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Finite element methods

▶ The finite element method
is a framework for
discretizing and solving
PDEs, especially elliptic
PDEs

▶ Solution is represented as a
sum of simple functions
(elements)

▶ Widely used in science and
industry, such as for solid
mechanics, and thermal
analysis.

Wheel rim analysis in COMSOL

Multiphysics®. The rim is covered in

a triangular mesh, and simple

functions are specified on these

triangles, from which the solution is

constructed.



Comparison with finite-difference methods

Finite element methods

▶ make it easier to deal with complex boundary conditions,

▶ provide more mathematical guarantees about convergence.

Finite difference methods

▶ are simpler to implement, and sometimes more efficient for
the same level of accuracy,

▶ are easier to apply to a wider range of equations
(e.g. hyperbolic equations).

These are just broad generalizations though—both methods have a
large body of literature, with many extensions.

Frequently, the two approaches lead to similar1 numerical
implementations.

1And in some cases identical.



Book references

We will make use of the following books:

▶ Claes Johnson. Numerical Solution of Partial Differential
Equations by the Finite Element Method. Dover, 2009.2

▶ Thomas J. R. Hughes. The Finite Element Method: Linear
Static and Dynamic Finite Element Analysis. Dover, 2000.3

▶ Dietrich Braess, Finite elements: Theory, fast solvers, and
applications in solid mechanics, Cambridge University Press,
2007.4

2A good general introduction.
3Comprehensive, with a particular emphasis on solid mechanics.
4A more technically rigorous treatment of the subject.



Overview

The main idea is to formulate an elliptic PDE as a variational
minimization problem over a suitably-defined function space.

To obtain a numerical method, we approximate this function space
by a finite-dimensional subspace, the finite-element space.

There are some subtleties to choosing the correct function space to
use. We begin by considering a specific example that motivates the
need for a careful treatment.



The need for a careful treatment

Consider a domain Ω that is an open subset of Rn. We can also
define the closure5 Ω̄ and the boundary ∂Ω.6

The most natural function spaces to use are C k(Ω), the space of
all functions on Ω that are differentiable k times.

However, even for some simple cases, these spaces can pose
theoretical difficulties, such as a loss of regularity.

5This is found by adding all limits of sequences in Ω to it. For example if
Ω = (0, 1), the sequences xn = 1/n and yn = 1− 1/n converge to 0 and 1,
respectively. Thus Ω̄ = [0, 1].

6The boundary is technically defined as ∂Ω = Ω̄ \ Ω. Thus ∂Ω = {0, 1} in
this example.



The need for a careful treatment

Consider the domain with reentrant corner

Ω = {(x , y) ∈ R2 : x2 + y2 < 1 and (x < 0 or y > 0)}.

Identify z = x + iy ∈ C with (x , y). The function w(z) = z2/3 is
analytic in Ω, and so its imaginary part u(z) = Imw(z) is a
harmonic function that satisfies

∇2u = 0

on Ω with boundary conditions

u(e iφ) = sin
2φ

3
for 0 ≤ φ ≤ 3π

2
,

u = 0 elsewhere on ∂Ω.

Note that w ′(z) = 2
3z

−1/3 and thus even the first derivatives of u
are not bounded as z → 0.



The example function u(x , y)
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Note how the gradient of u increases without limit near
(x , y) = (0, 0). This function is not in C 1(Ω̄), the space of
differentiable functions on Ω̄.



The need for a careful treatment

The example described on the previous slides is physically
reasonable—u(x , y) could represent the shape that a soap film
would take when bounded by a wire in the shape of ∂Ω.

As mentioned, the finite-element method is based on formulating
minimization problems over a suitably chosen function space. Even
though C 1(Ω̄) appears a natural choice, this example highlights
the theoretical difficulties of using it.

We now move onto a model problem, but we bear this issue in
mind going forward.



One-dimensional model problem

We now consider a model problem, (D),

−u′′(x) = f (x) for 0 < x < 1,

u(0) = u(1) = 0,

where f is a continuous function. Integrating this equation twice
shows that there is a unique solution.

This problem can be used to model several different physical
scenarios.



Physical analogs
Scenario 1: Consider an elastic cord under tension between 0 to 1.
Let u(x) represent a small downward displacement, and f (x)
represent an applied downward force density.

