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Hyperbolic problems

Hyperbolic PDEs appear in a wide variety of situations where wave
propagation or advective transport is important.

Many conservation laws (e.g. of mass, momentum) are expressed
as hyperbolic PDEs.

Finite volume methods are class of discretization methods for
hyperbolic PDEs that are based on an integral formulation.

They are often closely related to finite difference methods.
However their integral formulation provides many advantages.



Book

We will make use of the following book:

▶ Randall J. LeVeque, Finite volume methods for hyperbolic
problems, Cambridge University Press, 2002.

The book has associated code called CLAWPACK (Conservation
LAWs PACKage), which is available at
http://www.clawpack.org/. The code is written in Fortran, with
a Python interface.

http://www.clawpack.org/


Hyperbolic conservation laws

We begin by studying a model conservation law. Consider a one
dimensional pipe carrying a fluid with velocity u(x , t).

Let q(x , t) be the density of a chemical tracer being carried by the
fluid. q has units of mass per unit length.

For a given interval [x1, x2], the total amount of chemical in the
interval at time t is ∫ x2

x1

q(x , t)dx .



Changes in chemical over time

We now consider how the amount of chemical in the region [x1, x2]
changes over time. Let Fi (t) be the rate at which the tracer flows
past xi .

1

Since the total chemical in [x1, x2] only changes at the endpoints,
we obtain

d

dt

∫ x2

x1

q(x , t)dx = F1(t)− F2(t),

which is the integral form of the conservation law.

1We use the convention that Fi (x) > 0 corresponds to tracer flowing to the
right.



Flux

For the fluid flow example, the flux is given by the product of
density and velocity, so that

flux at (x , t) = u(xi , t)q(xi , t)

Since u is a known function, we write the flux as f (q, x , t). A
particular case that we will study is when the velocity is constant,
i.e. u(x , t) = ū, and hence f (q) = ūq. This is an example where
the flux does not depend on x or t and the equation is called
autonomous.



Toward a conservation law PDE

For an autonomous flux, the conservation law becomes

d

dt

∫ x2

x1

q(x , t)dx = f (q(x1, t))− f (q(x2, t)),

which can be rewritten as

d

dt

∫ x2

x1

q(x , t)dx = −f (q(x , t))|x2x1 .

The right hand side looks similar to the result of an integral.
Assuming q is sufficiently smooth,

d

dt

∫ x2

x1

q(x , t)dx = −
∫ x2

x1

∂

∂x
f (q(x , t))dx .



Toward a conservation law PDE

The previous expression can be rewritten as∫ x2

x1

[
∂

∂t
q(x , t) +

∂

∂x
f (q(x , t))

]
dx = 0.

Since this is true for any x1 and x2, it follows that

∂

∂t
q(x , t) +

∂

∂x
f (q(x , t)) = 0,

which, using subscript notation for derivatives, becomes

qt + f (q)x = 0.



The advection equation

Let us return now to the case of steady flow, u(x , t) = ū. Then
the conservation law becomes

qt + ūqx = 0.

One can verify that the general solution to this equation is

q(x , t) = q̃(x − ūt).

Hence, if we specify the solution at time t = 0 is q̃(x), then the
solution at later times will just translate to the right with constant
velocity.



Another viewpoint

Consider the ray X (t) = x0 + ūt. The solution along this ray has
derivative

d

dt
= qt(X (t), t) + X ′(t)qx(X (t), t)

= qt + ūqx = 0

and thus q is constant along this ray.

These rays are called characteristics. In general, a characteristic is
a curve along which the PDE simplifies in some way.



A more general equation

Suppose now that we consider a spatially dependent velocity u(x).
The PDE is

qt + (u(x)q)x = 0.

Define characteristics by X ′(t) = u(X (t)), so they move with the
velocity. Along a characteristic

d

dt
q(X (t), t) = qt(X (t), t) + X ′(t)qx(X (t), t)

= qt + u(X (t))qx

= qt + (u(X (t))q)x − u′(X (t))q

= −u′(X (t))q(X (t), t).

While q is no longer constant along a characteristic, we obtain an
ODE for q along the characteristic.

Solving the PDE reduces to solving a family of ODEs along
characteristics.



Finite volume method

A finite volume method is based on subdividing the spatial domain
into intervals (known as the finite volumes or grid cells) and
keeping track of an approximation to the integral of q over each of
these volumes.

Denote the ith grid cell by

Ci = (xi−1/2, xi+1/2)

The value Qn
i approximates the average value over the ith interval

at time tn:

Qn
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

q(x , tn)dx =
1

∆x

∫
Ci
q(x , tn)dx

where ∆x = xi+1/2 − xi−1/2. If q(x , t) is a smooth function, then
the integral agrees to O(∆x)2.



Finite volume method
Taking the time derivative of the integral of q in Ci yields

d

dt

∫
Ci
q(x , t)dx = f (q(xi−1/2, t))− f (q(xi+1/2, t)).

We aim to develop an explicit timestepping algorithm. Integrating
from time tn to time tn+1 yields∫

Ci

q(x , tn+1)dx −
∫
Ci

q(x , tn)dx =∫ tn+1

tn

f (q(xi−1/2, t))dt −
∫ tn+1

tn

f (q(xi+1/2, t))dt.

This gives an exact formula for updating the cell average of q:

1

∆x

∫
Ci

q(x , tn+1)dx =
1

∆x

∫
Ci

q(x , tn)dx

− 1

∆x

[∫ tn+1

tn

f (q(xi−1/2, t))dt −
∫ tn+1

tn

f (q(xi+1/2, t))dt

]
.



Finite volume method

In general, the time integrals on the right hand side cannot be
evaluated exactly. But it does suggest that we should study
numerical methods of the form

Qn+1
i = Qn

i − ∆t

∆x

(
F n
i+1/2 − F n

i−1/2

)
where F n

i−1/2 is some approximate to the average flux along
x = xi−1/2,

F n
i−1/2 ≈

1

∆t

∫ tn+1

tn

f (q(xi−1/2, t))dt.

