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Introduction

e Geometry is everywhere! From the scale of atoms
to the scale of galaxies, we use geometry to
describe the world around us

e Geometry underpins many physical theories that
we develop*

e T[here are many different ways to think about
geometry, from the discrete to the continuum

e Nowadays, with increases in data-collection
ability, we often need computational approaches
to handle geometry

* We have already seen this from the other lectures

SMACS 0723 galaxy cluster

TEM image of polio virus

James Webb Space Telescope

(CDC public image library)



50 Pixels

Some background

o | studied mathematics as an
undergraduate

o | started the MIT Ph.D. program
aiming to study string theory ...

e ... but instead became interested in soft
matter and its real-world applications

e Since then | have found that within a
wide range of research collaborations,
much time has spent working on
mathematics and software for geometry.

e There are many commonalities between

supposedly unrelated systems
Blue dasher dragonfly by the

Charles River, Allston, MA
*1. Javaheri and V. Sundararaghavan, Computer-Aided Design 120, 102806 (2020). (https://flic.kr/p/2mfktuu)



https://flic.kr/p/2mfktuu

Program files and photos

e [ hese lectures have an associated GitHub repository:

https://github.com/chrlshr/uma ss2024

It contains example codes in C4++ and Perl, along with scripts
for creating graphs and movies

e Some associated photos are available on Flickr:

https://flic.kr/s/aHBqjByDR9



https://github.com/chr1shr/uma_ss2024
https://flic.kr/s/aHBqjByDR9

Outline

Monday Tuesday

e A model of dense granular drainage e Development of the Voro++ library
e \Voronoi analysis of granular flow e Netwok analysis for CO> capture

e Neighbor relations e Alternative models and methods

Wednesday Thursday

e Topological Voronoi analysis e Continuum representations of deformation
e Lloyd's algorithm and meshing e The reference map technique

e Insect wing structure e Fluid—structure interaction




Mixing in dense granular drainage

e Many industrial processes involve powders and grains
draining through silos

e Fundamentally different engineering challenges to draining
fluid tanks

e Some experiments show a
parabolic flow region
above the orifice

e Particles also mix, but
this happens slowly

Drainage of layers of sand Cutaway of 440,000 particles in a

A. Samadani et al., Phys. Rev. E 60, 72037209 (1999). between glass plates cylindrical hopper



Discrete-element simulation with LAMMPS

e Developed at Sandia National O| O Ghost region

Laboratories since the late 90's O O o O
S O 4 sl o
" " bo bo

e General Platforn.\ for S|mL.J|at|ng atoms 2 O process 0 © process 1
and particles using the discrete S o |8
element method™ (DEM) 2| © o O ~1 04 o O

e Many different options and force Ghostregion  1O] 5 O
models: Lennard-Jones, granular, O 4 = O =
embedded atom model, ... O Process 2 Process 3

’ 5 o © ®
e Provides computational infrastructure o ° o O O

. : on
for efficient para”el simulatio Example LAMMPS simulation with four

r rs an riodi ndary conditions
* Closely related to molecular dynamics (MD). DEM usually includes particle rotation. Processors d d PE odic bounda Yy


https://lammps.sandia.gov

> N

Granular contact model <y

(simulation scales)

e | engths measured in terms of
a particle diameter d

e Defines a natural time unit
according to T = \/d/g

e Mass m is defined so that
particles have density m/d>

P. A. Cundall and O. D. L. Strack, Geotechnique 29, 47 (1979).

K. L. Johnson, Contact mechanics, Cambridge University Press, 1999.
L. E. Silbert et al., Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E 64, 051302 (2001).