(x)

u(x)

f

Scenario 2: Let u(x) be the temperature in a bar whose ends are
kept at a fixed temperature of zero.7 Let f (x) be an applied heat
source along the bar.

(x)

u(x)

f
7u could be expressed as the temperature relative to some baseline.



Alternative formulations

We now consider two alternative formulations of the model
problem. First, introduce an inner product on two functions v and
w as

(v ,w) =

∫ 1

0
v(x)w(x)dx .

Introduce the function space

V =

{
v ∈ C ([0, 1]) :

v ′ is piecewise continuous and bounded
on [0, 1] and v(0) = v(1) = 0

}
and the linear functional

F (v) =
1

2
(v ′, v ′)− (f , v).



Alternative formulations

Formulating the problem as a minimization yields

(M) Find u ∈ V such that F (u) ≤ F (v) for all v ∈ V .

Formulating the problem in variational form yields

(V) Find u ∈ V such that (u′, v ′) = (f , v) for all v ∈ V .



Comparing problem (V) to problem (M)

Suppose first that u is a solution to (V). Choose v ∈ V and set
w = v − u. Then

F (v) = F (u + w)

=
1

2
(u′ + w ′, u′ + w ′)− (f , u + w)

=
1

2
(u′, u′) + (u′,w ′) +

1

2
(w ′,w ′)− (f , u)− (f ,w).

Since (u′,w ′) = (f ,w), this simplifies to

F (v) = F (u) +
1

2
(w ′,w ′) ≥ F (u)

and hence u is a solution to (M).



Comparing problem (M) to problem (V)

Let u be a solution to (M). Let ϵ be a real number, and choose
v ∈ V . Then the function

g(ϵ) = F (u + ϵv)

is a differentiable function with a minimum at ϵ = 0. Writing out
g yields

g(ϵ) =
1

2
(u′, u′) + ϵ(u′, v ′) +

ϵ2

2
(v ′, v ′)− (f , u)− ϵ(f , v)

and hence
0 = g ′(0) = (u′, v ′)− (f , v).

Since this is true for any v ∈ V , it follows that u is a solution to
(V).



Comparing problem (D) to problem (V)

Now suppose that u is a solution to (D). For v ∈ V ,

−u′′v = fv

and integrating both sides from zero to one yields

−
∫ 1

0
u′′v dx =

∫ 1

0
fv dx .

Integrating by parts yields∫ 1

0
u′v ′ dx =

∫ 1

0
fv dx ,

where the additional term vanishes due to the boundary conditions.
Hence

(u′, v ′) = (f , v)

and u is a solution to (V).



Uniqueness of the solution to (V)

Let u1 and u2 be two solutions to (V), so that

(u′1, v
′) = (f , v), (u′2, v

′) = (f , v)

for all v ∈ V . Hence (u′1 − u′2, v
′) = 0. Setting v = u1 − u2 yields

0 = (u′1 − u′2, u
′
1 − u′2) =

∫ 1

0
(u′1 − u′2)

2dx .

Since u′1 and u′2 are piecewise continuous, it follows that
u′1 − u′2 = 0 and hence u1 − u2 is constant. Using the boundary
conditions shows that u1 = u2. Therefore (V) has a unique
solution.



Summary

We have now shown that

(D) =⇒ (V) ⇐⇒ (M).

Does (V) =⇒ (D)? No, since functions in V are only required to
have a piecewise continuous first derivative. They may not have a
second derivative, which is required in order to satisfy (D).

However, if we place additional restrictions on a solution u to (V),
then we can obtain a solution to (D).



Comparing problem (V) to problem (D)

Suppose that u ∈ V satisfies (V), and in addition u′′ exists and is
continuous. Then ∫ 1

0
u′v ′ dx =

∫ 1

0
fv dx

for all v ∈ V and integrating by parts yields

−
∫ 1

0
u′′v dx =

∫ 1

0
fv dx .

Therefore ∫ 1

0
(u′′ + f )v dx = 0

and since this is true for all v ∈ V it follows that −u′′ = f . By the
construction of V , u satisfies the boundary conditions
u(0) = u(1) = 0, and hence u is a solution to (D).



Finite-element implementation for the model problem

We now introduce a finite-dimensional subspace Vh of V on which
to formulate the finite-element method on the model problem.