If we can approximate this average flux based on the values of Qn,
then we will obtain a fully discrete method.



Numerical flux function

In a hyperbolic problem information propagates at a finite speed,
so it is reasonable to suppose that F n

i−1/2 only depends on Qn
i−1

and Qn
i . Then we could use

F n
i−1/2 = F(Qn

i−1,Q
n
i )

where F is a numerical flux function. Then the method becomes

Qn+1
i = Qn

i − ∆t

∆x

(
F(Qn

i ,Q
n
i+1)−F(Qn

i−1,Q
n
i )
)
.



Numerical conservation

This solution method is said to be in conservation form since it
mimics the conservation property of the mathematical equation.

Summing the values of ∆x Qn+1
i over any set of cells gives

∆x
J∑

i=I

Qn+1
i = ∆x

J∑
i=I

Qn
i −∆t

(
F n
J+1/2 − F n

I+1/2

)
and so the only change in this sum are due to fluxes in and out at
the extreme edges.



Example: diffusion

While the derivation above assumes that the flux f (q) only
depends on q, it can more generally depend on derivatives of q.
The diffusion equation has a flux

f (qx , t) = −β(x)qx .

Given two cell averages Qi−1 and Qi , a natural definition for the
numerical flux at the cell interface is

F(Qi−1,Qi ) = −βi−1/2

(
Qi − Qi−1

∆x

)
where βi−1/2 ≈ β(xi−1/2).



Example: diffusion

Using this numerical flux yields

Qn+1
i = Qn

i +
∆t

∆x2
(
βi+1/2(Q

n
i+1 − Qn

i )− βi−1/2(Q
n
i − Qn

i−1)
)
.

(1)
For β constant this becomes

Qn+1
i = Qn

i +
∆t

∆x2
β(Qn

i−1 − 2Qn
i + Qn

i−1),

which matches an explicit finite difference scheme.



Example: diffusion

It is worth comparing this numerical scheme to a finite-difference
formula. Expanding the x-derivative yields

qt = [β(x)qx ]x = βxqx + βqxx ,

which could be implemented using finite differences as

Qn+1
i = Qn

i +
βi+1 − βi−1

2∆x

Qn
i+1 − Qn

i−1

2∆x
+ βi

Qn
i+1 − 2Qn

i + Qn
i−1

∆x2
.

(2)
The example code 4a f volume/d solve.cc will solve this
diffusion equation using the two schemes in Eqs. 1 & 2. It uses
β(x) = 0.12 + 0.08 sin 2πx and

q(x , 0) =

{
1 if 1/4 < x < 3/4,

0 otherwise.



Method comparison
Showing the two approaches are near-identical . . .
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Numerical conservation
. . . but the finite volume method numerically conserves q
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Convergence

As for finite difference methods, we want to study numerical
methods that converge to the true solution, so that when ∆x → 0
and ∆t → 0 the true solution is recovered.

Convergence generally requires two conditions

▶ The method must be consistent with the differential equation,
so that it approximates it well locally.2

▶ The method must be stable in some appropriate sense, so that
small errors made at each timestep do not grow too fast at
later timesteps.

For more details, see Applied Math 205, Unit 3

2Truncation error tends to zero in the limit.

https://courses.seas.harvard.edu/courses/am205/slides/am205_unit3.pdf


Courant–Friedrichs–Lewy (CFL) condition

The CFL condition is a necessary condition for stability:

A numerical method can be convergent only if its nu-
merical domain of dependence contains the true domain
of dependence of the PDE, at least in the limit as ∆t and
∆x go to zero.



An unstable flux choice

Not all schemes that satisfy the CFL condition are stable. Consider

F n
i−1/2 = F(Qn

i−1,Q
n
i ) =

f (Qn
i−1) + f (Qn

i )

2
.

This gives the update rule

Qn+1
i = Qn

i − ∆t

2∆x

(
f (Qn

i+1 − f (Qn
i−1)

)
,

which is equivalent to a centered difference derivative of f , and is
generally unstable.



The Lax–Friedrichs method

The Lax–Friedrichs (LxF) method has the form

Qn+1
i =

Qn
i−1 + Qn

i+1

2
− ∆t

2∆x

(
f (Qn

i+1)− f (Qn
i−1)

)
.

This is similar to the unstable method, except that Qn+1
i is

replaced with (Qn
i−1 + Qn

i+1)/2. It can be written in conservative
form with the choice of numerical flux

F(Qn
i−1,Q

n
i ) =

f (Qn
i−1) + f (Qn

i )

2
− ∆x

2∆t

(
Qn

i − Qn
i−1

)
.



The Lax–Friedrichs method

The additional term looks like a diffusive flux. We could interpret
this method as solving

qt + f (q)x = βqxx

where β = ∆x2

2∆t . Note that if ∆x → 0 and ∆x/∆t is kept
constant, then the diffusive term will vanish in the limit, recovering
the original equation.

This term can be interpreted as numerical diffusion which is
enough to stablize the method.



Upwind method

Consider the constant-coefficient advection equation qt + ūqx = 0,
where ū > 0.

Consider Ci . Since the left edge of the cell only contains
characteristics originating from Ci−1, a possible choice of numerical
flux is

F n
i−1/2 = ūQn

i−1.

This leads to the first-order upwind method,

Qn+1
i = Qn

i − ū∆t

∆x
(Qn

i − Qn
i−1).

This exactly matches a first-order finite-difference scheme.



Multiple components

So far, we have considered conservation laws with a single scalar
field. However, many problems of interest involve vector fields with
multiple components.

Let us return to the one-dimensional pipe flow model. Rather than
consider the transport of small passive chemical tracer, let us
instead look at the density of fluid ρ(x , t) itself.

