
Applied Mathematics 225

Unit 2: Advanced numerical linear algebra

Lecturer: Chris H. Rycroft

Prologue: linking to objects and libraries in C++

As C++ programs grow in length, it becomes less desirable to
compile a single monolithic .cc file each time.

We aim to structure our program around C++ classes,
self-contained functions, etc. that we want to re-use without
recompiling each time. C++ provides us with a mechanism for
doing this.

When compiling a C++ program, the final stage is linking, where
the compiler searches for precompiled code to link into the current
executable

Example three-file project

These files are contained in the am225 examples/2a linking
directory:

▶ file output.cc – a file that contains the definition of a
function called gnuplot output for outputting a 2D array
into a standard binary format that can be read by Gnuplot1

▶ file output.hh – contains the declaration of the
gnuplot output function, but not its definition

▶ gp test.cc – an executable program that creates a test 2D
array of data and calls the gnuplot output function to save it
to a file

1Within Gnuplot, type “help binary matrix nonuniform” for
documentation.

Structure of gp test.cc

#include <cmath>

#include "file_output.hh"

int main() {

// Code ...

gnuplot_output("test_out.gnu",fld,m,n,ax,bx,ay,by);

// Code ...
}

The program includes file output.hh, so the compiler knows
about the existence of the gnuplot output function.

Direct compilation – a linking error

Compiling gp test.cc gives a linking error:

macmini:unit2/gp_example% g++ -Wall -o gp_test gp_test.cc
Undefined symbols for architecture x86_64:
"gnuplot_output(char const*, double*, int, int, double,

double, double, double)", referenced from:
_main in gp_test-4c26fb.o

ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v

to see invocation)

Compiler does not ever see the definition of file output.hh

Compilation

First compile file output.cc using the -c flag:

g++ -Wall -c file_output.cc

This creates an object file called file output.o. It has the
assembled machine code of the gnuplot output function. Then
compile the main program:

g++ -Wall -o gp_test gp_test.cc file_output.o

Successful compilation: compiler links the precompiled
gnuplot output into the gp test executable.

Build system

A project could consist of multiple object files and multiple
executables.

Object files need to be built prior to linking to executables. Some
object files might depend on others.

To simplify compilation we need a build system. We demonstrate
the use of GNU Make2 although there are many others.

A file called “Makefile” contains the dependencies between
programs. Typing “make” on the command line recompiles only
the files whose date stamps indicate they are out of date.

2https://www.gnu.org/software/make/

https://www.gnu.org/software/make/

A Makefile for the example

Specify compiler and flags
cxx=g++
cflags=-Wall

What executables should be built
all: gp_test

Rule to build object file
file_output.o: file_output.cc file_output.hh

$(cxx) $(cflags) -c file_output.cc

Rule to build executable
gp_test: gp_test.cc file_output.o

$(cxx) $(cflags) -o gp_test gp_test.cc file_output.o

From objects to libraries

Many object files can be joined together into a library file with a
“.a” suffix,3 using the ar command line utility.

For our example:

ar rs libfoutput.a file_output.o

Here, only on object file is passed as arguments, but usually more
would be provided.

Compilation can alternatively link to this file:

g++ -Wall -o gp_test gp_test.cc libfoutput.a

3The “A” stands for archive.

Linking to libraries
We can link to system or third-party libraries in the exact same way.
On Mac/Linux systems, many system header files are contained in
/usr/include, and the precompiled libraries are in /usr/lib.4

Three relevant compiler flags:

▶ -I<dir> – tell the compiler to look in <dir> to resolve any
#include commands (e.g. for header files)

▶ -L<dir> – tell the compiler to look in <dir> to look for
libraries

▶ -l<library> – link the library lib<library>.a to the
compiled program, searching in the directories provided by -L
(plus default system directories)

Alternative compilation command:

g++ -Wall -o -L. gp_test gp_test.cc -lfoutput

4The general principles are the same on Windows.

Numerical Linear Algebra

Problems involving Numerical Linear Algebra are ubiquitous in
scientific computing

▶ Many scientific problems can be expressed as solving linear
systems of equations

▶ When we discretize ODEs and PDEs, we frequently need to
solve systems of equations for the discretized function values

▶ Data analysis requires solving overdetermined linear least
squares problems

▶ Eigenvalue problems occur in many scenarios (e.g. resonance,
graph analysis)

▶ Many nonlinear problems are most effectively solved by
approximating them with a sequence of linear problems

Topics covered in AM2055

▶ The LU factorization

▶ The QR decomposition

▶ Singular Value Decomposition

▶ Eigenvalue algorithms (power method, Rayleigh quotient,
Krylov methods)

▶ Multigrid method

5See AM205 units 2 and 5.

https://courses.harvard.edu/courses/am205/slides/am205_unit2.pdf
https://courses.harvard.edu/courses/am205/slides/am205_unit5.pdf

Topics we will cover

We will examine the design of two widely-used and powerful
libraries, BLAS and LAPACK, for numerical linear algebra.

We will look at Krylov methods for the solution of linear algebra
problems, and the associated issue of preconditioning.

We will look at the Fast Fourier Transform, which can be viewed
as a solution method for many matrix problems of interest.

We will look at domain decomposition for parallelizing numerical
linear algebra routines.

Book

We will make use of the following textbook, and follow its
notation:

▶ James W. Demmel, Applied Numerical Linear Algebra, SIAM,
1997.

Numerical linear algebra is an active area of research, with much
interest in efficient parallel methods for supercomputing
applications.

One issue is fault tolerance. When running on 105 CPUs,
probability of failure on one of CPU is high. Aim for algorithms
that can deal with this failure.

Some history

Since linear algebra often reduces to model problems (i.e. solve
Ax = b, find the eigenvalues of A) it is well-suited to being solved
by libraries.

An early library was LINPACK,6 used on supercomputers in the
1970s and 1980s. The LINPACK benchmark is still used to test the
speed of supercomputers in the TOP5007 list.