Introduce grid points 0 = x0 < x1 < x2 < . . . < xM < xM+1 = 1.
Define subintervals Ij = (xj−1, xj) and grid spacings hj = xj − xj−1

for j = 1, . . . ,M + 1 and set h = maxj hj . Let Vh be the set of
functions v such that v is linear on each subinterval, v is
continuous on [0, 1], and v(0) = v(1) = 0. Hence Vh ⊂ V .

x
0 1xj xj+1xj   1–

v ∈ Vh



Finite-element implementation for the model problem

x
0 1xj xj+1xj   1–

φj(x)

Introduce basis functions φj ∈ Vh for j = 1, . . . ,M that satisfy

φj(xi ) = δij

where δij is the Kronecker delta. Each basis function is only
non-zero over a small part of the interval.

Any function v ∈ Vh can be represented as a linear combination of
these basis functions as

v(x) =
M∑
i=1

ηiφi (x).



Finite-element implementation for the model problem

The finite-dimensional equivalent of the minimization problem is
then

(Mh) Find u ∈ Vh such that F (u) ≤ F (v) for all v ∈ Vh.

The finite-dimensional equivalent of the variational problem is

(Vh) Find u ∈ Vh such that (u
′, v ′) = (f , v) for all v ∈ Vh.

(Vh) is referred to as Galerkin’s method and (Mh) is referred to as
Ritz’ method.



Galerkin’s method

Let uh be a solution to (Vh). Then for any basis function φj ,

(u′h, φ
′
j) = (f , φj).

Write the solution as

uh(x) =
M∑
i=1

ξiφi (x).

Then
M∑
i=1

ξi (φ
′
i , φ

′
j) = (f , ϕj),

which is a linear system, Aξ = b, for a vector of unknowns ξ.



Galerkin’s method: matrix formulation

Writing out the matrix problem gives

A =


a11 a12 . . . a1M
a21 a22 . . . a2M
...

...
. . .

...
aM1 aM2 . . . aMM

, ξ =


ξ1
ξ2
...
ξM

, b =


b1
b2
...

bM

,
where

aij = (φ′
i , φ

′
j), bi = (f , φi ).

A is called the stiffness matrix and b is the load vector. This
terminology dates from early work on finite-element methods for
structural mechanics.



Galerkin’s method for the model problem

We now evaluate A for the model problem. Since the basis
functions are localized, most terms in A are zero: aij = 0 if
|i − j | > 1.

For j = 1, 2, . . . ,M,

ajj = (φ′
j , φ

′
j) =

∫ xj

xj−1

1

h2j
dx +

∫ xj+1

xj

1

h2j+1

dx =
1

hj
+

1

hj+1

and for j = 2, . . . ,M,

aj ,j−1 = (φ′
j , φ

′
j−1) = −

∫ xj

xj−1

1

h2j
dx = − 1

hj
.

Furthermore aj ,j−1 = aj−1,j and the stiffness matrix is symmetric.



Properties of the stiffness matrix A

Consider an arbitrary vector η = (η1, . . . , ηM) and associated
function

v =
M∑
i=1

ηiφi .

Then

ηTAη =
M∑
i=1

M∑
j=1

ηiaijηj =
M∑
i=1

M∑
j=1

(ηiφ
′
i , ajφ

′
j) = (v ′, v ′) ≥ 0.

Equality is only achieved when v ′ = 0 everywhere. Since v(0) = 0,
it implies that v = 0 everywhere, and ηj = 0 for all j .

Hence A is symmetric positive definite (SPD). This is a general
property of finite-element stiffness matrices, which increases the
available options for solving them numerically (e.g. using the
Cholesky factorization, conjugate gradient method, etc.).



Equal grid spacing
If the grid spacings are equal, so that hj = h = 1/(M + 1), then the
matrix problem becomes

1

h


2 −1
−1 2 −1

−1 2
. . .

. . .
. . . −1
−1 2




ξ1
ξ2
ξ3
...
ξM

 =


b1
b2
b3
...
bM


This matrix problem is similar to a finite-difference (FD) discretization
problem. There are some small differences:

▶ The bj terms are evaluated using localized integrals of f , whereas in
FD they are pointwise function evaluations.

▶ The stiffness matrix has a factor of h−1, whereas in FD the
differentiation matrix has a factor of h−2. Overall, the h terms
balance because the bj terms incorporate an additional factor of h.