> N

Granular contact model <y

(simulation scales) F,

e Contact force model
B YnVn
F, = f(+/5/d) (knén 2 )
. B YtV
F. = f(\/é/d) ( ke DS, 5 )

e [wo common options

-

0

(Overlap)

F(N) 1 for Hookean contacts I )
— . Typical parameter choices
VI for Hertzian contacts d
Symbol | Description Value
C o Kn Normal elastic constant 2 x 10°mg/d
e Coulomb friction ki Tangential elastic constant 2k, /T
- Normal viscoelastic constant 5041071
‘Ft‘ < ,U"Fn‘ 7 o . .
V¢ Tangential viscoelastic constant | 25+/10T
L Coulomb friction coefficient 0.5




Friction

e Friction is a subtle aspect of the simulation

e When two particles come into contact, the tangential
displacement As; is tracked over the lifetime of the
contact

o If |[F;| exceeds w|F,|, then it is rescaled to have
magnitude w|F,|and As; is adjusted so that ({) holds

Normal and tangential forces

F, = f(+/3/d) (knén '7”2""> Coulomb friction

‘Ft‘ < N‘Fn‘
Fe = f(1/6/d) (—kes, 'Ytz"t) (1)




Creating a particle packing
(using pouring)

e [he example simulation creates a
packing of 350 particles

e Particles are randomly inserted in
groups Into a region

e Once a group falls out of the region,
a new group is added

e End of simulation is a roughly 7d by
7d by 7d packing




LAM M PS i"pUt ﬁle # Pouring LAMMPS input file

atom_style granular
boundary fm fm fm

o LAMMPS is run using a text newton off
configuration file, which specifies: communicate single vel yes

# Region setup
region reg block -3.5 3.5 -3.5 3.5 0 10 units box
create_box 1 reg

e Particle interaction model

e Numerical timestep

# Nelghbor computation setup
e Output types neighbor 0.2 bin

_ _ _ neigh_modify delay O
e Simulation domain

_ # Palr interaction
e Run with command pair_style  gran/hooke/history 2000000 \
NULL 153.1138383 NULL 0.5 O
] ff * >k
mpirun -np 4 ./lmp_openmpi <inputl.lmp Ei;g;;g; 0 000095

Creates four processes using the MP|
(Message Passing Interface) library nputl.Imp



ITEM: TIMESTEP

LAMMPS output L0oc

ITEM: NUMBER OF ATOMS

13
- - ITEM: BOX BOUNDS
e Typically LAMMPS will save two types of ok ak
output: -3.5 3.5
0 10
@ [he dump file containing frequent ITEM: ATOMS id type xs ys zs
_ o _ 1 1 0.823044 0.764876 0.923205
snapshots of the partlcle pOSItIOnS with a 2 1 0.25138 0.516107 0.938156
4 1 0.389969 0.920736 0.948707
- - - - 5 1 0.89836 0.588533 0.920575
® Restart files at mfreguent |n’Ferva|s, which 1 0 e17190 0 B0tEaE 6 808006
contain a complete information about the 7 1 0.731278 0.441968 0.779584
- - - - - 8 1 0.764215 0.301355 0.87453
simulation (e.g. |nc|.ud|ng hl.story o 1 0 eaomon 0 4557 0 909503
dependent contact information) 10 1 0.552108 0.279713 0.949857
| 11 1 0.53695 0.0874061 0.948688
e Dump files can be used for a wide-range 12 1 0.0893446 0.329288 0.93171
13 1 0.391378 0.603187 0.944647

of post-processing

LAMMPS dump file excerpt



The void model SH5S

o [reat particles as on a 2D hexagonal fvdvat »P
lattice

e Voids introduces at orifice and do
random walks upward

e Continuum limit for vertical velocity

Vz ov, 0°v,

0z O x?

= b

e Limit of particle PDF —
ov, 0°v, 0 0 '

Oz O x? 2b& Ox

W. W. Mullins, Stochastic theory of particle flow under gravity, J. Appl. Phys. 43, 665-678 (1972).
H. Caram and D. C. Hong, Random-walk approach to granular flows, Phys. Rev. Lett. 67, 828-833 (1991).