LINPACK was designed before modern memory hierarchies became
important for optimal performance. Is has largely been superseded
by BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear
Algebra PACKage), which take memory hierarchies into account.

6http://www.netlib.org/linpack/
7https://www.top500.org

http://www.netlib.org/linpack/
https://www.top500.org

Example

Define tarith as the time to do a floating point operation and tmem

as the time to move memory between hierarchy levels. Assume
tarith ≪ tmem on modern systems.

Consider adding two n × n matrices together. We can’t do any
better than the following procedure on each matrix entry:

▶ Read the two numbers from memory (2tmem)

▶ Add the two numbers (tarith)

▶ Store the result in memory (tmem)

Total time is n2(3tmem + tarith).

A measure of memory efficiency

Suppose an algorithm requires m memory references and f floating
point operations. Then the total running time is

ftarith +mtmem = ftarith

(
1 +

m

f

tmem

tarith

)
= ftarith

(
1 +

1

q

tmem

tarith

)
,

where q is a measure of memory efficiency. Higher q is better.

Previous matrix addition example had q = 1/3.

BLAS (Basic Linear Algebra Subroutines)

To obtain optimal performance, we want to minimize memory
access. This will depend on hardware.

BLAS provides functions to perform basic linear algebra operations
(e.g. dot product, matrix–matrix multiply) that are tuned to the
hardware.

Chip vendors provide these. Examples are Intel MKL (Math Kernel
Library)8 and AMD BLIS library.9

There is also ATLAS (Automatically Tuned Linear Algebra
Software),10 an open-source library that self-tunes during
compilation.

8https://software.intel.com/en-us/mkl
9https://developer.amd.com/amd-cpu-libraries/blas-library/

10http://math-atlas.sourceforge.net

https://software.intel.com/en-us/mkl
https://developer.amd.com/amd-cpu-libraries/blas-library/
http://math-atlas.sourceforge.net

Matrix multiplication, C = C + AB (unblocked)

1: for i = 1 : n do
2: Read row i of A into fast memory
3: for j = 1 : n do
4: Read Cij into fast memory
5: Read column j of B into fast memory
6: for k = 1 : n do
7: Cij = Cij + AikBkj

8: end for
9: Write Cij into slow memory

10: end for
11: end for

Operation count

Memory references:

▶ n2 operations to read in A once

▶ n3 operations to read in B n times

▶ 2n2 operations to read/write C once

Floating point operations

▶ n3 multiplications

▶ n3 additions

Hence memory efficiency is

q =
f

m
=

2n3

n3 + 3n2
≈ 2.

Matrix multiplication, C = C + AB (blocked)

Divide C into and N × N block matrix, with blocks C ij of size
(n/N)× (n/N).

1: for i = 1 : N do
2: for j = 1 : N do
3: Read C ij into fast memory
4: for k = 1 : n do
5: Read Aik into fast memory
6: Read Bkj into fast memory
7: C ij = C ij + AikBkj

8: end for
9: Write C ij into slow memory

10: end for
11: end for

Operation count

Memory references:

▶ Nn2 operations to read in A N times

▶ Nn2 operations to read in B N times

▶ 2n2 operations to read/write C once

Total is (2N + 2)n2 memory operations. If fast memory (cache)
size is M then we require M ≥ 3(n/N)2. For optimal performance
N ≈ n

√
3/M.

2n3 floating point operations as before.

Hence memory efficiency is

q =
f

m
=

2n3

2Nn2
=

n

N
≈
√

M/3.

Levels of improvement

▶ Level 1 BLAS: q < 1, e.g. matrix addition

▶ Level 2 BLAS: q ≈ 2, e.g. matrix–vector multiply

▶ Level 3 BLAS: q ≫ 2, e.g. matrix–matrix multiply

Many other standard algorithms (e.g. Gaussian elimination) can be
reorganized to achieve Level 3 BLAS.

BLAS levels are a common benchmark for evaluating the memory
efficiency of algorithms in research papers.

BLAS matrix–matrix multiply example

Computer demo: timing comparison using BLAS routine.

Aside: a fast matrix multiply

The discrete Fourier transform takes complex numbers
x0, x1, . . . , xn−1 and computes

yk =
n∑

j=0

xje
−2πijk/n.

Originally thought to require O(n2) floating point operations. The
fast Fourier transform reduces this to O(n log n) floating point
operations.

Unresolved question: is there a fast matrix multiply?

There are only O(n2) elements in two n × n matrices, yet our
standard algorithm requires O(n3) floating point operations—is
that the best we can do?

Aside: a fast matrix multiply

Strassen’s algorithm (1969) is a recursive approach to replace
multiplying n × n matrices by seven multiplications of
(n/2)× (n/2) matrices. Complexity is therefore
O(nlog2 7) = O(n2.807). Can be used in practical calculations.11

Improved by Coppersmith and Winograd in 1990 to O(n2.375477).
Current best is O(n2.3728639) by François Le Gall. Algorithmic
prefactors are generally too large to be practical.

Generally thought that an O(n2) algorithm, perhaps with
additional logarithmic factors, is possible.

11This will feature on a homework problem.

LAPACK

LAPACK12 uses BLAS to efficiently perform many linear algebra
operations:

▶ Solving linear systems

▶ Solving linear least-squares problems

▶ LU, QR, Cholesky decompositions

▶ Eigenvalue computations

It has specialized algorithms for banded matrices, symmetric
matrices, orthogonal matrices, Hessenberg matrices, etc.

12http://www.netlib.org/lapack/

http://www.netlib.org/lapack/

Radial basis functions
An example problem in dense numerical linear algebra

Suppose that a function has been sampled at irregular points x⃗k
for k = 1, . . . , n. Let fk be the corresponding function values.

We aim to construct a smooth function approximation that
matches the given data points.

Introduce a radial function ϕ(r). Define function as

f (x⃗) =
N∑

k=1

wkϕ(||x⃗ − x⃗k ||2)

where wk are weights.