Liquids are usually well-approximated as incompressible, so ρ is
constant. Let us instead consider a gas, which can undergo
substantial compression.



Conservation of mass

Let the gas velocity be u(x , t). Then conservation of mass gives

ρt + (ρu)x = 0.

This sometimes called the continuity equation.

Since both u and ρ are time-evolving, we require another equation.



Conservation of momentum

The momentum in an interval [x1, x2] is∫ x2

x1

ρ(x , t)u(x , t)dx

Consider the flux of momentum at x1. There are two terms:

▶ Macroscopic convective flux: this is the momentum carried
along with the fluid, and has the form of ρu multiplied by the
fluid velocity u, giving ρu2.

▶ Microscopic momentum flux: the fluid transfers momentum
due to pressure p.

Hence the change in momentum in an interval is

d

dt

∫ x2

x1

ρ(x , t)u(x , t)dx = −
[
ρu2 + p

]x2
x1
.



Conservation of momentum

Assuming the fields are smooth, we arrive at the equation

(ρu)t + (ρu2 + p)x = 0,

which expresses conservation of momentum.

We now have two equations, but we have introduced pressure p as
an additional unknown. Under the assumption of constant entropy,
we can propose an equation of state that p is a function of ρ only.
A typical form is

p = P(ρ) = κ̃ργ

for two constants κ̃ and γ. For air, γ ≈ 1.4.



Coupled system

We therefore end up with the coupled nonlinear system

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P(ρ))x = 0.

This becomes
qt + f (q)x = 0

if q = (a, b) = (ρ, ρu) and

f (q) =

(
ρu

ρu2 + P(ρ)

)
=

(
b

b2/a+ P(a)

)
.

A general multicomponent system would have q : Rm × R → R
and a function f : Rm → Rm.



Quasilinear form

Assuming q is smooth, the conservation law can be rewritten as

qt + f ′(q)qx = 0,

which is referred to as the quasilinear form, since it resembles the
linear case

qt + Aqx = 0.

In general, one can always obtain a linear system from a nonlinear
equation by linearizing around some state.



Linearization of the gas dynamics example

Suppose we now look at small perturbations in velocity and density
in the gas dynamics example. We write

q(x , t) = q0 + q̃(x , t)

where q0 is a background state and q̃ is a small perturbation. The
linearized equation is

q̃t + f ′(q0)q̃x = 0

where

f ′(q) =

(
∂f 1/∂a ∂f 1/∂b
∂f 2/∂a ∂f 2/∂b

)
=

(
0 1

−b2/a2 + P ′(a) 2b/a

)
=

(
0 1

−u2 + P ′(ρ) 2u

)
.



Linear acoustics equations

After some algebraic manipulations, and expressing the system in
terms of p̃3 and ũ, we obtain the linear acoustics equations

p̃t + u0p̃x + K0ũx = 0,

ρ0ũt + p̃x + ρ0u0ũx = 0

where K0 = ρ0P
′(ρ0). Since we now study this in its own right, we

drop the tildes and write q = (p, u). In matrix form(
p
u

)
t

+

(
u0 K0

1/ρ0 u0

)(
p
u

)
x

= 0,

or alternatively qt + Aqx = 0 in matrix form.

3As for velocity and density, we define p = p0 + p̃ where p̃ is a small
perturbation.



Sound wave solutions

Consider searching for traveling wave solutions

q(x , t) = q̄(x − st)

for some velocity s. Substitutng into the general equation
qt + Aqx = 0 yields

Aq̄′(x − st) = sq̄′(x − st).

This is only possible if q̄ is an eigenvector of A and s is an
eigenvalue. For the given problem, we obtain eigenvalues4

λ1 = u0 − c0, λ2 = u0 + c0

where c0 =
√
K0/ρ0 =

√
P ′(ρ0). We therefore obtain left- and

right-moving waves of speed c0 with respect to the background
velocity u0.

4Note that λp is the pth eigenvalue. The p does not mean a power here.



Linear acoustics: general solution

Write the corresponding eigenvectors as

r1 =

(
−ρ0c0

1

)
, r2 =

(
ρ0c0
1

)
.

Then when u0 = 0, a general solution is

q(x , t) = w̄1(x + c0t)r
1 + w̄2(x − c0t)r

2

where w̄1 and w̄2 are scalar functions, which could be determined
from given initial and/or boundary conditions.



Multiple components: general approach

Consider the linear hyperbolic system

qt + Aqx = 0

where q(x , t) is an m-vector and A ∈ Rm×m. The problem is
hyperbolic if A is diagonalizable with real eigenvalues, so

A = RΛR−1.

Introduce new variables w = R−1q. Then

wt + Λwx = 0,

which is a set of m decoupled advection equations.



Mathematical solution to the Cauchy problem

For the Cauchy problem, we are given initial data

q(x , 0) = q̊(x) for x ∈ R.

We compute initial data

ẘ(x) = R−1q̊(x).

The pth component is

wp
t + λpwp

x = 0

with solution
wp(x , t) = ẘp(x − λpt),

and hence q(x , t) = Rw(x , t).



Superposition of waves

Alternatively

q(x , t) =
m∑

p=1

wp(x , t)rp.

Let ℓ1, . . . , ℓn be the left eigenvectors of the matrix A, i.e. the rows
of the matrix L = R−1. Then

q(x , t) =
m∑

p=1

[ℓpq̊(x − λpt)] rp.



Riemann problem

While classical solutions to differential equations can be smooth,
the previous formula can be used even if the initial data q̊ is
discontinuous.

The Riemann problem consists of special initial data with a single
jump discontinuity,

q̊(x) =

{
ql if x < 0,
qr if x > 0.

Write

ql =
m∑

p=1

wp
l r

p, qr =
m∑

p=1

wp
r r

p.

