
Chris H. Rycroft, University of Wisconsin–Madison 
(chr@math.wisc.edu)

Computational geometry of soft 
matter
UMass Summer School on Soft Solids and Complex Fluids 2024 
Lecture 3 (Wednesday June 5)

mailto:chr@math.wisc.edu


Outline

• A model of dense granular drainage 

• Voronoi analysis of granular flow 

• Neighbor relations

Monday
• Development of the Voro++ library 

• Network analysis for CO2 capture 

• Alternative models and methods

Tuesday

• Topological Voronoi analysis 

• Lloyd's algorithm and meshing 

• Insect wing structure

• Continuum representations of deformation 

• The reference map technique 

• Fluid–structure interaction

Wednesday Thursday



Computation of the “maximum free sphere”
• Combine Voronoi 

cells into a complete 
network of edges 

• Each edge labeled 
with the minimum 
distance to an atom 

• Use to compute the 
maximum-sized 
sphere that can 
move between the 
atoms

Voronoi network for EDI zeolite Voronoi network for YUG zeolite

Constraint

Edge



“Maximum free sphere” computation

• Disable periodicity in x, and start from one edge going into the periodic image in -x direction 
• Create list of neighboring nodes and sort by constraint size 
• Run modified Dijkstra algorithm: 

• Set node with largest constraint 
• Update list with new neighbors and repeat
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“Maximum free sphere” computation

• Carry out algorithm for all edges from -x periodic image to find optimal path 
• Two cases: 

• N-to-N: start and end edges are the same 
• M-to-N: start and end edges differ – consider supercell

N-to-N 
optimal path

M-to-N 
optimal path

x
y



“Maximum free sphere” computation

• Carry out algorithm for all edges from -x periodic image to find optimal path 
• Two cases: 

• N-to-N: start and end edges are the same 
• M-to-N: start and end edges differ – consider supercell

N-to-N 
optimal path

M-to-N 
optimal path

M-to-N 
optimal path

N-to-N optimal 
path in supercell

x
y



Accessible surface area
• Previous work employs Monte Carlo sampling to 

estimate surface area accessible to probe 
• Extend analysis by to detect inaccessible pockets 

by drawing rays from sample points to Voronoi 
vertices

Rays exist from sampled 
point to accessible nodes

Ray exists from sampled 
point to inaccessible node

Combined 
atom/probe size



Inaccessible 
pocket 
detection

Consider the sampling surface 
for an intermediate probe

Calculate the channels in the 
Voronoi network for the probe

Sample surface area 
using node information

Only nodes within channels 
are accessible (green)

An increase in probe size closes 
the passageway 

Without any channels, all nodes 
are now inaccessible

The interior cavity’s surface thus 
becomes inaccessible



Surface area 
computations

Accessible and inaccessible surface area for DDR zeolite

Accounting for inaccessible 
pockets significantly alters 

total surface area for zeolites 
in IZA database

T. F. Willems et al., Microporous and Mesoporous Materials 149, 134–141 (2012).



Screening for carbon 
capture materials
• Use porous materials as 

adsorbents: 
• Pump in flue gases from 

power plant to trap CO2 while 
letting N2 and other gases 
pass 

• Heat and purge CO2 from 
adsorbent for sequestration 

• Current technology has parasitic 
energy of 1060 kJ per kg CO2

L.-C. Lin et al., In Silico Screening of Carbon Capture Materials, Nature Materials 11, 633–641 (2012).

Use computational methods for: 
• Pre-screening for large channels 
• Surface area computations to determine absorbency 
• Classification of optimal structures

Theoretical estimate of current technology 
(amine solution scrubbing)



Examples of optimal structures

• Regions of blue represent those with high CO2 adsorption 
• Surprisingly different channel topologies among optimal materials



Zeo++: a software library for cheminformatics

https://zeoplusplus.org 
M. Pinheiro et al., J. Mol. Graph. Model. 44, 208–219 (2013).