Radial basis functions

We want the function to match the data, so that f (x⃗k) = fk . This
gives a linear system of equations for the wk :

ϕ11 ϕ12 · · · ϕ1n

ϕ21 ϕ22 · · · ϕ2n
...

...
. . .

...
ϕn1 ϕn2 · · · ϕnn

w1

w2
...
wn

 =

f1
f2
...
fn

where ϕij = ϕ(||x⃗i − x⃗j ||2).

Choices for the radial function

Let ϵ be an inverse length scale. Some common choices of radial
function are

▶ Gaussian, ϕ(r) = e−(ϵr)2

▶ Multiquadric, ϕ(r) =
√

1 + (ϵr)2

▶ Inverse multiquadric, ϕ(r) = 1/
√
1 + (ϵr)2

▶ Polyharmonic spline,

ϕ(r) =

{
rk for k = 1, 3, 5, . . .,
rk log r for k = 2, 4, 6, . . .

Many possibilities, but it is desirable to obtain a symmetric
positive definite matrix. Equivalent to requiring that the Fourier
transform is positive everywhere.

The Gaussian and multiquadric functions are positive definite.13

13R. Schaback, A practical guide to radial basis functions, 2007.

http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf

Using LAPACK to solve dense linear systems

Computer demo: using LAPACK to compute radial basis function
interpolations

Krylov methods revisited14

Given a matrix A and vector b, a Krylov sequence is the set of
vectors

{b,Ab,A2b,A3b, . . .}

The corresponding Krylov subspaces are the spaces spanned by
successive groups of these vectors

Km(A, b) ≡ span{b,Ab,A2b, . . . ,Am−1b}

An important advantage: Krylov methods do not deal directly with
A, but rather with matrix–vector products involving A

This is particularly helpful when A is large and sparse, since
matrix–vector multiplications are relatively cheap

14This is a quick review of material from AM205 unit 5.

https://courses.seas.harvard.edu/courses/am205/slides/am205_unit5.pdf

Arnoldi Iteration

We define a matrix as being in Hessenberg form in the following
way:

▶ A is called upper-Hessenberg if aij = 0 for all i > j + 1

▶ A is called lower-Hessenberg if aij = 0 for all j > i + 1

The Arnoldi iteration is a Krylov subspace iterative method that
reduces A to upper-Hessenberg form

Arnoldi Iteration

For A ∈ Cn×n, we want to compute A = QHQ∗, where H is upper
Hessenberg and Q is unitary (i.e. QQ∗ = I)

However, we suppose that n is huge! Hence we do not try to
compute the full factorization

Instead, let us consider just the first m ≪ n columns of the
factorization AQ = QH

Therefore, on the left-hand side, we only need the matrix
Qm ∈ Cn×m:

Qm =

 q1 q2 . . . qm

Arnoldi Iteration

On the right-hand side, we only need the first m columns of H

More specifically, due to upper-Hessenberg structure, we only need
H̃m, which is the (m + 1)×m upper-left section of H:

H̃m =

h11 · · · h1m
h21 h22

. . .
. . .

...
hm,m−1 hmm

hm+1,m

H̃m only interacts with the first m+1 columns of Q, hence we have

AQm = Qm+1H̃m

Arnoldi Iteration

 A

 q1 . . . qm

 =

 q1 . . . qm+1

h11 · · · h1m
h21 · · · h2m

. . .
...

hm+1,m

The mth column can be written as

Aqm = h1mq1 + · · ·+ hmmqm + hm+1,mqm+1

Or, equivalently

qm+1 = (Aqm − h1mq1 − · · · − hmmqm)/hm+1,m

Arnoldi iteration is just the Gram–Schmidt method that constructs
the hij and the (orthonormal) vectors qj , j = 1, 2, . . .

Arnoldi Iteration

1: choose b arbitrarily, then q1 = b/∥b∥2
2: for m = 1, 2, 3, . . . do
3: v = Aqm
4: for j = 1, 2, . . . ,m do
5: hjm = q∗j v
6: v = v − hjmqj
7: end for
8: hm+1,m = ∥v∥2
9: qm+1 = v/hm+1,m

10: end for

This is akin to the modified Gram–Schmidt method because the
updated vector v is used in line 5 (vs. the “raw vector” Aqm)

Also, we only need to evaluate Aqm and perform some vector
operations in each iteration

Lanczos Iteration

Lanczos iteration is the Arnoldi iteration in the special case that A
is hermitian

However, we obtain some significant computational savings in this
special case

Let us suppose for simplicity that A is symmetric with real entries,
and hence has real eigenvalues

Then Hm = QT
mAQm is also symmetric, and hence must be

tridiagonal

Lanczos Iteration

Since Hm is now tridiagonal, we shall write it as

Tm =

α1 β1
β1 α2 β2

β2 α3
. . .

. . .
. . . βm−1

βm−1 αm

The consequence of tridiagonality: Lanczos iteration is much
cheaper than Arnoldi iteration!

Lanczos Iteration

Which leads to the Lanczos iteration

1: β0 = 0, q0 = 0
2: choose b arbitrarily, then q1 = b/∥b∥2
3: for m = 1, 2, 3, . . . do
4: v = Aqm
5: αm = qTmv
6: v = v − βm−1qm−1 − αmqm
7: βm = ∥v∥2
8: qm+1 = v/βm
9: end for

Solving linear systems with Krylov methods

We aim to use Krylov methods to solve linear systems Ax = b

Only place to look is in the Krylov subspace. Try a solution
xk ∈ Kk . Suppose true solution is x = A−1b and residual is
rk = b − Axk . Could aim for

▶ Minimizing ∥xk − x∥2. There is not enough information in the
Krylov subspace to do this.

▶ Minimizing ∥rk∥2. This leads to algorithms such as MINRES
for symmetric A and GMRES for nonsymmetric A.

