Error between FEM

Delaunay mesh and
reference FEM solution

Voronoi cells in club

solution and exact

shape after Lloyd's

to Laplace equation solution

algorithm

10-1

10-2

10-3



Voronoi cells in club
shape after Lloyd's
algorithm
(with weighting)
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T hree-dimensional domains

Using TriMe++ (TRlangular MEshing)

N | @) ‘ - y , N P ' k e =
(Using a combination of Lloyd's algorithm and the DistMesh algorithm) I% E : | :

J. Lu et al., An extension to Voro++ for multithreaded computation of Voronoi cells, Comput. Phys. Commun. 291, 108832 (2023).
J. Lu and C. H. Rycroft, TriMe++: Multithreaded triangular meshing in two dimensions, arXiv: 2309.13824 (2023).
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Topological considerations

e In 2D, three Voronoi cells will meet @@
at a vertex
e Special arrangements (e.g. lattices) @

may lead to four or more Voronol

_ Typical case with Special alignment of
cells meeting at a vertex three Voronoi cells four Voronoi cells
_ _ meeting at a vertex with extra face due to
e Floating point errors may lead to the numerical rounding
creation of small extra faces errors

e The Voronoi topology of the cells
may be not be consistent with each
other



Topological considerations

Even beyond numerical errors, this causes problems with analysis

@

Perfect octahedron Small extra face

8 triangular sides What to do? Apply threshold on area to remove it.

Back to octahedron—problem solved! &=

But then four faces are still quadrilaterals €2



VoroTop: a topological framework for local structure analysis -

e A 3D Voronoi cell's topology
(vertices, edges, faces) can be BCC
uniquely characterized by a
Weinberg vector

e Think of Voronoi cells as living
in an abstract topology space

e \Voronoi cells for some lattices,
like body-centered cubic (BCC)
lie in the middle of a topological
patch

HCP

e Small perturbations give the
same topology

E. A. Lazar et al., Proc. Natl. Acad. Sci. 112, E5769-E5776 (2015).



VoroTop: a topological framework for local structure analysis -

e But Voronoi cells for some
lattices, like face-centered

cubic (BCC) lie at the

intersection of topologies

e Small perturbations give
will give ditferent
topologies

e But those topologies will

appear in specific,

reproducible proportions

E. A. Lazar et al., Proc. Natl. Acad. Sci. 112, E5769-E5776 (2015).



Topological fractions for BCC and FCC

10() ! ! " ............................ ' ..... P'r'imalj"y A ———— ' ------------------------------------------- ' ------------------------------- ' """"""""""""""""""" Pll'ima,ry —

Frequency

75000 6000 0 500 1000 1500 2000
Temperature (K) Temperature (K)

Primary types occur with a finite fraction under an
infinitesimal perturbation

E. A. Lazar et al., Proc. Natl. Acad. Sci. 112, E5769-E5776 (2015).  Thick lines indicate the sum of all fractions of each type



Fig. 5. Polycrystalline aluminum at 938 K (0.97,,); the width of each cross-
section is 2 nm. Atoms that are FCC types are not shown for clarity. Of the ones
remaining, those that are HCP types are shown in gold, and all other atoms are
shown in dark blue. Grain boundaries are seen as a network of non-FCC types
(dark blue and gold atoms). In cross-section A, defects are labeled as follows:
vacancies, A; twin boundary, B; and stacking fault, C. Cross-sections B and C
show magnified images of a dislocation and stacking fault. (A) Polycrystal
cross-section. (B) Dislocation. (C) Stacking fault.

E. A. Lazar et al., Proc. Natl. Acad. Sci. 112, E5769-E5776 (2015).

B Dislocation C Stacking fault





https://vorotop.org

Modeling the diverse geometry of insect wings

Joint work with Jordan

Hoffmann, Seth Donoughe,

J. Hoffmann, S. Donoughe, et al., A simple developmental model recapitulates Kathy | ;
i, and Mar |
complex insect wing venation patterns, Proc. Natl. Acad. Sci. 115, 9905-9910 (2018) at y , d d ary Sa cedo



Introduction

e Insect wings have been studied and
illustrated for centuries, and exhibit a
diverse range of morphologies

e Currently, wing veins have been studied
in the most detail in Drosophila
Melanogoster

e In this species, all wing veins are largely
conserved—these are called primary

veins
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D. Melanogoster wing



Terminology

e Many insect wings also exhibit random variations in vein patterning

e \We define veins that vary between individuals as secondary veins

Primary veins

Erythremis

simplicicolis O OO A RO c ]
I econdary

Domain veins




left wing reflected onto right wing

leading edge

Distinction

between
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A computational study of secondary veins

e Secondary veins were not quantitatively characterized for any
species

e It is not known whether a universal developmental process
generates the diverse secondary vein arrangements seen in insects