For many problems, finite-element and FD methods will lead to
substantially different numerical systems to solve.



Error estimate for the finite-element method

We now aim to find the difference u− uh where u is the solution of
(D) and uh is the solution of (Vh). Since u is also a solution of
(V), it follows that

(u′, v ′) = (f , v)

for all v ∈ Vh, since Vh ⊂ V . Since uh is a solution of (Vh),

(u′h, v
′) = (f , v)

for all v ∈ Vh. Subtracting the two yields

((u − uh)
′, v ′) = 0

for all v ∈ Vh.



Error estimate for the finite-element method

Now, define a norm

∥w∥ = (w ,w)1/2 =

√∫ 1

0
w2 dx .

Cauchy’s inequality is

|(v ,w)| ≤ ∥v∥ ∥w∥.

Theorem: For any v ∈ Vh,

∥(u − uh)
′∥ ≤ ∥(u − v)′∥.



Error estimate for the finite-element method

Proof of theorem: Choose v ∈ Vh and define w = uh − v . Then

∥(u − uh)
′∥2 = ((u − uh)

′, (u − uh)
′) + ((u − uh)

′,w ′)

= ((u − uh)
′, (u − uh + w)′) = ((u − uh)

′, (u − v)′)

≤ ∥(u − uh)
′∥ ∥(u − v)′∥.

If ∥(u − uh)
′∥ = 0 then the theorem automatically holds.

Otherwise, dividing both sides by ∥(u − uh)
′∥ gives

∥(u − uh)∥ ≤ ∥(u − v)′∥.

Since v is arbitrary, this proves the theorem.



Error estimate for the finite-element method

The theorem allows us to estimate the error ∥(u − uh)
′∥ by

estimating ∥(u − ũh)
′∥ for a suitably chosen ũh. Let ũh be the

function that linearly interpolates u at the nodes xj .

x
0 1

u(x)

uh(x)˜

uh(x)

Mathematical solution

Interpolant

Numerical 
solution

We now use the Cauchy approximation theorem to bound the error
between u and ũh, and hence bound the error between u and uh.



Error estimate for the finite-element method
Consider x in the subinterval Ij . Then

|u′(x)− ũ′h(x)| ≤ hj max
y∈Ij

|u′′(y)|.

Similarly

|u(x)− ũh(x)| ≤
maxy∈Ij |u′′(y)|

2
|(x − xj−1)(x − xj)|.

and since |(x − xj−1)(x − xj)| ≤ h2j /4, it follows that

|u(x)− ũh(x)| ≤
h2j maxy∈Ij |u′′(y)|

8
.

Taking the maximum bound over all the subintervals shows that

|u′(x)−ũ′h(x)| ≤ h max
y∈[0,1]

|u′′(y)|, |u(x)−ũh(x)| ≤
h2

8
max
y∈[0,1]

|u′′(y)|.



Error estimate for the finite-element method

Using the theorem,

∥(u − uh)
′∥ ≤ ∥(u − ũh)

′∥ ≤ h max
y∈[0,1]

|u′′(y)|.

Furthermore, since u(0) = uh(0),

(u − uh)(x) =

∫ x

0
(u − uh)

′(y)dy

from the fundamental theorem of calculus. Hence

|u(x)− uh(x)| ≤
∫ x

0
|u′(y)− u′h(y)|dy

≤
(∫ x

0
hdy

)
max
y∈[0,1]

|u′′(y)|

≤ h max
y∈[0,1]

|u′′(y)|.



Error estimate for the finite-element method

These bounds show that as the grid spacing h decreases, the
numerical solution uh will converge to the mathematical solution u.

The derivation of the bounds shows that the error scales like O(h),
which is sufficient to establish convergence.

However, using a more detailed derivation, it is possible to show
that the error scales like O(h2) for this model problem.



Appropriate function spaces for variational problems

In the model problem considered so far, we searched for solutions
over the function space

V =

{
v ∈ C ([0, 1]) :

v ′ is piecewise continuous and bounded
on [0, 1] and v(0) = v(1) = 0

}
.

However, for mathematical analysis it is advantageous to work with
a slightly larger space of functions. The condition about requiring
a piecewise continuous derivative is stricter than necessary.