▶ For symmetric A, define the norm ∥x − xk∥A. Minimizing this
results in the conjugate gradient method.

Conjugate Gradient Method

The CG algorithm is given by

1: x0 = 0, r0 = b, p1 = b
2: for k = 1, 2, 3, . . . do
3: z = Apk
4: νk = (rTk−1rk−1)/(p

T
k z)

5: xk = xk−1 + νkpk
6: rk = rk−1 − νkz
7: µk = (rTk rk)/(r

T
k−1rk−1)

8: pk+1 = rk + µkpk
9: end for

See AM205 unit 5 for a full discussion of this algorithm. At every
stage xk minimizes ∥xk − x∥A within Kk(A, b).

https://courses.seas.harvard.edu/courses/am205/slides/am205_unit5.pdf

Basic conjugate gradient example

Consider the one-dimensional Poission equation for u(x),

∂2u

∂x2
= f

on the interval [0, 1], with Dirichlet conditions u(0) = u(1) = 0.

Discretize as uj = u(jh), fj = f (jh) where h = 1/n−1. Hence
u0 = un−1 = 0 and

uj+1 − 2uj + uj−1

h2
= fj

for j = 1, . . . , n − 2.

Basic conjugate gradient example

scafell:unit2/lec7+8% ./basic_cg_test
Iter 0, residual 3
Iter 1, residual 5.61249
Iter 2, residual 4.1833
Iter 3, residual 2.73861
Iter 4, residual 1.22474
Iter 5, residual 0

Residuals decrease, although it is typical to see non-monotoic
behavior.

After five iterations, the solution x is contained within the Krylov
subspace, and the residual decreases to zero.

Compactly supported radial basis functions

We return to the radial basis function example. Since the
conjugate gradient method is best-suited sparse matrices, we use
radial functions of compact support. Define

(1− r)k+ =

{
(1− r)k for 0 ≤ r < 1,
0 for r ≥ 1

Wendland’s functions are compact, k-differentiable, and positive
definite.15

ϕ(r) k

(1− r)2+ 0
(1− r)4+(4r − 1) 2
(1− r)6+(35r

2 + 18r + 3) 4
(1− r)8+(32r

3 + 25r2 + 8r + 1) 6

15The set given here are positive definite up to three dimensions.

Convergence

Convergence of the conjugate gradient method is better when the
matrix A has a small condition number

A way to improve convergence is to use preconditioning. We find a
matrix M that is an approximation to A, and solve
M−1Ax = M−1b. We want

▶ M is symmetric and positive definite

▶ M−1A is well conditioned and has few extreme eigenvalues

▶ Mx = b is easy to solve

Preconditioned Conjugate Gradient Method

The preconditioned CG algorithm is given by

1: x0 = 0, r0 = b, p1 = M−1b, y0 = M−1r0
2: for k = 1, 2, 3, . . . do
3: z = Apk
4: νk = (yTk−1rk−1)/(p

T
k z)

5: xk = xk−1 + νkpk
6: rk = rk−1 − νkz
7: yk = M−1rk
8: µk = (yTk rk)/(y

T
k−1rk−1)

9: pk+1 = yk + µkpk
10: end for

Examples of preconditioning

▶ Diagonal (Jacobi) preconditioning: define
M = diag(a11, a22, . . . , ann). Straightforward to invert.

▶ Block Jacobi preconditioning: Write the matrix in block form
as

A =

 A11 A12 · · · A1k
...

...
. . .

...
Ak1 Ak2 · · · Akk

Define

M =

 A11

. . .

Akk

Performing M−1 requires inverting each block—much faster
than solving the original matrix

Examples of preconditioning

▶ Incomplete LU/Cholesky factorization: a full LU or Cholesky
factorization of a sparse matrix results in fill-in of the zero
entries. Adjust algorithm to obtain approximate result with
minimum fill-in.

▶ Multigrid: the multigrid algorithm is an iterative procedure for
solving matrix problems, by applying successive V-cycles. Let
M−1 be the matrix applying one V-cycle—good
approximation to the inverse of A.

Radial basis function timing example

Tested RBF example using points from n = 10 to n = 104.

Use compact Wendland functions with a radius of 5/
√
n. Gives

approximately 15 non-zero entries per row of matrix.

Two solution algorithms:

▶ LAPACK – dense linear algebra

▶ Preconditioned CG – use block Jacobi preconditioner with
blocks of size

√
n.

Radial basis function timing example

10−6

10−5

10−4

10−3

10−2

10−1

1

10

10 30 100 300 1000 3000 10000

W
al
l
cl
o
ck

ti
m
e
(s
)

Number of points

LAPACK
Preconditioned CG

Radial basis function timing example

For small systems with n < 800, dense linear algebra is faster.

For large systems with n ≥ 800, the O(n3) scaling of LAPACK
makes it inefficient.

Preconditioned CG has O(n2.37) scaling in this example, and
therefore becomes the best choice for large numbers of points.

This timing comparison is heavily dependent on the matrix
structure and sparsity. LAPACK does better for denser matrices.

Other Krylov methods

The conjugate gradient method only applies to symmetric positive
definite linear systems.

There are many related algorithms for solving different types of
linear systems. The following flow chart from the textbook16

illustrates some of the different possibilities.

16J. A. Demmel, Applied Numerical Linear Algebra, SIAM 1997.

GMRES: Generalized Minimum RESidual method

Consider a general matrix A that may not be symmetric. Short
recurrence no longer holds so we must use the Arnoldi algorithm to
obtain

Hk = QT
k AQk

where Qk is orthogonal and Hk is upper Hessenberg.

Choose xk = Qkyk ∈ Kk(A, b) to minimize the residual ∥rk∥2.