(containing all of the algorithms described plus the following)

RSN

VSV

LOV

Identification of similar and 
dissimilar structures via Voronoi 

“hologram” comparison Network simplification 
via the removal of 
non-saddle edges

Non-saddle 
edge

https://zeoplusplus.org


M. Pinheiro et al., CrystEngComm 37, 7531–7538 (2013).

Voronoi tessellation Voronoi S-cell Radical tessellation

Sphere cluster approximation

d(x, xi) < d(x, xj) d(x, xi)− ri < d(x, xj)− rj
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Regularizing point arrangements
• Lloyd’s algorithm: iteratively move points to the centroids of their Voronoi cells 
• Mimics pattern formation PDEs and give direct description of region 

boundaries

Iteration 1 Iteration 2 Iteration 3 Iteration 15

Q. Du et al., SIAM Review 41, 637–676 (1999).
Converges to centroidal 

Voronoi tessellation (CVT)



Lloyd's algorithm: 
example 2
• Start with 838 particles 

in a spiral and run 256 
iterations of Lloyd's 
algorithm 

• Particle positions even 
out 

• Asymptotically in a large 
domain, the Voronoi cells 
become regular hexagons



Lloyd's algorithm: 
example 2
• Start with 1000 particles 

in a domain covering a 
fifth of each side, and run 
1024 Lloyd iterations 

• Short-range density 
fluctuations are quickly 
damped out 

• Long-range density 
fluctuations take longer to 
damp out



Mesh generation 
with Lloyd's 
algorithm
• The Delaunay triangulation 

of the particles after 
applying Lloyd iterations is 
a good computational mesh 

• Tends to favor near-
equilateral triangles, which 
are good for numerical 
methods like the finite-
element method (FEM)



Meshing in 
complicated 
domains

Voronoi cells in club 
shape after Lloyd's 

algorithm

Delaunay mesh and 
reference FEM solution 

to Laplace equation

-1 0 1



Error between FEM 
solution and exact 

solution

10-110-3 10-2

Voronoi cells in club 
shape after Lloyd's 

algorithm

Delaunay mesh and 
reference FEM solution 

to Laplace equation

-1 0 1



Voronoi cells in club 
shape after Lloyd's 

algorithm 
(with weighting)

Delaunay mesh and 
reference FEM solution 

to Laplace equation

Error between FEM 
solution and exact 

solution

-1 0 1 10-110-3 10-2



Three-dimensional domains

花生米(Using a combination of Lloyd's algorithm and the DistMesh algorithm) 
J. Lu et al., An extension to Voro++ for multithreaded computation of Voronoi cells, Comput. Phys. Commun. 291, 108832 (2023). 
J. Lu and C. H. Rycroft, TriMe++: Multithreaded triangular meshing in two dimensions, arXiv: 2309.13824 (2023).

Using TriMe++ (TRIangular MEshing)

Jiayin Lu





Topological considerations
• In 2D, three Voronoi cells will meet 

at a vertex 
• Special arrangements (e.g. lattices) 

may lead to four or more Voronoi 
cells meeting at a vertex 

• Floating point errors may lead to the 
creation of small extra faces 

• The Voronoi topology of the cells 
may be not be consistent with each 
other

Typical case with 
three Voronoi cells 
meeting at a vertex 

Special alignment of 
four Voronoi cells 

with extra face due to 
numerical rounding 

errors



Topological considerations
Even beyond numerical errors, this causes problems with analysis

(a) (b)

(c)

(a) perfect 
octahedron

(b) perturbed 
topology

(a) (b)

(c)

(a) perfect 
octahedron

(b) perturbed 
topology

Perfect octahedron 
8 triangular sides

Small extra face 
What to do? Apply threshold on area to remove it. 

Back to octahedron—problem solved! 😎 
But then four faces are still quadrilaterals 😱



VoroTop: a topological framework for local structure analysis

• A 3D Voronoi cell's topology 
(vertices, edges, faces) can be 
uniquely characterized by a 
Weinberg vector 

• Think of Voronoi cells as living 
in an abstract topology space 

• Voronoi cells for some lattices, 
like body-centered cubic (BCC) 
lie in the middle of a topological 
patch 

• Small perturbations give the 
same topology

E. A. Lazar et al., Proc. Natl. Acad. Sci. 112, E5769–E5776 (2015). 



• But Voronoi cells for some 
lattices, like face-centered 
cubic (BCC) lie at the 
intersection of topologies 