We find that it is appropriate to work with Hilbert spaces, which
have three requirements detailed on the following slides.



(1) Hilbert spaces are vector spaces

A Hilbert space V is a vector space. It must satisfy basic
properties of commutatativity, associativity, and distributivity.8

We focus on real vector spaces,9 where scalar multiplication is
done using elements of R.

A key property of a real vector space is linearity, so that for any
α, β ∈ R and v ,w ∈ V , the element

αv + βw

is also in V .

8See Wolfram MathWorld or Wikipedia for complete details.
9There are also, e.g., complex vector spaces where scalar multiplication is

done using elements of C.

http://mathworld.wolfram.com/VectorSpace.html
https://en.wikipedia.org/wiki/Vector_space


(2a) A Hilbert space has a scalar product

A linear form is a map L : V → R such that for all v ,w ∈ V and
β, θ ∈ R,

L(βv + θw) = βL(v) + θL(w).

A bilinear form is a map a : V × V → R that is linear in each
argument, so that for all u, v ,w ∈ V and β, θ ∈ R,

a(u, βv + θw) = βa(u, v) + θa(u,w),

a(βu + θv ,w) = βa(u,w) + θa(v ,w).

The bilinear form is symmetric if a(u, v) = a(v , u) for all u, v ∈ V .
If

a(v , v) > 0 for all v ∈ V with v ̸= 0

then a is a scalar product on V .



(2b) A Hilbert space has a scalar product

A Hilbert space has a scalar product. There is an associated norm

∥v∥a =
√

a(v , v)

for all v ∈ V . Any scalar product ⟨·, ·⟩ will also satisfy Cauchy’s
inequality,

|⟨v ,w⟩| ≤ ∥v∥ ∥w∥,

for all v ,w ∈ V .



(3) A Hilbert space is complete

A Hilbert space is complete, so that the limit of any sequence of
elements in V is also contained in V .

Specifically, let v1, v2, v3, . . . of elements in V be a Cauchy
sequence. This means that for any ϵ > 0 there is a number n ∈ N
such that ∥vi − vj∥ < ϵ for all i , j > n.

To be complete, every Cauchy sequence must converge to an
element in V , i.e., there exists a v ∈ V such that for all ϵ > 0,
there exists m ∈ N such that ∥v − vi∥ < ϵ for all i > m.

Completeness is an important property to have, since it allows us
to take limits.



Hilbert space example

Let I = (a, b) be an open interval. Then define

L2(I ) =

{
v : v is defined on I and

∫
I
v2 dx <∞

}
.

This is the space of all square intergrable functions on I . For
v ,w ∈ L2(I ) an appropriate scalar product is

(v ,w) =

∫
I
vw dx

with associated norm

∥v∥L2(I ) =

√∫
I
v2 dx =

√
(v , v).



Additional Hilbert space

Define
H1(I ) =

{
v : v and v ′ belong to L2(I )

}
.

For v ,w ∈ H1(I ) an appropriate scalar product is

(v ,w)H1(I ) =

∫
I
(vw + v ′w ′)dx

with corresponding norm

∥v∥H1(I ) =

∫
I

(
v2 + (v ′)2

)
dx .



Hilbert space for model problem

For the model problem, we use the Hilbert space

H1
0 (I ) =

{
v ∈ H1(I ) : v(a) = v(b) = 0

}
.

Even though the members of H1 are only defined on the open
interval (a, b) the requirement that v ′ ∈ L2(I ) ensures that there
are well-defined limits v(a) and v(b).

For the model problem we specifically set I = (0, 1). Formulating
the problem in variational form yields

(V′) Find u ∈ V such that (u′, v ′) = (f , v) for all v ∈
H1
0 (I ).



Benefits of the weak formulation

The space H1
0 (I ) is larger than the original space V that was

considered. H1
0 (I ) is specifically tailored to the variational problem,

and is the largest space on which the variational problem can be
formulated.

Working with H1
0 (I ) is frequently useful for proving the existence of

solutions.

Furthermore, error estimates are often more natural in the H1(I )
norm that incorporates derivative information.



Generalization to multiple dimensions

Let Ω ⊂ Rd be a bounded domain, with boundary Γ = ∂Ω. A
generalization of the model problem to Ω is

−∇2u = f in Ω,

u = 0 on Γ.