Samadani et al. (1999)
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Velocity correlations

(in experiments and simulations of granular drainage)

Compute local velocity correlations using

WOV
C(r
") \/<"(O)2><V(r)2> 0.2 - ; :

Distance (units of d)

Correlation

Suggests correlated motion

" Hertzian
Hookean

Simulation

Correlation C(r)
o
-
(&)

0 2 4 6 8 10

J. Choi, Transport-limited aggregation and dense granular flow, Ph.D. thesis, MIT, 2005. : )
g 8ETEE X Distance (units of d)

C. H. Rycroft et al., Dynamics of random packings in granular flow, Phys. Rev. E 73, 051306 (2006).



The spot model for random packing dynamics

e A spot is an extended region of slightly enhanced interstitial volume

e Spots cause correlated displacements of passive, off-lattice particles within range

M. Z. Bazant, The Spot Model for random-packing dynamics, Mech. Mat. 38, 717 (2005).



The spot model for random packing dynamics

/’:7\\
/’;\\ L)Y /\
4 V4 B D> "
'//// ‘ I ” ’\
Vs ///| AP C \‘ ~
S\ /7 2 L -4 -)-J AN V|
S Y./ VA '
<~/ 7 \/ "/ ’//
.,
~ S

e Apply elastic relaxation to all particles within range

o All overlapping particles experience a correcting normal displacement

M. Z. Bazant, The Spot Model for random-packing dynamics, Mech. Mat. 38, 717 (2005).



The spot model for random packing dynamics
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e The combination is a bulk spot motion, while preserving packing geometry

e Not clear a priori it this will produce realistic flowing random packings

M. Z. Bazant, The spot model for random-packing dynamics, Mech. Mat. 38, 717 (2005).



Choice of spot simulation parameters

e Systematically fit three parameters from DEM:

® Spot radius R
(from velocity correlations)

® Spot volume Vi
(from particle diffusion)

e Spot diffusion rate b
(from velocity profile width)

e Two more parameters to capture time dependence:

® Spot insertion rate
(from flow rate)

® Spot velocity
(from density drop)

0 ¢)
o

Spot diffusion rate fitting

%) o)} ~
o o o

Variance of vertical velocity profile (d2)
AN
o

30
20 e
10 F
. DEM simulation
0 _ _ _ Linear fit -
0 10 15 20 25 30
Height (d)
Spot insertion rate fitting
>6000 ' "DEM simulation
54000 F ™ Linear fit -
52000 F .,
+..;**++
& 50000 | o,
% +ﬁk*++
€ 48000 | o,
3 “h,,
c 46000 F +++.._‘*++
7)) +++-|;n
S 44000 | “,
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38000 | ",
36000 : . . L
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Time



Two very different
simulations

4 DEM N

e Particles drained from

circular orifice 8d across

e Snapshot recorded at fixed
intervals

e Run on 24 processors

& v

Initial packing of 55000
poured particles from DEM
50d by 8d by 110d

Spot N
Spots introduced at orifice

Event driven

Spots move upwards and
do random walk
horizontally

Calibrate parameters from

DEM
v




Comparison between
DEM and spot simulation

e Using the same initial packing in a 50d
by 8d by 110d container

e Fitted parameters:
e Rs = 2.6d
e V.=0.2V,
e b=1.14d

e Reproduces flowing random particle
packing with a factor of 100 speedup

C. H. Rycroft et al., Dynamics of random packings in granular flow, Phys. Rev. E 73, 051306 (2006).
C. H. Rycroft et al., Fast spot-based multiscale simulations of granular flow, Powder Technol. 200, 1-11 (2010).

DEM simulation
(3 days, 24 processors)

Spot simulation
(8 hours, single processor)




Question 1: tracking
density changes

Question

If we believe the spot model,
where would expect the packing
density to be reduced during flow?

Answer e
R Key problem: we need
Spots carry negative volume, and SRRl t0 measure small local
cause downward velocity | ERSREEEEEES  changes in density

We'd expect the largest density . R A O LR W0 PR
drOP above the orifice. —_————————— = :




y

"*=~-Should be

easy, right!?