GMRES: Generalized Minimum RESidual method
Manipulating the residual gives

∥rk∥2 = ∥b − Axk∥2
= ∥b − AQkyk∥2
= ∥b − (QHQT)Qkyk∥2
= ∥QTb − HQTQkyk∥2

=

∥∥∥∥e1∥b∥2 − (Hk Huk

Hku Hu

)(
yk
0

)∥∥∥∥
2

=

∥∥∥∥e1∥b∥2 − (Hk

Hku

)
yk

∥∥∥∥
2

Here the u subscript refers to the remaining parts of the full matrix
H that are not in Hk . e1 is the first unit vector.

The final line is a linear least-squares problem for yk , which can be
solved using the QR algorithm.

GMRES: solving the least-squares problem

Normally, performing a QR factorization would require O(k3)
iterations.

But here, we require the QR factorization of the (k + 1)× k
Hessenberg matrix. We can perform the QR factorization by
performing k Givens rotations to rotate out the terms below the
diagonal.

GMRES requires O(kn) memory to store the vectors Qk . A variant
to minimize the growth of computation and storage is to stop after
k steps, and restart by solving Ad = rk = b − Axk , after which the
solution is given by d + xk .

This is called GMRES(k). It is still more expensive than conjugate
gradient.

The Fast Fourier Transform

Consider a one-dimensional Poisson problem

−d2v

dx2
= f (x)

for a function v(x) on [0, 1] with boundary conditions
v(0) = v(1) = 0.

Discretize with N + 2 evenly spaced points with grid spacing
h = 1/(N + 1), so that xi = hi .

Second-order centered finite difference gives

−vi−1 + 2vi − vi+1 = h2fi

for i = 1, . . .N.

Matrix formulation

Writing all equations in a linear system yields

TN

 v1
...
vN

 =

2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2

 v1

...
vN

 = h2

 f1
...
fN

 .

The eigenvectors of TN are

zj(k) =

√
2

N + 1
sin

jkπ

N + 1

with corresponding eigenvalues

λj = 2

(
1− cos

πj

N + 1

)
.

Poisson’s equation in two dimensions

Now consider the two dimensional Poisson problem

−∂2v

∂x2
− ∂2v

∂y2
= f (x , y)

on the unit square [0, 1]2 with v = 0 on the boundary.
Discretize using a (N + 2)× (N + 2) grid with xj = jh and yk = kh
with h = 1/(N + 1). Write

vjk = v(jh, kh), fjk = f (jh, kh).

Equations in the linear system are

4vjk − vj−1,k − vj+1,k − vj ,k−1 − vj ,k+1 = h2fjk .

Matrix formulation

Rewrite unknowns vjk as occupying an N × N matrix V . Then

2vjk − vj−1,k − vj+1,k = (TNV)jk ,

2vjk − vj ,k−1 − vj ,k+1 = (VTN)jk .

Hence the problem can be written as

TNV + VTN = h2F

where F is an N × N with entries fjk .

Eigenvectors and eigenvalues for 2D problem

Let V = zjz
T
k . Then

TNV + VTN = (TNzj)z
T
k + zj(z

T
k TN)

= (λjzj)z
T
k + zj(z

T
k λk)

= (λj + λk)zjz
T
k

= (λj + λk)V

and hence zjz
T
k is an eigenevector of the 2D problem with

eigenvalue λj + λk . We obtain a full set of N2 eigenvectors for the
problem.

Solving the equation via an eigendecomposition

Let TN = ZΛZT be the eigendecomposition of TN . Note that
ZTZ = I since Z is orthogonal. Then

ZΛZTV + V (ZΛZT) = h2F

and
ZTZΛZTVZ + ZTV (ZΛZT)Z = h2ZTFZ ,

which becomes
ΛV ′ + V ′Λ = h2F ′

where V ′ = ZTVZ and F ′ = ZTFZ .

Solving the equation via an eigendecomposition

Hence
λjv

′
jk + v ′jkλk = h2f ′jk

and so

v ′jk =
h2f ′jk

λj + λk
.

Three steps to obtain a solution:

1. Compute F ′ = ZTFZ (O(N3) operations17)

2. Find v ′jk = h2f ′jk/(λj + λk) (O(N2) operations)

3. Compute V = ZV ′ZT (O(N3) operations)

However, we will soon see that the Fast Fourier Transform allows
steps 1 and 3 to be performed in O(N2 logN) operations, turning
this into a practical algorithm.

17Assuming a conventional matrix–matrix multiplication routine.

Alternative viewpoint: the Kronecker product

Write vec(V) to be the operator converting the N × N matrix into
an N2-vector of unknowns. Write

TN×N = I ⊗ TN + TN ⊗ I = (Z ⊗ Z)(I ⊗ Λ + Λ⊗ I)(Z ⊗ Z)T.

Then

vec(V) = (TN×N)
−1 vec(h2F)

=
(
(Z ⊗ Z)(I ⊗ Λ + Λ⊗ I)(Z ⊗ Z)T

)−1
vec(h2F)

= (Z ⊗ Z)(I ⊗ Λ + Λ⊗ I)−1(ZT ⊗ ZT) vec(h2F).

While this is less notationally elegant, it makes it clear that the
solution procedure could be extended to arbitrary dimensions.

i.e. in 3D, we would consider (Z ⊗ Z ⊗ Z), applying the matrix Z
to field values in each coordinate direction.

The Discrete Fourier Transform

For notational convenience, we now switch to numbering rows and
columns starting from zero.

Definition: The discrete Fourier transform (DFT) of a vector
x ∈ CN is y = Φx where Φ is an N × N matrix with terms
ϕjk = ωjk and ω = e−2πi/N is the Nth root of unity. The inverse
discrete Fourier transform (IDFT) is x = Φ−1y .

Φ/
√
N is a symmetric unitary matrix, Φ−1 = Φ∗/N = Φ̄/N.

Connection to 2D Poisson problem

The procedure to solve the 2D Poisson problem required
multiplication by Z , where18

zjk =

√
2

N + 1
sin

π(j + 1)(k + 1)

N + 1
.