Generalizations of our Hilbert spaces are

L2(Ω) =

{
v : v is defined on Ω and

∫
Ω
v2 dx <∞

}
,

H1(Ω) = {v : v ∈ L2(Ω) and ∂v/∂xi ∈ L2(Ω) for i = 1, . . . , d} .

Appropriate scalar products are

(v ,w) =

∫
Ω
vw dx , (v ,w)H1(Ω) =

∫
Ω
(vw +∇v · ∇w)dx .



Generalization to multiple dimensions

Formulating the problem as a minimization yields

(M′) Find u ∈ H1
0 (Ω) such that F (u) ≤ F (v) for all

v ∈ H1
0 (Ω).

Formulating the problem in variational form yields

(V′) Find u ∈ H1
0 (Ω) such that (u′, v ′) = (f , v) for all

v ∈ H1
0 (Ω).

Here F (v) = 1
2a(v , v)− (f , v) with

a(u, v) =

∫
Ω
∇u · ∇v dx , (f , v) =

∫
Ω
fv dx .



Neumann boundary conditions

The previous examples used Dirichlet boundary conditions, which
were straightforward to impose by restricting the function space.
However, implementing a Neumann condition requires a different
approach.

Consider the Neumann problem

−∇2u + u = f in Ω,

∂u

∂n
= g on Γ,

where Ω is a bounded domain and ∂/∂n is an outward normal
derivative.



Neumann boundary conditions

The Neumann problem can be expressed as a variational problem
by finding u ∈ H1(Ω) such that

a(u, v) = (f , v) + ⟨g , v⟩

for all v ∈ H1(Ω) such that

a(u, v) =

∫
Ω
[∇u · ∇v + uv ] dx ,

(f , v) =

∫
Ω
fv dx , ⟨g , v⟩ =

∫
Γ
gv ds.

This is equivalent to minimizing

F (v) =
1

2
a(v , v)− (f , v)− ⟨g , v⟩

over v ∈ H1(Ω).



Neumann boundary conditions

To obtain the variational problem, we first multiply the governing
equation by a test function v ∈ H1(Ω) and integrate to obtain

−
∫
Ω
v∇2u dx +

∫
Ω
vu dx =

∫
Ω
fv dx .

Applying Green’s first identity gives∫
Ω
∇v · ∇u dx −

∫
Γ

∂u

∂n
v ds +

∫
Ω
vu dx =

∫
Ω
fv dx .

Substituting ∂u/∂n = g on Γ yields the variational problem from
the previous slide.



Boundary conditions

Hence, the Neumann condition is incorporated into the variational
problem itself, rather than by altering the function space that is
used. This is called a natural boundary condition.

By contrast, a boundary condition where the function space is
restricted is referred to as an essential boundary condition.



Example problem

Consider solving the Poisson
equation in the unit square
Ω = (0, 1)2:

−∇2u = f in Ω,

u = 0 on ∂Ω.

Consider a triangulation like that
shown, with a mesh size of h.
Choose

Sh = {v ∈ C (Ω̄ : v is linear in

every triangle and v = 0}.

In every triangle v ∈ Sh has the form
v(x , y) = a+ bx + cy .



Example problem

Let interior mesh points be labeled
(xj , yj) for j = 1, . . . ,N. v ∈ Sh is
determined by its value of the mesh
points. Introduce a basis

ψi (xj , yj) = δij .

Define the coordinates
X = x−xi

h ,Y = y−yi
h . Then ψi is

non-zero in six triangles, and whose
values are explicitly shown in the
diagram.

1 – X – Y

1 – X

1 – Y

X + Y – 1

X – 1

Y – 1



Finite-element stencil

Label a group of basis functions

a(ψC , ψC ) =

∫
Ω

(∇ψc)
2dxdy

= 2

∫
I+III+IV

[
(∂xψC )

2 + (∂yψC )
2
]
dxdy

= 2

∫
I+III

(∂xψC )
2dxdy

+ 2

∫
I+IV

(∂yψC )
2dxdy

=
2

h2

∫
I+III

dxdy +
2

h2

∫
I+IV

dxdy

= 4.

C

S

N

EW

NW

SE

IV II

III I

VI VIII

V VII



Finite-element stencil

For

a(ψC , ψS) =

∫
VI+VII

∇ψC · ∇ψS dxdy

=

∫
VI+VII

(∂yψC )(∂yψS)dxdy

= − 1

h2

∫
VI+VII

dxdy = −1.