Aims:
1. Perform a large-scale quantitative analysis
of insect wing structure

2. Develop a mathematical model to explain
secondary vein patterning



Data collection

e We collected data from multiple sources:
e Original high-resolution micrographs

e Published tracings from two books [1,2]

e Qur database focused on the Odonata
order, consisting of dragonflies and
damselflies

e 468 wings taken from 232 species

[1] J. G. Needham, Minter J. Westfall, and Michael L. May, Dragonflies of North America: the Odonata
(Anisoptera) fauna of Canada, the continental United States, northern Mexico and the Greater Antilles,

Scientific Publishers. 2014.
[2] R.W. Garrison, N. von Ellenrieder, and Jerry A. Louton, Dragonfly genera of the New World : an

illustrated and annotated key to the Anisoptera, JHU Press. 2006.

Dragonflies

Damselflies




F: Speed Matrix
T: Travel Time Matrix




Segmented wing image
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Segmented wing image

|



Segmented wing image

|

Vectorized wing outline based
on color adjacencies
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Quantitative measures of wing domains

e For each wing domain with vertices (xx yk), we compute its area

1 ( X1 Xo Xo X3 Xn X )
A= — - oL F
2 Yyi e Yo Y3 Yn V1

e Areas vary from ~0.01 mm2 to 10 mm?

e \We also compute circularity

47 (Area)
(Perimeter)?

Reference Shapes
I
0.86 0.91 0.95 1.0

C =

Circularity
0.26 0.44 0.60 0.79



Left—right comparison

left forewing

vein domain circularity

ow IR
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Validation 1: images to books

Epitheca cynosura
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Validation 2: book to book

Comparing a selection of species that appear in both books

800¢

Needham J.G., Westfall, M.J. & May, M.L. [2014]
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Garrison, R.W., Ellenrieder, von, N. & Louton, J.A. [2006]
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circularity

proximal «<— distal

‘agonflies

AN damselflies

percentiles:
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A model for secondary vein
formation

e Experimental studies of wing
development suggest that primary veins
are laid down early in development

e \We hypothesize that a pattern
formation mechanism occurs in regions
between primary veins




Use Lloyd's algorithm as a proxy for pattern formation

elongate rectangle; density = 10

- pooggareYTanTa
LT L L TR LT OO

elongate rectangle; density = 50

triangle; density = 10




A missing piece

e Output from Lloyd's algorithm is
generally isotropic

e But a comparison to wing images
shows that domains are
systematically stretched



Positions of Secondary veins

primary veins form at local
are established. signaling
minima.

Evenly spaced
Inhibitory zones
emerge in each
wing region.

Wing grows anisotropically



Mapping from the wing pad

Original wing pad Fully developed wing

e \We search for a mapping from the fully developed wing to the original wing
pad of the form

N N
) =x+ 3> ey Th (i) T (yy )

X,
=0 j=0 max

e Here T;is the jth Chebyshev polynomial. Find a map to maximize domain
circularity.



A further constraint

e Initial tests found that the optimization problem was underconstrained

e Added an additional term to penalize non-convexity, defined as the ratio
between the shape and the convex hull

_ Z; Areatransformed (Pl)
Area(Convex Hull)

fraction: 0.748

y

Area: 8298.73 Area: 11088.8



Transform coordinates as

gy y a2 ) 7 (L)

i=0 _]:O Xm aX ym aX

where T; represents the ith Chebyshev Polynomial. Define

_ Zi Areatransformed (Pl)
K Area(Convex Hull)

where P; is the th polygonal domain. We want to maximise the quantity

max -y Y (Areagrig(P;)Circerans(Pj)) -

Use BFGS algorithm to maximize gamma.



ad shape determination

Cost: 0.773301




Mapping based on wing pad matching

Comparing to
manual mapplng Mapping based on circularity maximization
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Lloyd's algorithm
on wing pad




Real vein pattern:
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Simulated vein pattern:

Black veins were fixed in the simulation. Red veins were generated by the model.



Evaluation of simulated wing

vein cell shape distributions

| | whole wing
0 from a real and simulated wing morphology traces
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Evaluation of simulated wing

matched pairs of real
and simulated venation

vein cell shape distributions
from a real and simulated wing
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