
Applied Mathematics 225

Unit 5: Special topics in scientific computing

Lecturer: Chris H. Rycroft

Derivation of the Navier–Stokes equations

Consider a fluid in d dimensions with spatially varying density
ρ(x, t) and velocity u(x, t). From conservation of mass we obtain

∂ρ

∂t
+∇ · (ρu) = 0. (1)

Let Ω be a small control volume of fluid. Integrating Eq. 1 and
applying the divergence theorem yields

∂

∂t

∫
Ω
ρdx = −

∫
∂Ω
ρn · u dS

where n is an outward-pointing normal vector. Hence the change
in mass in Ω is equal to the mass flux across the boundary ∂Ω.

Derivation of the Navier–Stokes equations

To derive an equation for the velocity, we
first introduce the Cauchy stress tensor,
which represents the forces created by
small control volume.

In two dimensions

σ =

(
σxx σxy
σyx σyy

)
where the components are shown in the
diagram. Since the control volume
cannot generate a torque, the stress
tensor is symmetric, so that σxy = σyx .

σxx

σxy

σyx

σyy

Ω
σxx

σyx

σyy

σxy

Derivation of the Navier–Stokes equations

By considering Newton’s second law applied to the small control
volume we obtain

ρ
du

dt
= ∇ · σ + f.

Here, d/dt = ∂/∂t + (u · ∇) is the convective derivative.

The term ∇ · σ represents how local stress imbalances generate a
force on the control volume.

f represents any external applied forces (e.g. gravity).

Fluid stress tensor

For a Newtonian fluid the stress tensor is given by

σ = −pI+ µ(∇u+ (∇u)T)

where p is the pressure and µ is a constant called the dynamic
viscosity. The second term is the viscous stress, and represents the
fluid resistance to applied deformation.

In the Newtonian fluid model, viscous stresses are linearly
proportional to the deformation rate. Examples where this is a
good model include air, water, and glycerol.

Pressure

To obtain a closed set of equations, we need an equation for the
pressure. This follows similar considerations to the 1D gas model
considered in the finite volume section. In the most general case,
this could involve density and temperature of the fluid.

A simpler approach, applicable to liquids such as water, is to model
the fluid as weakly compressible, so that

ρ = ρ0(1− α(p − p0))

for some constants ρ0, p0, and α, where α is small.

Compressive waves move with speed c =
√
ρ0/α.

Difficulties with compressibility

Typical fluids of interest (e.g. water) have very low compressibility.

Pressure waves travel at very fast speeds c on the order of km/s.
The CFL condition requires that ∆t ≤ ∆x/c , which is a very
strong restriction. This makes it difficult to simulate fluids on
many timescales of practical interest (e.g. minutes, hours).

One approach is to make the fluid artifically soft by increasing α,
thereby decreasing c .

An alternative approach is to model the fluid as incompressible, so
that ∇ · u = 0.

Incompressible Navier–Stokes equations

In that case we must solve the incompressible Navier–Stokes (NS)
equations

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u

subject to the divergence-free criterion ∇ · u = 0. Here ν = µ/ρ is
the kinematic viscosity.

We no longer have an explicit update equation for ρ (or
equivalently p). Instead, it is determined implicitly in order to
maintain the divergence-free criterion. It is not immediately
obvious how to efficiently solve this system (one equation plus one
constraint) numerically.

Chorin’s projection method

In 1968 Alexandre Chorin introduced the projection method1 for
the incompressible Navier–Stokes equations.

This work was the successor to a previous paper2 that used a
simpler, more direct approach based on artificial compressibility.

Since its introduction, Chorin’s projection method has been
extensively studied and developed, and now forms the basis of a
wide variety of computational fluid dynamics software.

1A. J. Chorin, Numerical Solution of the Navier–Stokes Equations,
Mathematics of Computation 22, 745–762 (1968).

2A. J. Chorin, A Numerical Method for Solving Incompressible Viscous Flow
Problems, Mathematics of Computation 2, 12–26 (1967).

Chorin’s projection method

Let un be the discretized velocity field at timestep n, and consider
taking a timestep of size ∆t to un+1. To begin, compute the
intermediate velocity u∗ by considering convection and viscosity:

u∗ − un

∆t
= −(un · ∇)un + ν∇2un. (2)

Then, to obtain un+1, we would need to compute

un+1 − u∗

∆t
= −∇pn+1

ρ
(3)

but we do not know pn+1.

(We have made a choice here to treat p as being at step n + 1.
This is consistent with the method being first-order accurate in
time, like a backward Euler step.)

Chorin’s projection method

Taking the divergence of Eq. 3 yields

∇ · un+1 −∇ · u∗ = −∆t

ρ
∇2pn+1. (4)

We require that the velocity field at the end of the timestep is
divergence-free, and hence ∇ · un+1 = 0, so

∇ · u∗ = ∆t

ρ
∇2pn+1, (5)

which is an elliptic equation for the pressure pn+1. Once pn+1 is
known, then Eq. 3 can be used to find un+1.

Chorin’s projection method

The complete method is therefore

1. Compute the intermediate velocity

u∗ − un

∆t
= −(un · ∇)un + ν∇2un.