Consider the (2N +2)× (2N +2) DFT matrix whose (j , k) entry is

exp

(
−2πijk

2N + 2

)
= exp

(
−πijk

N + 1

)
= cos

πjk

N + 1
− i sin

πjk

N + 1
.

The N × N matrix Z is proportional to the imaginary part of Φ for
1 ≤ j ≤ N, 1 ≤ k ≤ N.

Hence if we can multiply efficiently by Φ, then we can multiply
efficiently by Z . In fact, Z is the discrete sine transform (DST), a
variant of the DFT for real data.

18Note this is slightly different due to the shift in matrix indexing.

Connection to discrete convolution

Let a(x) =
∑N−1

k=0 akx
k and b(x) =

∑N−1
k=0 bkx

k be polynomials.
Let

c(x) = a(x)b(x) =
2N−1∑
k=0

ckx
k

be the product of the two. The coefficients of c(x) are given by
ck =

∑k
j=0 ajbk−j .

Theorem: Let a = (a0, . . . , aN−1, 0, . . . , 0)
T and

b = (b0, . . . , bN−1, 0, . . . , 0)
T be 2N-vectors containing the

polynomial coefficients. Let c = (c0, c1, . . . , c2N−1)
T. Then

(Φc)k = (Φa)k(Φb)k .

Connection to discrete convolution

To prove this theorem, define a′ = Φa. Then

a′k =
2N−1∑
j=0

ajω
jk = a(ωk).

If b′ and c ′ are defined similarly, then

a′kb
′
k = a(ωk)b(ωk) = c(ωk) = c ′k .

Since this is true for all k , it follows that (Φc)k = (Φa)k(Φb)k .

The Fast Fourier Transform

Finding the discrete Fourier transform is equivalent to evaluating
the polynomial a(x) =

∑N−1
k=0 akx

k at x = ωj for 0 ≤ j ≤ N − 1.
Assuming N = 2m, write

a(x) = a0 + a1x + . . . aN−1x
N−1

= (a0 + a2x
2 + a4x

4 + . . .) + x(a1 + a3x
2 + a5x

5 + . . .)

= aeven(x
2) + xaodd(x

2).

Hence we need to evaluate two polynomials of degree N/2 − 1 at
(ωj)2 for 0 ≤ j ≤ N − 1.

Key observation: ω2j = ω2(j+N/2), and hence we only need to
evaluate the two polynomials at N/2 points. Reduces work by a
factor of two.

Fast Fourier Transform

Applying this procedure recursively leads to the following algorithm

1: function FFT(a,N)
2: if N = 1 then
3: return a
4: else
5: a′even = FFT(aeven, N/2)
6: a′odd = FFT(aodd, N/2)
7: ω = e−2πi/N

8: w = (ω0, . . . , ωN/2−1)
9: return a′ = (a′even +w ∗ a′odd, a′even −w ∗ a′odd)

10: end if

Here the ∗ operator refers to componentwise multiplication.

Complexity of the FFT

We assume that the values of ω are already precomputed. Number
of operations satisfies C (N) = 2C (N/2) + 3N/2. Hence

C (N) = 2C

(
N

2

)
+

3N

2
= 4C

(
N

4

)
+ 2

3N

2

= 8C

(
N

8

)
+ 3

3N

2
= . . .

=
3N log2N

2
.

This is much better than the original O(N2) complexity from
performing direct sums to evaluate the DFT.

Two-dimensional Poisson problem requires O(N) FFTs, and thus
overall time scales like O(N2 logN).

Fast Fourier transform libraries

Chip vendors such as Intel provide tuned libraries for the FFT. The
Intel MKL contains FFT routines.

FFTW19 (www.fftw.org) is a widely-used open source library.

FFTW follows some similar design principles to BLAS, organizing
computation in a cache-friendly manner, and exploiting vectorized
instructions where possible.

FFTW provides very good performance across a wide range of
platforms. While best perfomance is achieved for grid sizes N that
are powers of two, FFTW achieves O(N logN) performance for
any grid size. Multithreaded and parallel routines available.

19Stands for “The Fastest Fourier Transform in the West”. Developed by
Matteo Frigo and Steven Johnson at MIT.

https://software.intel.com/en-us/mkl/features/fft
www.fftw.org

Frequency analysis of music samples

Consider the following four music samples of length 0.1 s:

▶ Vocal sample from You Couldn’t Be Cuter by Sylvia McNair.
This is a jazz standard, but McNair is primarily an opera
singer.

▶ Vocal sample from Marry Me by St. Vincent.

▶ Vocal sample from It’s Alright, Ma (I’m Only Bleeding) by
Bob Dylan.

▶ Drum sample from Guess They Never Told You by The
American Symphony of Soul. (Drums played by AM225 TF
Dan Fortunato.)

Samples were prepared using Audacity, which exports the sound
signal as single-precision floats. Contains stereo information (left
and right channels).

https://en.wikipedia.org/wiki/Sylvia_McNair
https://en.wikipedia.org/wiki/St._Vincent_(musician)
https://en.wikipedia.org/wiki/Bob_Dylan
http://americansymphonyofsoul.com
http://americansymphonyofsoul.com
https://www.audacityteam.org

FFTW example for sound sample analysis #1

#include <cstdio>
#include <cmath>
#include <fftw3.h>
#include "omp.h"

const int n=4096;

int main() {

// Read in the binary data stereo sample in single precision
float e[n];
FILE *fp=fopen("asos.raw","rb");
fread(e,sizeof(float),2*n,fp);
fclose(fp);

// Allocate memory for FFTW input data, and convert sound
// sample to double precision, just getting left channel
double *f=fftw_alloc_real(n),re,im;
for(int i=0;i<n;i++) f[i]=e[2*i];

...

FFTW example for sound sample analysis #2

...