Similarly

a(ψC , ψN) = a(ψC , ψE ) = a(ψC , ψW ) = −1

and
a(ψC , ψNW ) = a(ψC , ψSE ) = 0.



Finite-element stencil

Thus, for this choice of basis, the associated matrix problem
Az = b for the solution uh =

∑
k zkψk has a five-point stencil

0 −1 0
−1 4 −1
0 −1 0

If gridpoints are indexed as k = (l ,m) for (xl , ym), and the solution
is expressed as uh =

∑
l ,m zl ,mψl ,m, then

[Az ]l ,m = 4zl ,m − zl−1,m − zl+1,m − zl ,m−1 − zl ,m+1.

where zl ,m is treated as zero if it lies on the boundary. This exactly
matches our finite-difference stencil for the Poisson equation!



Finite-element stencil

Hence, for this choice of basis, the finite-element (FE) method and
the finite-difference (FD) stencil agree. This is not true in general,
but highlights the similarities between the two discretization
approaches.

Note that the treatment of the source term may differ between FE
and FD. In FD, we discretize the field f at gridpoints (l ,m) and
write

[Az ]l ,m = h2fl ,m

In FE, we have the freedom to specify how f is represented, which
affects the ⟨l , ψk⟩ terms appearing in the Ritz–Galerkin method.



Source term discretization

One approach is to treat f as
piecewise constant on grid squares
as shown. Then

⟨l , ψc⟩ =
∫
Ω

f ψC dxdy

=

∫
S1

f1ψCdxdy +

∫
S2

f2ψCdxdy

+

∫
S3

f3ψCdxdy +

∫
S4

f4ψCdxdy

=
h2(2f1 + f2 + f3 + 2f4)

6
.

Note the asymmetry in this formula,
which arises because the basis
function ψk is asymmetric.

S1 S2

S4S3

C

f(x,y)=f2f(x,y)=f1

f(x,y)=f3 f(x,y)=f4



Definitions

Define
Pt = {u(x , y) =

∑
i+k≤t

cikx
iyk}

to be the set of polynomials of degree ≤ t. If all polynomials of
degree ≤ t are used, the finite elements have complete
polynomials.



Definitions

A finite element is said to be a C k element if it is contained in
C k(Ω). Note that the previous 2D example using right-angled
triangles has C 0 elements.

We use the terminology conforming finite element if the functions
lie in the Sobolev space in which the variational problem is posed.

Sometimes, nonconforming elements can be useful, e.g. to
approximate a curved domain with a triangular mesh.



Requirements on the meshes

A partition T = {T1,T2, . . . ,TM} of Ω into elements is called
admissible if

1. Ω̄ =
⋃M

i=1 Ti .

2. If Ti ∩ Tj consists of exactly one point, it is a common vertex
of Ti and Tj .

3. For i ̸= j , if Ti ∩ Tj consists of most than one point, then
Ti ∩ Tj is a common edge of Ti and Tj .



Properties of the mesh

We write Th instead of T when every element has diameter at
most 2h.

A family of partitions {Th} is called shape regular provided that
there exists a number κ > 0 such that every T in Th contains a
circle of radius ρT with ρT ≥ hT/κ.

A family of partitions {Th} is called uniform if there exists a
number κ > 0 such that every element T in Th contains a circle
with radius ρT ≥ h/κ.



Differentiability properties

In the one-dimensional finite element example, we used a piecewise
cubic that was continuous but not differentiable.

Theorem (see Braess): Let k ≥ 1 and suppose Ω is bounded. Then
a piecewise infinitely differentiable function v : Ω̄ → R belongs to
Hk(Ω) if and only if v ∈ C k−1(Ω).

Thus functions in C 0 are in H1. For second-order elliptic PDEs
this allows us to calculate the finite element terms a(ψk , ψi ), since
it involves integrals of weak derivatives ∂ψk .

Fourth-order elliptic problems involve integrals of ∂2ψk and
therefore require C 1 basis functions.

https://courses.seas.harvard.edu/courses/am225/notes/am225_fe_example.pdf


Triangular elements

Any triangle can be transformed into another via an affine
transformation x 7→ Ax + x0 for a matrix A and vector b.