Then

wp(x , t) =

{
wp
l if x − λpt < 0,

wp
r if x − λpt > 0.



Riemann problem

If P(x , t) is the maximum value of p for which x − λpt > 0, then

q(x , t) =

P(x ,t)∑
p=1

wp
r r

p +
m∑

p=P(x ,t)+1

wp
l r

p.

Across the pth characteristic, the solution q jumps by

(wp
r − wp

l )r
p = αprp.



Godunov’s method for linear systems

The upwind method is a special case of the following
reconstruct–evolve–average approach, also referred to as the REA
algorithm:

1. Reconstruct a piecewise polynomial function q̃(x , tn) defined
for all x , from the cell averages Qn

i . In the simplest case this
is a piecewise constant function

q̃n(x , tn) = Qn
i for all x ∈ Ci .

2. Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x , tn+1) a time ∆t

3. Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x , tn+1)dx



Numerical flux function for Godunov’s method

Instead of finding Qn+1
i by directly computing the average of q̃ in

Ci , we can define a numerical flux function that is consistent with
it. Recall that

F n
i−1/2 ≈

1

∆t

∫ tn+1

tn

f (q(xi−1/2, t))dt.

We can compute this integral exactly when q is replaced by q̃n

from the Riemann problem at time tn.

The Riemann problem centered at xi−1/2 has a similarity solution
that is constant along rays (x − xi−1/2)/(t − tn) = constant.
Looking at the value along (x − xi−1/2)/(t − tn) = 0 gives the
value of q̃n(xi−1/2, t).



Numerical flux function for Godunov’s method

Denote this by Q∨
i−1/2 = q∨(Qn

i−1,Q
n
i ). Then we define the

numerical flux function as

F n
i−1/2 =

1

∆t

∫ tn+1

tn

f (q∨(Qn
i−1,Q

n
i ))dt = f (q∨(Qn

i−1,Q
n
i )).

Thus Godunov’s method can be expressed as

▶ Solve the Riemann problem at xi−1/2 to find q∨(Qn
i−1,Q

n
i ).

▶ Define the numerical flux F n
i−1/2 = F(Qn

i−1,Q
n
i ).

▶ Apply the flux-differencing formula.



Wave propagation form of Godunov’s method
It is useful to examine Godunov’s method applied to the linear
advection equation. Consider for m = 3 components with
λ1 < λ2 < 0 < λ3.

Consider a step from tn to tn+1 using a piecewise constant
reconstruction. The function q̃(x , tn+1) will usually have three
discontinuities in cell Ci :
▶ At xi−1/2 + λ3∆t, propagating from the left edge,

▶ At xi+1/2 − λ1∆t and xx+1/2 − λ2∆t, propagating from the
right edge.

From the Riemann problem solution, we know that

Qi − Qi−1 =
m∑

p=1

αp
i−1/2r

p =
m∑

p=1

Wp
i−1/2,

where Wp
i−1/2 = αp

i−1/2r
p is the change in solution due passing the

discontinuity with velocity λp.



Wave propagation form of Godunov’s method
We obtain the following picture

tn

tn+1

W1
i−1/2

W2
i−1/2

W3
i−1/2

W1
i+1/2

W2
i+1/2

W3
i+1/2

The effect on the cell average in Ci from wave 3 is

−λ3∆t

∆x
W3

i−1/2,

and considering all waves gives the Godunov update

Qn+1
i = Qn

i − λ3∆t

∆x
W3

i−1/2 −
λ1∆t

∆x
W1

i+1/2 −
λ2∆t

∆x
W2

i+1/2

= Qn
i − ∆t

∆x

(
λ3W3

i−1/2 + λ1W1
i+1/2 + λ2W2

i+1/2

)
.



Wave propagation form of Godunov’s method
To obtain a general update rule, it is useful to define

λ+ = max(λ, 0), λ− = min(λ, 0).

Then the general update formula is

Qn+1
i = Qn

i − ∆t

∆x

 m∑
p=1

(λp)+Wp
i−1/2 +

m∑
p=1

(λp)−Wp
i+1/2

 .

Making the definitions

A−∆Qi−1/2 =
m∑

p=1

(λp)−Wp
i−1/2,

A+∆Qi−1/2 =
m∑

p=1

(λp)+Wp
i−1/2.

allows the update formula to be simplified to

Qn+1
i = Qn

i − ∆t

∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
.



Wave propagation form of Godunov’s method
Furthermore, if the matrices

Λ+ =


(λ1)+

(λ2)+

. . .

(λm)+

 , Λ− =


(λ1)−

(λ2)−

. . .

(λm)−

 .

are defined, then A can be separated into left-moving and
right-moving parts,

A+ = RΛ+R−1, A− = RΛ−R−1.

Note that if ∆Qi−1/2 = Qi − Qi−1, then

A+∆Qi−1/2 = RΛ+R−1(Qi − Qi−1) = RΛ+αi−1/2

=
m∑

p=1

(λp)+αp
i−1/2r

p = A+∆Qi−1/2

and therefore the matrix product matches the definition of
A+∆Qi−1/2 that was previously introduced.



Roe’s method
Roe’s method is based on

|Λ| =


|λ1|

|λ2|
. . .

|λm|


and defining |A| = R|Λ|R−1. Then the update law becomes

Qn+1
i = Qn

i − ∆t

2∆x
A
(
Qn

i+1 − Qn
i−1

)
− ∆t

2∆x

m∑
p=1

(
|λp|Wp

i+1/2 − |λp|Wp
i−1/2

)
This separates the update into an unstable centered-difference
term, plus a regularizing diffusive term. For linear advection Roe’s
method is equivalent to the wave propagation form of Godunov’s
method. However, it is a useful basis for extending to some
nonlinear problems.



Numerical test of Godunov’s method

Consider the scalar advection equation qt = ūqx . Godunov’s
method reduces to

Qn+1
i = Qn

i +
ū∆x

∆t

(
Qn

i−1 − Qn
i

)
,

which is equivalent a first-order one-sided finite-difference method.