// Allocate memory for complex FFTW output data
int fftn=n/2+1;
fftw_complex *c=fftw_alloc_complex(n);

// Make FFTW plan, and perform the transform
fftw_plan plan_dft(fftw_plan_dft_r2c_1d(n,f,c,FFTW_ESTIMATE));
fftw_execute(plan_dft);

// Output magnitudes of each term
for(int i=0;i<fftn;i++) {

re=c[i][0];
im=c[i][1];
printf("%g %g\n",44000./n*i,sqrt(re*re+im*im));

}

// Free dynamically allocated memory
fftw_destroy_plan(plan_dft);
fftw_free(c);
fftw_free(f);

}

Sylvia McNair waveform
(Showing both stereo channels)

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 0.005 0.01 0.015 0.02 0.025 0.03

N
or
m
al
iz
ed

si
gn

al

Time (s)

Left Right

St. Vincent waveform
(Showing both stereo channels)

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 0.005 0.01 0.015 0.02 0.025 0.03

N
or
m
al
iz
ed

si
gn

al

Time (s)

Left Right

Bob Dylan waveform
(Showing both stereo channels)

−0.4

−0.2

0

0.2

0.4

0 0.005 0.01 0.015 0.02 0.025 0.03

N
or
m
al
iz
ed

si
gn

al

Time (s)

Left Right

American Symphony of Soul drum waveform
(Showing both stereo channels)

−1

−0.5

0

0.5

1

0 0.02 0.04 0.06 0.08 0.1

N
or
m
al
iz
ed

si
gn

al

Time (s)

Left Right

Sylvia McNair frequency spectrum

0

50

100

150

200

250

0 500 1000 1500 2000

M
ag
n
it
u
d
e

Frequency (Hz)

Left Right

St. Vincent frequency spectrum

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000

M
ag
n
it
u
d
e

Frequency (Hz)

Left Right

Bob Dylan frequency spectrum

0

50

100

150

200

0 500 1000 1500 2000

M
ag
n
it
u
d
e

Frequency (Hz)

Left Right

American Symphony of Soul drum frequency spectrum

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

M
ag
n
it
u
d
e

Frequency (Hz)

Left Right

Semi-log comparison of Sylvia McNair and A.S.O.S.
(Showing that the drum sample has high-frequency components)

0.0001

0.001

0.01

0.1

1

10

100

1000

0 5000 10000 15000 20000

M
ag
n
it
u
d
e

Frequency (Hz)

A.S.O.S. drum
McNair

FFTW performance tuning and execution

FFTW comes with its own memory allocation routines, which
ensure that memory is allocated on 16-byte boundaries, which can
be beneficial for some vectorized machine instructions:

const int n=1024;
double *src=fftw_alloc_real(n);
fftw_complex *dest=fftw_alloc_complex(n);

Before executing an FFT, an fftw plan must be created to tell
FFTW the source and destination, plus the size and type of FFT:

fftw_plan plan_dft(fftw_plan_dft_r2c_1d(n,src,dest,FFTW_ESTIMATE));

The final option of FFTW ESTIMATE tells FFTW to use heuristics to
plan the FFT for good performance. Alternatively FFTW MEASURE
can be used, which performs some trial FFTs to test for best
performance. The FFTW PATIENT option enables even more tests.

FFTW performance tuning and execution

Once the plan is set up, the FFT is performed using:

fftw_execute(fftw_plan);

The same plan can be used on different arrays (e.g. src2 and
dest2), so long as the memory alignment is the same:

fftw_execute(fftw_plan,src2,dest2);

At the end of the program, the arrays and plans must be explicitly
freed:

fftw_destroy_plan(plan_dft);
fftw_free(dest);
fftw_free(src);

Return to the 2D Poisson problem

In the last lecture we introduced a model 2D Poisson problem

−∂2v

∂x2
− ∂2v

∂y2
= f (x , y)

on the unit square [0, 1]2 with v = 0 on the boundary. Discretized
using a (N + 2)× (N + 2) grid with xj = jh and yk = kh with
h = 1/(N + 1).

Problem was rewritten as

TNV + VTN = h2F

where TN is a triangular matrix, V is a matrix containing the
solution, and F is a matrix containing the source term.

FFT solution method

Let TN = ZΛZT be the eigendecomposition of TN . Then a
solution method is

1. Compute F ′ = ZTFZ

2. Find v ′jk = h2f ′jk/(λj + λk)

3. Compute V = ZV ′ZT

Multiplication be Z is equivalent to the one-dimensional discrete
sine transform, and thus can be solved efficiently with FFTW.

Computer demo: solution to the 2D Poisson equation using FFTW.

FFT source term

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

−1
−0.5

0
0.5
1

x

y

f (x , y)

FFT solution

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

−0.01

0

0.01

x

y

v(x , y)

Testing convergence

The solution method to Poisson problem is based on a
second-order finite-difference stencil. We would like to test the
actual convergence properties of the solution.

For a general equation and source term, it is difficult to write down
an analytical solution.

An approach for cases like this is to use the method of
manufactured solutions, by writing down the solution v , and
finding the source term that will give it.

Method of manufactured solutions

Propose v(x , y) = exx(1− x)y(1− y). This matches the given
boundary conditions.

Then

∂2v

∂x2
= exx(3 + x)(y − 1)y ,

∂2v

∂y2
= 2exx(x − 1).

Hence if

f (x , y) = −exx(−2− 3y + 3y2 + x(2− y + y2))

then the equation −∇2v = f is satisfied. The program
pfft conv.cc runs a convergence analysis, comparing the
numerical solution to this analytical one.

Poisson code convergence

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10 100 1000

L
2
er
ro
r,
E

Grid size, N

Data
Power law fit, E = 0.0128N−1.97

Comments on convergence

O(h2) convergence is achieved—this is expected since the solution
is based on a second-order stencil.

While the choice of f (x , y) is arbitrary, it is helpful to choose
something that does not align with simple functions, or known
eigenfunctions of the system, to provide a better indication of the
typical behavior.

If the solution aligned with an eigenfunction, then the convergence
properties may be atypical.