2. Solve the elliptic problem for the pressure

∇ · u∗ = ∆t

ρ
∇2pn+1.

3. Use the pressure to correct the velocity to be divergence-free

un+1 − u∗

∆t
= −∇pn+1

ρ
.

Information transfer for the incompressible NS equations

Note that it is natural that the solution method for the
incompressible Navier–Stokes equations should involve an elliptic
problem. Elliptic problems usually have non-local solutions, so that
a localized source term leads to a non-local solution.

For example in R3, the Poisson equation for a function u(x, t) with
a localized delta function source term is

∇2u = −4πδ(x).

This has solution

u(x) =
1

|x|
,

which is non-zero everywhere.

Information transfer for the incompressible NS equations

Consider the hypothetical case shown, of
an incompressible fluid in a cavity, with
inflow and outflow pipes. If a small
volume of fluid is inserted at the inflow,
then the same volume must be
instantaneously removed at the outflow.

In the simulation, the non-locality of the
elliptic problem allows this information to
propagate instantaneously across the
entire cavity.

This is different from the compressive
case, where the insertion of fluid would
cause a pressure wave to propagate
across the cavity at a finite speed.

Outflow

Inflow

Enclosed cavity
of fluid

Small volume of
inserted fluid

Displaced fluid
of equal volume

Pressure projection: boundary conditions

We must apply boundary conditions on the elliptic problem. If we
have a pressure boundary condition, then it is straightforward and
we obtain a Dirichlet condition for p.

For a velocity boundary condition such as u = 0, we can take the
scalar product of Eq. 3 with an outward-pointing normal vector n
to obtain

n · u∗ = ∆t

ρ
n · ∇p,

which is a Neumann condition for p.3

3Note that there are subtleties here when trying to achieve higher accuracy.
This will be briefly discussed later.

Pressure projection: approaches

There is freedom in how to implement the pressure projection.
Two families of methods are

1. “Projection” methods: these construct the elliptic problem so
that the velocity field un+1 satisfies a discrete divergence
constraint exactly.

2. “Pressure-Poisson” methods: these solve a Poisson problem
for the pressure so that a discrete divergence constraint is
satisfied only up to the truncation error of the method.

While option 1 may seem more desirable, it has been shown to lead
to weak instabilities in some cases. Option 2 also provides more
flexibility in implementation.

An example of option 2 is the finite-element based “approximate”
projection method of Almgren et al.4

4A. S. Almgren, J. B. Bell, and W. G. Szymczak, A numerical method for
the incompressible Navier–Stokes equations based on an approximate
projection, SIAM J. Sci. Comput. 17, (1996).

Numerical example

The directory 5a fluid sim in the am225 examples repository
contains a two-dimensional C++ implementation of Chorin’s
projection method.

The simulation is primarily in the fluid 2d class. The simulation
runs on a rectangular grid and can use both periodic and
non-periodic boundary conditions.

The fluid 2d class uses a 2D array of field data structures. The
field data structure contains all of the required simulation fields:
velocity u = (u, v), intermediate velocity u∗ = (u∗, v∗), and
pressure p.

The program fluid test.cc is a front-end that runs a simple test
case where several fluid vortices move around and interact. It saves
snapshots of the fields at regular intervals.

Overall grid structure

m grid cells

ml = m + 4 grid cells plus ghosts

n grid cells

field* fbase

field* fm

(0,0)
(m-1,0)

(0,n-1) (m-1,n-1)

Primary
simulation grid

Two layers of
ghost cells (for

applying boundary
conditions)

∆y

∆x

Fields at (i,j)

fm[i+ml*j]

Field discretization
The velocity field is discretized at
grid cell centers and the pressure
field is discretized at grid cell
corners. This is a typical
approach and has some stability
advantages over co-locating all
fields in one position.

The field structure includes the
(i , j) entries of u, p, and u∗.

As shown on the previous slide,
the main grid is padded with two
layers of ghost cells. These are
continually updated to be
consistent with the required
boundary conditions.

pi,j

pi,j+1

pi,j+2

pi+1,j pi+2,j

pi+2,j+1

pi+2,j+2pi+1,j+2

pi+1,j+1

ui,j ui+1,j

ui,j+1 ui+1,j+1

field

Advection and viscous terms

The advection term (un · ∇)un is calculated using the ENO
method introduced in AM225 Unit 4.

The Laplacian term for the viscous stress is calculated using the
centered difference formula

[∇2u]ni ,j =
uni+1,j − 2uni ,j + uni−1,j

∆x2
+

uni ,j+1 − 2uni ,j + uni ,j−1

∆y2
.

Pressure projection

The projection step uses the finite-element based approximate
projection technique of Almgren et al. The pressure is treated as
piecewise bilinear on grid cells, so that p(x) =

∑
l plψl(x) for basis

functions ψl(x).
5 The field u∗ is treated as piecewise constant on

grid cells.

In weak form the projection is∫
Ω
ψk∇2pdx =

∫
Ω
ψk∇ · u∗dx.