To test this method and others that follow, we use the periodic
interval [0, 1) with initial condition

q(x , 0) =

{
1 if 1/10 < x < 3/5,

0 otherwise.

We use 256 gridpoints, ū = 1, and ∆t = ∆x
5ū .



First-order Godunov method
Showing a substantial blurring of the discontinuities
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Lax–Wendroff method

We now consider higher-order methods. Consider the equation
qt + Aqx = 0 where q is a vector with m components, and A is a
matrix. The Lax–Wendroff method is based on the second-order
Taylor series expansion

q(x , tn+1) = q(x , tn) + ∆t qt(x , tn) +
(∆t)2

2
qtt(x , tn) + . . . .

From the equation,

qtt = −Aqxt = A2qxx

and hence

q(x , tn+1) = q(x , tn) + ∆t Aqx(x , tn) +
(∆t)2

2
A2qxx(x , tn) + . . . .

(3)



Lax–Wendroff method

Converting the x derivatives in Eq. 3 into centered finite
differences yields

Qn+1
i = Qn

i −
∆t

2∆x
A(Qn

i+1−Qn
i−1)+

1

2

(
∆t

∆x

)2

A2(Qn
i−1−2Qn

i +Qn
i+1).

This can be rewritten in conservative form with fluxes

F n
i−1/2 =

1

2
A(Qn

i−1 + Qn
i )−

∆t

2∆x
A2(Qn

i − Qn
i−1).



Numerical test of Lax–Wendroff
Discontinuities are sharper, but oscillations are visible
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Beam–Warming method
Suppose that all the eigenvalues of A are positive. Then we could
use one-sided derivatives instead:

qx(xi , tn) =
1

2∆x
[3q(xi , tn)− 4q(xi−1, tn) + q(xi−2, tn)] + O(∆x2),

qxx(xi , tn) =
1

∆x2
[q(xi , tn)− 2q(xi−1, tn) + q(xi−2, tn)] + O(∆x).

This yields the numerical method

Qn+1
i = Qn

i − ∆t

2∆x
A(3Qn

i − 4Qn
i−1 + Qn

i−2)

+
1

2

(
∆t

∆x

)2

A2(Qn
i − 2Qn

i−1 + Qn
i−2),

with corresponding fluxes

F n
i−1/2 = AQn

i−1 +
1

2
A

(
1− ∆t

∆x
A

)
(Qn

i−1 − Qn
i−2).



Numerical test of Beam–Warming
Oscillations are also visible, but are upwind of the discontinuities
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High resolution methods

As seen in the examples, the Lax–Wendroff and Beam–Warming
methods do better when applied to smooth initial data, but do
worse when applied to discontinuous data.

For discontinuous data, the simple upwind method does better.

We want to devise a high resolution method that combines the
best of both worlds. It should achieve second-order accuracy where
possible, but not insist on it in places where the solution is not
behaving smoothly.



High resolution methods

To begin, let us rewrite the Lax–Wendroff flux as

F n
i−1/2 = (A−Qn

i + A+Qn
i−1) +

1

2
|A|

(
I − ∆t

∆x
|A|

)
(Qn

i − Qn
i−1)

This has the form of an upwind flux, plus a correction term.

The correction looks like a diffusive flux but the coefficient is
positive when the CFL condition is satisfied. Hence this term is
antidiffusive and helps correct the overly diffusive upwind
approximation.

The basic idea is to apply some sort of limiter that changes the
magnitude of correction actually used, depending on how the
solution behaves.



Limiters

The solution to the hyperbolic system consists of a superposition
of waves, some of which may be smooth and some of which may
be discontinuous. Ideally we would like apply the limiters to each
component separately.

We return to the scalar case. Once we have developed techniques
for the scalar case, they can be extended to the multicomponent
case.



REA algorithm for a piecewise linear construction

To achieve better than first-order accuracy with the REA
algorithm, we need to use a better reconstruction than piecewise
constant. One option is to use a piecewise linear construction,

q̃n(x , tn) = Qn
i + σn

i (x − xi ),

where xi = (xi−1/2 + xi+1/2)/2 = xi−1/2 +∆x/2. Note,
importantly, that the average of q̃ is Qn

i . We still need to specify
the slope σn

i .

For the scalar advection equation qt + ūqx with ū > 0, the REA
algorithm yields

Qn+1
i = Qn

i − ū∆t

∆x
(Qn

i − Qn
i−1)−

1

2

ū∆t

∆x
(∆x − ū∆t)(σn

i − σn
i−1).

This is only valid when the CFL condition is satisfied: ū∆t ≤ ∆x .



Choice of slopes

There are several obvious choices for the slope calculation, some of
which yield methods that we have seen before:

▶ Centered slope: σn
i = (Qn

i+1 − Qn
i−1)/(2∆x) (Fromm)

▶ Upwind slope: σn
i = (Qn

i − Qn
i−1)/∆x (Beam–Warming)

▶ Downwind slope: σn
i = (Qn

i+1 − Qn
i )/∆x (Lax–Wendroff)

Fromm’s method results in the stencil

Qn+1
i = Qn

i =
ū∆t

4∆x

(
Qn

i+1 + 3Qn
i − 5Qn

i−1 + Qn
i−2

)
+

ū2∆t2

4∆x2
(
Qn

i+1 − Qn
i − Qn

i−1 + Qn
i−2

)
.



Oscillations
While the linear reconstruction achieves higher accuracy, it can
introduce spurious oscillations, as seen the in the Lax–Wendroff
and Beam–Warming examples. To see why, consider a downwind
slope reconstruction for discontinuous data:

Time tn Time tn+1

Here ∆t = ∆x/2ū. Purple lines show q̃. Yellow lines show the
average of q̃ at tn+1.