Suppose u is a polynomial of degree t (i.e. a member of Pt). If we
apply an affine transformation to u we get another polynomial of
degree t. Hence Pt is invariant under affine linear transformations.

We therefore look for different ways to represent polynomials on
triangles, from finite element basis functions can be constructed.



Polynomials on triangles

Let t ≥ 0. For a triangle T , let z1, z2, . . . , zs be
s = 1 + 2 + . . .+ (t + 1) points in T that lie on t + 1 lines as
shown below. Then for every f ∈ C (T ) there is a unique
polynomial p of degree ≤ t satisfying the interpolation conditions

p(zi ) = f (zi ).

Linear (t = 1) Quadratic (t = 2) Cubic (t = 3)



Nodal basis

Suppose that for a given finite element space, there is a set of
points such that the function values at those points uniquely
determine the function. Then the set of points is called a nodal
basis.

Suppose we are given a triangulation of Ω and we place points in
each triangle as shown on the previous slide. Points on edges will
be common between triangles. Consider a nodal basis made from
these points.

Consider two adjacent triangles. The function in each triangle is in
Pt . The restriction of the function from either side to the common
edge is a polynomial of degree t. Since the restrictions must agree
at the n + 1 nodes along the edge, it follows that the overall
function is continuous. Thus we have a C 0 nodal basis.10

10The finite element example problem uses a one-dimensional version of this
basis construction, for the case of cubic elements.

https://courses.seas.harvard.edu/courses/am225/notes/am225_fe_example.pdf


Construction of C 1 elements

Note the nodal basis construction procedure does not lead to C 1

elements, even for t = 2 or t = 3. The basis functions are only
continuous across the edges between triangles.

As shown in the finite element example problem, using C 0

elements can still provide high-order accuracy solutions.

Constructing C 1 elements is more difficult. We provide two
examples.

https://courses.seas.harvard.edu/courses/am225/notes/am225_fe_example.pdf


Argyris triangle

We specify the function value, first
derivative, and second derivative at
each triangular vertex. This gives
1 + 2 + 3 = 6 constraints per vertex,
providing eighteen constraints in total.

To satisfy these constraints we work
with P5, which has 21 degrees of
freedom.

To constrain the remaining three
degrees of freedom, we specify the
normal derivative at each edge center.
This creates a C 1 element.

Function value prescribed

1st derivative prescribed

2nd derivative prescribed
Normal derivative prescribed



Bell triangle

For the Bell triangle we again work
with P5, but restrict to the case when
the normal derivatives along each edge
are degree 3 instead of degree 4.

These three additional constraints
ensure differentiability across edges. Function value prescribed

1st derivative prescribed

2nd derivative prescribed
Normal derivative prescribed



Bilinear elements
The polynomial families Pt are not well-suited to rectangular
partitions of the domain. Instead we use the tensor product
polynomial families

Qt = {u(x , y) =
∑

0≤i ,k≤t

cikx
iyk}

For t = 1, we obtain functions of the form

u(x , y) = a+ bx + cy + dxy .

The four vertices of the square form a nodal basis with C 0

elements.



Finite element definition

A finite element is a triple (T ,Π,Σ) with the following properties:

1. T is a polyhedron in Rd .

2. Π is a subspace of C (T ) with finite dimension s.

3. Σ is a set of s linear independent functionals on Π. Every
p ∈ Π is uniquely defined by the values of the s functionals in
Σ.



The Bogner–Fox–Schmit rectangle

The Bogner–Fox–Schmit rectangle leads to C 1 elements on
rectangles. The polynomial space is Π = Q3 (with dimension 16).
The linear functionals are

Σ = {p(ai ), ∂xp(ai ), ∂yp(ai ), ∂xyp(ai ), i = 1, 2, 3, 4}

where the ai are the corners of the rectangles. The element is
shown below, with the diagonal arrow indicating a mixed second
derivative.



Affine families

A family of finite element spaces Sh for partitions Th of Ω is called
an affine family if there exists a finite element (Tref,Πref,Σ) called
the reference element such that

4. For every Tj ∈ Th there exists an affine mapping
Fj : Tref → Tj such that for every v ∈ Sh its restriction to Tj

has the form
v(x) = p(F−1

j x)

with p ∈ Πref.