• Small perturbations give 
will give different 
topologies 

• But those topologies will 
appear in specific, 
reproducible proportions

E. A. Lazar et al., Proc. Natl. Acad. Sci. 112, E5769–E5776 (2015). 

VoroTop: a topological framework for local structure analysis



Topological fractions for BCC and FCC

E. A. Lazar et al., Proc. Natl. Acad. Sci. 112, E5769–E5776 (2015). 

Primary types occur with a finite fraction under an 
infinitesimal perturbation 

Thick lines indicate the sum of all fractions of each type



E. A. Lazar et al., Proc. Natl. Acad. Sci. 112, E5769–E5776 (2015). 



VoroTop in 2D

Characterize topologies in 
terms of Voronoi cell 

neighbors, and number of 
neighbors of neighborshttps://vorotop.org 

E. A. Lazar et al., arXiv:2406.00553(2024).

https://vorotop.org


Modeling the diverse geometry of insect wings

Joint work with Jordan 
Hoffmann, Seth Donoughe, 
 Kathy Li, and Mary SalcedoJ. Hoffmann, S. Donoughe, et al., A simple developmental model recapitulates 

complex insect wing venation patterns, Proc. Natl. Acad. Sci. 115, 9905–9910 (2018)



Introduction
• Insect wings have been studied and 

illustrated for centuries, and exhibit a 
diverse range of morphologies 

• Currently, wing veins have been studied 
in the most detail in Drosophila 
Melanogoster 

• In this species, all wing veins are largely 
conserved—these are called primary 
veins

Swammerdam 1758

D. Melanogoster wing

Illustration from Jan Swammerdam (1637–1680) 



Terminology
• Many insect wings also exhibit random variations in vein patterning 
• We define veins that vary between individuals as secondary veins

Primary veins Region

Secondary 
veinsDomain



Distinction 
between 

primary and 
secondary veins



Distinction 
between 

primary and 
secondary veins



A computational study of secondary veins
• Secondary veins were not quantitatively characterized for any 

species 
• It is not known whether a universal developmental process 

generates the diverse secondary vein arrangements seen in insects

Aims: 
1. Perform a large-scale quantitative analysis 

of insect wing structure 
2. Develop a mathematical model to explain 

secondary vein patterning



Data collection

• We collected data from multiple sources: 
• Original high-resolution micrographs 
• Published tracings from two books [1,2] 

• Our database focused on the Odonata 
order, consisting of dragonflies and 
damselflies 

• 468 wings taken from 232 species

Dragonflies

Damselflies

[1] J. G. Needham, Minter J. Westfall, and Michael L. May, Dragonflies of North America: the Odonata 
(Anisoptera) fauna of Canada, the continental United States, northern Mexico and the Greater Antilles, 
Scientific Publishers. 2014.  
[2] R.W. Garrison, N. von Ellenrieder, and Jerry A. Louton, Dragonfly genera of the New World : an 
illustrated and annotated key to the Anisoptera, JHU Press. 2006. 
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Segmented wing image



Segmented wing image



Vectorized wing outline based 
on color adjacencies

Segmented wing image



Alligator scales

Ventral epidermis of 
Drosophila melanogaster

Trachodon

Giraffe

Reticulate whipray



Quantitative measures of wing domains
• For each wing domain with vertices (xk,yk), we compute its area 

• Areas vary from ~0.01 mm2 to 10 mm2 

• We also compute circularity
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Left–right comparison





Validation 1: images to books

Micrograph 
image

Book 
image



Validation 2: book to book
Comparing a selection of species that appear in both books



Proximal–distal trace as 
a signature of a wing





A model for secondary vein 
formation
• Experimental studies of wing 

development suggest that primary veins 
are laid down early in development 

• We hypothesize that a pattern 
formation mechanism occurs in regions 
between primary veins

Tillyard 1914



Use Lloyd's algorithm as a proxy for pattern formation

square; density = 50



A missing piece
• Output from Lloyd’s algorithm is 

generally isotropic 
• But a comparison to wing images 

shows that domains are 
systematically stretched



1.

2.

3.

4.



Mapping from the wing pad

• We search for a mapping from the fully developed wing to the original wing 
pad of the form 

• Here Tj is the jth Chebyshev polynomial. Find a map to maximize domain 
circularity.

Original wing pad Fully developed wing

f

f(x) = x +

N
∑

i=0

N
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j=0

αi ,j Ti
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x
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A further constraint
• Initial tests found that the optimization problem was underconstrained 
• Added an additional term to penalize non-convexity, defined as the ratio 

between the shape and the convex hull

Area: 8298.73 Area: 11088.8

fraction: 0.748



Transform coordinates as

where Ti represents the ith Chebyshev Polynomial. Define

where      is the ith polygonal domain. We want to maximise the quantity

Use BFGS algorithm to maximize gamma. 



Wing pad shape determination



Comparing to 
manual mapping

Mapping based on wing pad matching

Mapping based on circularity maximization

Relative size change
low high



Lloyd’s algorithm 
on wing pad

Fully developed 
wing





Evaluation of simulated wing



Evaluation of simulated wing