The method causes some values of Qn+1 to overshoot their
original values, resulting in the oscillations. We would like to avoid
this by limiting the slope.



Total variation

To see how much we should limit the slope, it is useful to define
total variation TV. For a discretized function

TV(Q) =
∑
i

|Qi − Qi−1|.

For a function

TV(Q) = lim
ϵ→0

sup
1

ϵ

∫ ∞

−∞
|q(x)− q(x − ϵ)|dx ,

which reduces to

TV(Q) =

∫ ∞

−∞
|q′(x)|dx

when q is differentiable.



TVD methods

A method is called total variation diminishing (TVD) if for any set
of data Qn, the values Qn+1 satisfy

TV(Qn+1) ≤ TV(Qn).

One method to devise a TVD numerical scheme is to find a
reconstruction such that

TV(q̃n(·, tn)) ≤ TV(Qn).

Then the method will be TVD because the evolving and averaging
steps cannot possibly increase the total variation.



Slope-limiter methods

Several procedures for constructing slopes result in TVD methods.
In the minmod method, the slopes are given by

σn
i = minmod

(
Qn

i − Qn
i−1

∆x
,
Qn

i+1 − Qn
i

∆x

)
where

minmod(a, b) =


a if |a| < |b| and ab > 0,

b if |b| < |a| and ab > 0,

0 if ab ≤ 0.



Numerical test of minmod limiter
Oscillations are removed and discontinuities remain sharper
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Superbee limiter

In the superbee method

σn
i = maxmod(σ

(1)
i , σ

(2)
i )

where

σ
(1)
i = minmod

((
Qn

i+1 − Qn
i

∆x

)
, 2

(
Qn

i − Qn
i−1

∆x

))
,

σ
(2)
i = minmod

((
2
Qn

i+1 − Qn
i

∆x

)
,

(
Qn

i − Qn
i−1

∆x

))
.



Numerical test of superbee limiter
The discontinuities remain even sharper
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Essentially non-oscillatory (ENO) method

Another useful approach for maintaining sharp discontinuities is
the essentially non-oscillatory (ENO) method. Here we consider
one example of an ENO scheme. Define the second derivative via a
centered-difference formula,

[qxx ]i =
Qi+1 − 2Qi + Qi−1

∆x2
.

Now consider solving the standard equation qt + ūqx = 0. The
spatial derivative is discretized as

[qx ]i =

{
Qi+1−Qi−1

2∆x if |[qxx ]i | ≤ |[qxx ]i−1|,
3Qi−4Qi−1+Qi−2

2∆x if |[qxx ]i | > |[qxx ]i−1|,

Thus the method switches between a centered difference and a
one-sided derivative depending on which set of three gridpoints is
more colinear.



Essentially non-oscillatory (ENO) method

From here, the update formula is given by

Qn+1
i = Qn

i −∆t ū[qx ]
n
i

where the spatial derivative is computed using the ENO stencil.
The ENO method handles discontinuities well.

Question: is it a conservative scheme?



Numerical test of ENO2 method
Has a similar sharpness to the superbee method
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Nonlinear equations: motivation

Many hyperbolic equations that we encounter have nonlinearities.
For example, consider the Navier–Stokes equations for fluid flow,

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u

where u is the fluid velocity, p is the pressure, ρ is the fluid density
and ν is the kinematic viscosity.

The blue term represents convection and has a nonlinearity.



Traffic equation

To study nonlinear equations, we consider a simple hyperbolic PDE
for traffic flow.

This model captures many of the important features of nonlinear
hyperbolic equations, and is physically interpretable.

It captures many features of real traffic, such as how the density of
cars on a highway can sometimes fluctuate by a large amount for
no obvious reasons.



Traffic circle experiment
From initially even density, density shockwaves form

https://www.youtube.com/watch?v=Suugn-p5C1M

https://www.youtube.com/watch?v=Suugn-p5C1M


Traffic circle model
A computer simulation that predicts the same behavior

https://www.youtube.com/watch?v=Q78Kb4uLAdA

https://www.youtube.com/watch?v=Q78Kb4uLAdA


Off-topic but cool: the Magic Roundabout in Swindon, UK
Voted one of the “10 Scariest Junctions in the United Kingdom”5

https://www.youtube.com/watch?v=Kafx_GGHqVg

5http://news.bbc.co.uk/2/hi/uk_news/england/london/7140892.stm

https://www.youtube.com/watch?v=Kafx_GGHqVg
http://news.bbc.co.uk/2/hi/uk_news/england/london/7140892.stm


A model for traffic flow

Let q(x , t) be the density of cars on a one-dimensional highway.
Assume that the cars are moving in the positive x direction only.

Let the speed of cars be u(x , t). The car flux uq satisfies the
conservation law

qt + (uq)x = 0.

We assume that the speed of the cars is a function U(q) of the
density only, so that

qt + (qU(q))x = 0.

Equivalently
qt + (f (q))x = 0 (4)

for a flux f (q).

Question: What is a good model for U(q)?



Car speed and flux

If there is no traffic, then a car can achieve a maximum speed
umax. As the traffic density increases, we expect that the car’s
speed will go down. A simple model proposes that the car’s speed
will decrease linearly to zero at some maximum density. By
rescaling this maximum density to one, we obtain

U(q) = umax(1− q)

and thus the flux is

f (q) = umaxq(1− q).

Note that f ′′(q) < 0 for 0 ≤ q ≤ 1 and so f is a concave function.
Having convex or concave functions f will be a useful property
later on. In either case, it is referred to as a convex flux.



Discrete car trajectories

We can obtain a feel for the model by simulating a set of discrete
car trajectories Xk(t) on a periodic interval. Assume that the
speed of the kth car, is based on a local estimate of density from
the car in front, so that

X ′
k(t) = U

(
1

Xk+1(t)− Xk(t)

)
An example code cm solve.cc is provided that simulates this
model using sixty cars on a periodic interval [0, 90), with an
initially non-uniform density.