UJ\:\/\*‘GNCL
WA Cah b | [w.&oi‘ Easy on a large scale,
R (g G | P2 but we need to identify
i - — small, local changes
L 914 -

Whiteboard snapshot from Karen
Daniels' lecture, discussing different |

aspects to measure e s https://flic.kr/p/2q2UYaG



https://flic.kr/p/2q2UYaG

Measuring 2D density (version 1)

Packing fraction

10 1 2 3
Displacement x/d We use paCking fraCtiOrl, the
Packing fraction varies by 20%, proportion of space occupied by

and sometimes exceeds 100% ' particles, as a proxy for density




Measuring 2D density (version 2)

M/

oy

-3 -2 -1 0 1 2 3
Displacement x/d

More accurate, but still
has variations of 0.5%




Question 2:
packing structure

Question

The DEM simulation realistically
models how particles move past
each other*

Does the spot model do the same?
Are the statistics of neighbor
relations similar?

* C. H. Rycroft et al., Physical test of a particle simulation model
in a sheared granular system, Phys. Rev. E 80, 031305 (2009).




Question 2:
packing structure

Question

The DEM simulation realistically
models how particles move past
each other*

Does the spot model do the
same’ Are the statistics of

. . -8
| | imilar? | ‘ .
particle neighbors|simila B But how do we precisely

define neighbors?

* C. H. Rycroft et al., Physical test of a particle simulation model
in a sheared granular system, Phys. Rev. E 80, 031305 (2009).




Neighbor relations test

e Suppose everyone in the
room is a particle

e \Who would you define as
your particle neighbors?

o | will give everyone a
rainbow-colored ID number

e Please hold it up, and write
down in A the IDs of all of

your neighbors

The lecture room



Triangulation

e | am going to build a map
of particle positions using
triangulation

e From photos at two ends of
a known baseline, | can
determine everyone's
position

e | will build a map visualizing
the neighbor relations

The lecture room



A technique from
computational geometry

e Consider a domain €2 with distance
metric d, and introduce a set of points x;

e The Voronoi cell for point™* x;is the
space x that satistfies

d(x, x;) < d(x, x;j)
for any j # i

e [ogether the Voronoi cells form the
Voronoi tessellation of €2

* We can think of point and particle as synonymous in this definition
A. Okabe et al., Spatial tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, 2000.
E. A. Lazar et al., Voronoi cell analysis: the shapes of particle systems, Am. J. Phys. 90, 469 (2022).



A technique from
computational geometry

e Consider a domain €2 with distance
metric d, and introduce a set of points x;

e The Voronoi cell for point™* x;is the
space x that satistfies

d(x, x;) < d(x, x;j)
for any j # i

e [ogether the Voronoi cells form the
Voronoi tessellation of €2

* We can think of point and particle as synonymous in this definition
A. Okabe et al., Spatial tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, 2000.
E. A. Lazar et al., Voronoi cell analysis: the shapes of particle systems, Am. J. Phys. 90, 469 (2022).



metric d, and introduce a set of points x;

e The Voronoi cell for point* x; is the . ‘

space x that satistfies

d(x,x) < d(x,%) ’ ‘
for any j # |

e [ogether the Voronoi cells form the b

Voronoi tessellation of €2

A technique from
computational geometry
e Consider a domain €2 with distance ‘ a

Single

* We can think of point and particle as synonymous in this definition VOronOi Ce”
A. Okabe et al., Spatial tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, 2000.
E. A. Lazar et al., Voronoi cell analysis: the shapes of particle systems, Am. J. Phys. 90, 469 (2022).