On a periodic domain, integrating by parts yields

−
∑
l

pl

∫
Ω
∇ψk · ∇ψldx = −

∫
Ω
u∗ · ∇ψk dx,

which leads to a sparse linear system to solve for the pl .

5These are the same basis functions as in question 2 on homework 3.

Multigrid library

The linear system is solved using the multigrid method.6 This
technique is highly efficient for Poisson problems. Algorithmically,
multigrid is even more efficient than conjugate gradient or FFT,
requiring O(1) work per gridpoint.7

The code uses the TGMG (Templated Geometric MultiGrid) library
developed by the Rycroft group. A copy of the library is provided
in the am225 examples/tgmg directory.

The class mgs fem describes the multigrid linear system to be
solved in the fluid 2d class, and is used by TGMG.

6See the notes from AM205 Unit 5.
7See the method comparison in chapter 6 of J. Demmel’s Applied

Numerical Linear Algebra book.

https://courses.seas.harvard.edu/courses/am205/notes/iter_lecture.pdf

Pressure correction

Once the pressure is computed, the velocity un+1 is computed
using a centered finite-difference stencil. For the x velocity
component

un+1
i ,j = u∗i ,j −

∆t

2ρ∆x
(pn+1

i+1,j+1 + pn+1
i+1,j − pn+1

i ,j+1 − pn+1
i ,j)

and for the y velocity component

vn+1
i ,j = v∗i ,j −

∆t

2ρ∆x
(pn+1

i+1,j+1 − pn+1
i+1,j + pn+1

i ,j+1 − pn+1
i ,j).

Timestep choice

The CFL condition for the advection term enforces a maximum
timestep

∆tadv = min

(
∆x

umax
,
∆y

vmax

)
where umax and vmax are the maximum horizontal and vertical fluid
velocity components taken over the entire grid, respectively. The
viscous term requires that the timestep be smaller than

∆tvis =
1

2ν(∆x−2 +∆y−2)
.

In the code, the timestep is chosen as

∆t = s min(∆adv,∆vis)

where s ≤ 1 is a padding factor. The code makes a further small
adjustment to ensure that an integer multiple of timesteps
precisely matches the snapshot output interval.

Tracers

To visualize the fluid flow, the code simulates a number of passive
tracer particles with positions Xk(t). The tracers are initially
located at random positions throughout the simulation domain.

The tracers follow the ODE

dXk

dt
= ubilin(Xk(t), t)

where the time derivative is simulated using the explicit Euler
method, and ubilin is the bilinear interpolation of the velocity field.

Simulation output

The code creates a directory ftest.out for storing the simulation
output. The fields are stored in the Gnuplot binary matrix format,
which has been used in previous examples.

A Perl script gnuplot movie.pl is provided that can process all of
the output files into PNG images:

./gnuplot_movie.pl -t ftest.out p

The Perl script supports several other options, which can be seen
by typing:

./gnuplot-movie.pl -h

Movie

Once the PNG images are created, the script will try to make a
movie of the output.

▶ On the Mac and Linux it tries to use FFmpeg to make a
QuickTime-compatible movie using the modern HEVC codec,
which provides excellent quality and compression.

▶ On Windows, the script does not automatically make a movie.
However, the program VirtualDub is one option for making
movies. FFmpeg can also be installed.

On the Mac it’s also possible to use qt tools, a set of
command-line utilities to access the built-in QuickTime libraries in
macOS. They work well but the tools/libraries have not been
updated in a long time and there is no HEVC support.

https://www.ffmpeg.org/
https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding
http://www.virtualdub.org/
http://dvb.omino.com/sw/qt_tools/

Improvements

The paper by Brown et al.8 describes many improvements and
extensions to the method.

A general framework for achieving second-order accuracy involves
solving

un+1 − un

∆t
+∇pn+1/2 = −[(u · ∇)u]n+1/2 +

ν

2
∇2(un+1 + un)

subject to ∇ · un+1 = 0 with boundary conditions un+1|∂Ω = un+1
b .

Here [(u · ∇)u]n+1/2 represents a second-order approximation to
the convective derivative at the half-timestep tn+1/2.

8D. L. Brown, R. Cortez, and M. L. Minion, Accurate Projection Methods
for the Incompressible Navier–Stokes Equations, J. Comput. Phys. 168,
464–499 (2000).

General outline for a second-order method

1. Solve for the intermediate field u∗

u∗ − un

∆t
+∇q = −[(u · ∇)u]n+1/2 +

ν

2
∇2(u+ u∗).

with BCs B(u∗) = 0, where q is a pressure approximation to
pn+1/2.

2. Perform the projection

u∗ = un+1 +∆t∇ϕn+1

with BCs B(u∗) = 0 and un+1|∂Ω = un+1
b .

3. Update the pressure

pn+1/2 = q + L(ϕn+1).

Helmholtz–Hodge decomposition

Any vector field9 u can be decomposed into a divergence-free part
usol and an irrotational (curl-free) part uirrot, so that

u = usol + uirrot = usol +∇ϕ.

This is one of the mathematical underpinnings of the projection
method, and is also used in an alternative approach called the
gauge method.

9In a simply connected domain.