Car trajectory simulation
Showing a density wave moving backward while cars move forward.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

t

x



A general solution method

The traffic equation can be rewritten as

qt + f ′(q)qx = 0.

Assume q is smooth. Consider the characteristic curve X (t) that
satisfies the ODE

X ′(t) = f ′(q(X (t), t)). (5)

Then
d

dt
q(X (t), t) = X ′(t)qx + qt = 0

and so the solution is constant along characteristics. Consequently
Eq. (5) tells us that X ′(t) is constant, and so the characteristic is
a straight line, so long as the solution remains smooth.



Characteristic speed

For the traffic equation the characteristic speed is

f ′(q) = umax(1− 2q),

which is different from the speed of an individual car,
U(q) = umax(1− q). This is consistent with the discrete car
example above.

In particular f ′(q) can be negative, corresponding to
backward-moving characteristics. Individual cars always move
forward.



General solution procedure: smooth case

Suppose we are given some initial data q(x , 0) = q̊(x). Then the
solution will be given by

q(x , t) = q̊(ξ)

where ξ solves the equation

x = ξ + f ′(q̊(ξ))t

There will be a unique solution provided that the characteristics do
not cross.



Comparison: Burgers’ equation

At this point, it is useful to introduce a different nonlinear
equation, the inviscid Burgers equation,

ut +

(
u2

2

)
x

= 0. (6)

Burgers studied6 the generalization of this known as the viscous
Burgers equation,

ut +

(
u2

2

)
x

= ϵuxx . (7)

This was originally studied as a reduced equation containing the
nonlinear hyperbolic term in gas dynamics. The ϵuxx term
represents viscosity.

Expanding Eq. (6) gives the simple form ut + uux = 0.

6J. M. Burgers, A mathematical model illustrating the theory of turbulence,
Adv. Appl. Mech. 1, 171–179 (1948). doi:10.1016/S0065-2156(08)70100-5

https://doi.org/10.1016/S0065-2156(08)70100-5


Rarefaction waves

Returning to the traffic equation, let us consider the solution in
region where q decreases, so qx(x , 0) < 0.

t q(x,t)

xx

t = 0

t = t0

Characteristics

The characteristics do not cross (left image). Since the solution is
constant along characteristics, we can use this to sketch the profile
at a later time t0 (right image).

The profile will smooth out—this is known as a rarefaction wave.



Compression waves

If we apply the same approach when qx(x , 0) > 0, we encounter a
problem: the characteristics cross and the solution at a later time
t0 becomes multi-valued.

t q(x,t)

xx

t = 0

t = t0

Characteristics

This is called a compression wave and we want to resolve what
happens physically in this case.



Vanishing viscosity approach

One method to gain insight into a compression wave is to add a
small second derivative term (analogous to the viscous term in the
Burgers equation) to obtain

qt + f (q)x = ϵqxx .

The ϵqxx term heavily penalizes sharp discontinuites. It can also be
shown that by including this term, the solution will remain smooth
for all time. Examining the limit of vanishing viscosity where ϵ → 0
should give us insight into the original equation.



Vanishing viscosity numerical example

The test code vv solve.cc shows an example of simulating the
traffic equation using a simple second-order finite-difference
method, using the initial condition

q(x , 0) = e−2(1+cos 2πx).

on the periodic interval [0, 1). It uses 1500 gridpoints in space, and
simulates with three different values of the ϵ parameter.



Vanishing viscosity simulation (ϵ = 10−2)
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Vanishing viscosity simulation (ϵ = 10−2.5)
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Vanishing viscosity simulation (ϵ = 10−3)
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Shocks

As ϵ → 0, the solution develops an increasingly sharper jump in
q(x , t). In the limit, we could therefore consider replacing this with
a moving discontinuity with velocity s(t), known as a shock.

This is physically reasonable—it shows that nonlinear conservation
laws of the form qt + f (q)x = 0 can naturally develop features on
an infinitesimaly small length scale. This can model real-world
phenomena such as shock waves through a gas.

In reality it is likely that a physical system will have some
dissipation on a small enough length scale, which regularizes the
discontinuity. For example, this could correspond to a very small
but finite ϵ. However, since we may not wish to model such small
scales, it is useful to study equations like qt + f (q)x = 0 and treat
the shock as an independent physical object.



Deriving the shock velocity

Consider a shock propagating with velocity s over a small time
interval ∆t. Let ql and qr be the solutions on either side of the
shock. This results in the following picture:

Shock

x1 x1 +∆x

t1

t1 +∆t

ql

qr

We aim to derive s by returning to the integral form of the
conservation law. The integral form does not have any difficulty
with the discontuity.



Deriving the shock velocity

Integrating over the time interval (t1, t1 +∆t) and space interval
(x1, x1 +∆x) yields∫ x1+∆x

x1

q(x , t1 +∆t)dx −
∫ x1+∆x

x1

q(x , t1)dx

=

∫ t1+∆t

t1

f (q(x1, t))dt −
∫ t1+∆t

t1

f (q(x1 +∆x , t))dt

Each integral is done over a region where q is constant, and hence

∆x qr −∆x ql = ∆tf (ql)−∆tf (qr ) + O(∆t2).

Since ∆x = −s∆t it follows that s(qr − ql) = f (qr )− f (ql) and
hence

s =
f (qr )− f (ql)

qr − ql
.

This is the Rankine–Hugoniot jump condition.



Deriving the shock velocity

For the traffic flow flux of f (q) = umaxq(1− q), the shock speed is

s =
umax (qr (1− qr )− ql(1− ql))

qr − ql

=
umax(qr − ql)

qr − ql
−

umax(q
2
r − q2l )

qr − ql
= umax(1− (ql + qr )).