A technique from
computational geometry

e Consider a domain €2 with distance
metric d, and introduce a set of points x;

e The Voronoi cell for point™* x;is the
space x that satistfies
d(x, x;) < d(x, x;j)

for any j #£ |

e [ogether the Voronoi cells form the
Voronoi tessellation of €2

(Can also use periodic

* We can think of point and particle as synonymous in this definition o
A. Okabe et al., Spatial tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, 2000. bOU nda ry COnd |t|OnS)

E. A. Lazar et al., Voronoi cell analysis: the shapes of particle systems, Am. J. Phys. 90, 469 (2022).



e Developed by Georgy Voronyi (1868—1908) in Imperial

Some hiStOry Russia (present day Ukraine)

e Introduced in two pure mathematics papers in 1908

e Commemorated in 2008 in Ukraine with two-hryvnia
coin

\

G. Voronoi, Nouvelles applications des paramétres continus a la théorie des formes quadratiques. Premier mémoire ..., J. reine angew. Math. 133, 97-179 (1908).

G. Voronoi, Nouvelles applications des paramétres continus a la théorie des formes quadratiques. Deuxiéme mémoire ..., J. reine angew. Math. 134, 198-287 (1908).



Accurate density
measurements

e T[he Voronoi tessellation provides method
to compute the packing fraction ¢
accurately

e For a single particle, measure packing
fraction as

Particle volume

Voronoi cell volume

e Could also be average over several
particles and Voronoi cells

A. Okabe et al., Spatial tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, 2000.
E. A. Lazar et al., Voronoi cell analysis: the shapes of particle systems, Am. J. Phys. 90, 469 (2022).



Revisiting 2D hexagonal packing

Each particle has area

7 d?
4

V, =




The Voronoi cells will
all be regular hexagons




Consider all of the 19
particles and Voronoi
cells within a box




Even based on a
single particle, this
precisely matches the
asymptotic value for
large regions




Density
variations

based on 3D Voronoi cell
volumes in local patches

50% 55% 60% 65%

Local packing fraction > increasing time



DEM snapshots through central slice

Density
variations

based on 3D Voronoi cell
volumes in local patches

Packing fraction is s
reduced in regions of s G
highest shear, not

highest velocity

Makes physical sense,

since particles need room
to flow past each other

50% 55% 60% 65%

Local packing fraction > increasing time



A topological definition of
neighbors

e \We can define two particles as
neighbors if their Voronoi cells share
a face

e Connecting all these neighbors gives
the Delaunay triangulation

e Each Delaunay edge corresponds to
a Voronoi face; this is called
Voronoi—Delaunay duality

Delaunay triangulation

A. Okabe et al., Spatial tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, 2000.
E. A. Lazar et al., Voronoi cell analysis: the shapes of particle systems, Am. J. Phys. 90, 469 (2022).



The Delaunay

b 4 p 14
trlangU|at|0n %
b4 %
e The Delaunay triangulation is \ %
interesting in its own right, and can be %
defined independently of the Voronoi X
tessellation v ¥ i’
e |t is the unique triangulation where the \ X
circumcircle of each triangle contains % ‘
no other particle A\
X

e Useful basis for triangulation—we will

return to this later
Example circumcircles

A. Okabe et al., Spatial tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, 2000.
E. A. Lazar et al., Voronoi cell analysis: the shapes of particle systems, Am. J. Phys. 90, 469 (2022).



Neighbor relations test (with Voronoi cells)

o We'll repeat the neighbor
relations test

e But now | want you to
visualize the Voronoi cell
around you, and write down in

B your neighbors that share
Voronoi face

The lecture room



Neighbor relations test (with Voronoi cells)

Simplification: remove entryways to

e We'll repeat the neighbor L e
relations test / \

e But now | want you to @
visualize the Voronoi cell
around you, and write down in

B your neighbors that share
Voronoi face

e Extra credit in C: estimate

the area of your Voronoi cell
(include the unit, e.g. m2 or

ft2)

The lecture room



Exercise

e Consider a circular particle of radius 1
centered at (c,d)

e Write a function the proportion of its
volume in the region x<0, y<0

Area In x<0
and y<0