By using f ′(q) = umax(1− 2q), we see that

s =
f ′(ql) + f ′(qr )

2

so that the shock moves at the average of the characteristic
velocities on either side. This is true in general for any quadratic
flux function (e.g. Burgers).



Rarefaction similarity solution

Now that we are willing to consider non-smooth solutions, we can
examine the Riemann problem corresponding to a rarefaction wave,

q(x , 0) =

{
ql if x < 0,

qr if x > 0,
(8)

where ql > qr . This problem has no characteristic length scales.
The only dimensionless group is x

umaxt
. We therefore seek for a

similarity solution7

q(x , t) = q̃(x/t)

7The factor of umax is absorbed into q̃.



Rarefaction similarity solution

Then

qt(x , t) = − x

t2
q̃′(x/t), f (q)x =

1

t
f ′(q̃(x/t))q̃′(x , t).

Substituting into qt + f ′(q)qx = 0 yields

f ′(q̃(x/t))q̃′(x/t) =
x

t
q̃′(x/t)

and hence either
q̃′(x/t) = 0

or
f ′(q̃(x/t)) = x/t. (9)



Rarefaction similarity solution

We expect a rarefaction fan. The left and right edges of the fan
move at f ′(ql) and f ′(qr ) respectively. For f

′(ql) < x/t < f ′(qr ),
q̃ varies and hence Eq. (9) holds, so

umax(1− 2q̃(x/t)) = x/t.

Rearranging gives

q̃(x/t) =
1

2

(
1− x

umaxt

)
and hence the complete solution is

q̃(x/t) =


ql if x/t ≤ f ′(ql),

1/2(1− x
umaxt

) if f ′(ql) < x/t < f ′(qr ),

qr if x/t ≥ f ′(qr ).

(10)

This is called a rarefaction fan.



Weak solutions

We have now seen several examples—shocks and rarefaction
fans—that have a non-differentiable solution and therefore do not
satisfy the PDE qt + f (q)x = 0. We would like to more precisely
define a class of solutions to the conservation law.

When deriving the Rankine–Hugoniot condition for a shock, we
made use of the integral form of the conservation law. This had no
problem with the discontinuity. Hence we try to use integration
here.



Weak solution
Suppose we start with a smooth solution that satisfies
qt + f (q)x = 0. Let ϕ ∈ C 1

0 be a differentiable function with
compact support (defined as in the finite-element section). Then∫ ∞

0
dt

∫ ∞

−∞
dx(qt + f (q)x)ϕ = 0.

Integrating by parts yields∫ ∞

0
dt

∫ ∞

−∞
dx(qϕt + f (q)ϕx) = −

∫ ∞

−∞
q(x , 0)ϕ(x , 0)dx , (11)

where due to the compact support of ϕ we only pick up a single
boundary term.

Eq. (11) is valid even if q is discontinuous. Hence we make the
following definition: the function q(x , t) is a weak solution of the
conservation law given initial data q(x , 0) if Eq. (11) holds for all
ϕ ∈ C 1

0 .



Entropy condition

Our definition a weak solution encompasses our previous solutions
involving shocks and rarefaction fans.

However, things are a little more complicated. Let us revisit the
rarefaction fan Riemann problem8 with initial condition ql for
x < 0 and qr for x > 0 where ql > qr . One can show that

q(x , 0) =

{
ql if x/t < s,

qr if x/t > s,
(12)

is also a weak solution, where s = (f (qr )− f (ql))/(qr − ql).

We therefore have two weak solutions for the same initial data!
Only one should be physical.

8Given by Eq. (8)



Entropy condition

Let us consider the previous solution (Eq. (12)) for ql = 1/2 and
qr = 0. Then s = 0 and we obtain the following picture:

t

x

Characteristics Shock Unphysical 
characteristics

Characteristics

We have a shock at x = 0, but unlike the previous cases,
characteristics emanate from it. This is unphysical, since it
requires information be generated by the shock.



Entropy condition

To resolve this, we impose constraints on the weak solution,
referred to as entropy conditions or admissibility conditions, which
allow us to select the single physical solution.

There are several examples of entropy conditions, but here we
consider one due to Lax.

For a convex scalar conservation law, a discontinuity propagating
with velocity s satisfies the Lax entropy condition if

f ′(ql) > s > f ′(qr ).

This condition therefore requires that characteristics do not
emanate from shocks.



Numerical solution of nonlinear equations

The reconstruct–evolve–average (REA) method that we considered
previously can also be used for nonlinear problems. Here we
consider the simplest case of a piecewise constant reconstruction,
where we must consider Riemann problems at each finite interval
boundary.

We have already solved the Riemann problem for the traffic
equation. There are two cases:

▶ If ql > qr , we obtain a rarefaction fan, with a complete
solution given by Eq. (10).

▶ If ql < qr , we obtain a shock propagating with velocity
s = (f (qr )− f (ql))/(qr − ql).

Therefore, to apply the REA method to the traffic equation, we
must compute numerical fluxes by switching between the two cases
depending on the values of ql and qr .



Numerical example

The program t solve.cc implements the REA method for the
traffic equation.9 It uses the periodic interval [0, 1) with initial
condition

q(x , 0) =

{
4/5 if 1/4 < x < 3/4,

0 otherwise.

This has a shock with initial velocity

s =
f ′(4/5) + f ′(0)

2
= 1− 4/5 = 1/5

that starts at x = 1/4. It also has a rarefaction fan at x = 3/4.

9We use umax = 1.



REA method applied to the traffic equation
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Notes on the traffic simulation

The graph shows that the simulation is able to model both shocks
and rarefactions. Since it is based on the finite-volume approach
the numerical method is conservative.

Note that there is a small discrepancy in the rarefaction fan at
q ≈ 0.5. This is a well-known feature and can be removed with
more accurate methods—see Chapter 12 of the textbook10 for
more details.

10R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems.
Cambridge, 2002.