Spectral methods

The fast Fourier transform is also useful in the context of spectral
methods, a class of numerical methods for very accurately solving
problems that feature smooth solutions.

We will not discuss spectral methods in detail, but we will give a
few examples.

We aim to approximate a solution u(x) on some domain by a finite
sum v(x) =

∑N
k=0 akϕk(x) for some set of functions ϕk .

Spectral methods

A spectral method is characterized20 by the following three
characteristics:

1. The approximations
∑N

k=0 akϕk(x) should converge rapidly
for smooth functions.

2. Given coefficients ak it should be easy to determine bk such
that

d

dx

(
N∑

k=0

akϕk(x)

)
=

N∑
k=0

bkϕk(x)

3. It should be fast to convert between coefficients ak
(k = 0, . . . ,N) and the values for the sum v(xj) at a set of
nodes xj (j = 0, . . . ,N)

20B. Fornberg, A Practical Guide to Pseudopsectral Methods, Cambridge
University Press, 1998.

Spectral methods

Consider the periodic interval [0, 2π). Then the complex
exponentials ϕk(x) = e ikx satisfy all three properties.

For a smooth function, the Fourier expansion v(x) =
∑N

k=0 ake
ikx

converges exponentially.

The derivative ∂xv has coefficients bk = ikak .

The fast Fourier transform allows us to convert between node
values v(xj) and coefficients ak efficiently in O(N logN) time.

Spectral derivative

Computer demo: calculating the spectral derivative of
f (x) = exp(cos x)

Only 32 points are required to achieve machine epsilon in double
precision!

This is far better than typical finite-difference stencils, although it
requires smooth periodic functions. If the functions lose regularity,
the exponential convergence is lost.

Spectral derivative

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

0 π/2 π 3π/2 2π

y

x

y = f (x)
y = f ′exact(x)

y = f ′numerical(x)

Spectral derivative error
Confirming that the errors are on the order of machine epsilon

−4× 10−15

−2× 10−15

0

2× 10−15

4× 10−15

0 π/2 π 3π/2 2π

f
′ n
u
m
er
ic
a
l(
x
)
−

f
′ ex
a
ct
(x
)

x

Solving PDEs with spectral methods

Spectral methods an attractive choice for problems on periodic
intervals where smooth solutions are expected. Many nonlinear
wave equations have this form.

An example is the Kortweg–de Vries (KdV) equation to model
waves on shallow water surfaces. For a function u(t, x) the KdV
equation is

ut + uux + a2uxxx = 0,

where a is a constant.21

21The prefactors in front of the terms are not important, since they can be
changed by rescaling t, u, or x .

KdV equation

Computer demo: The program kdv test.cc solves the KdV
equation.

It uses fourth-order Runge–Kutta method for timestepping, and
spectral methods to evaluate the spatial derivatives. This gives
highly accurate solutions.

KdV example solution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 π/2 π 3π/2 2π

y

x
t = 0

Intermediate
t = 10

Domain decomposition

There are a wide variety of different numerical approaches for
numerical linear algebra, each with its own strengths. For example:

▶ BLAS/LAPACK: optimized for dense linear algebra, and based
upon direct solution algorithms such as LU, QR, Cholesky, etc.

▶ Krylov methods: well-suited to arbitrary sparse matrix algebra.

▶ Fast Fourier transform: efficient for high-accuracy problems
on structured grids.

▶ Multigrid: very efficient for sparse linear systems arising in
physical PDE problems.

In practice, we often encounter problems that are composed of
parts that are suited to different methods, or are too large to fit on
a single processor. Domain decomposition allows us to split up a
large linear system into components. Additionally, the components
may be computed in parallel.

Case I: Non-overlapping grids

Consider solving the Poisson equation with zero Dirichlet boundary
coefficients on the domain shown below.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19

20 21 22

23 24 25

26

27

The domain can be decomposed into (1) a square grid with N = 4,
(2) a square grid with N = 3, and (3) two connecting gridpoints.

We know how to solve the Poisson equation on the two square
domains using the FFT.

Case I: Non-overlapping grids

Let the solution vector be v = (v1, v2, v3) ∈ R27 be broken up into
the three sets of gridpoints. Let f ∈ R27 be the corresponding
source term.

Write the matrix equation as Av = h2f where h is the grid spacing.
With the second-order finite difference stencils, A has the form

A =

 A11 0 A13

0 A22 A23

AT
13 AT

23 A33

 .

Key observation: By construction the A12 term is absent and there
is no direct coupling between domain 1 and domain 2.

Schur complement

Performing a block LDU decomposition yields

A =

 I 0 0
0 I 0

AT
13A

−1
11 AT

23A
−1
22 I

 I 0 0
0 I 0
0 0 S

 A11 0 A13

0 A22 A23

0 0 I

where

S = A33 − AT
13A

−1
11 A13 − AT

23A
−1
22 A23

is defined as the Schur complement. The inverse of A is

A−1=

 A−1
11 0 −A−1

11 A13

0 A−1
22 −A−1

22 A23

0 0 I

 I 0 0
0 I 0
0 0 S−1

 I 0 0
0 I 0

−AT
13A

−1
11 −AT

23A
−1
22 I

 .

Schur complement

In this form, solving the system Av = h2f is broken down into
simpler components:

▶ Performing A−1
11 and A−1

22 : we can use our previous solvers to
compute these operations.

▶ Multiplying by A13 and A23: this is simple to do, especially
since these matrices are sparse.

▶ Performing the inverse S−1: this is the most challenging part.
However, S is smaller than the original matrix since it only
involves the connecting gridpoints.

Options for inverting the Schur complement

Option 1: Compute S exactly. This can be done by performing the
matrix products Sek for unit vectors ek in domain 3. Each matrix
product requires one solve of A−1

11 and A−1
22 . Since S is an SPD

matrix, it can be solved efficiently via Cholesky factorization.

Option 2: Use a Krylov subspace method such as conjugate
gradient. Since we can efficiently multiply by S , this is attractive.
In addition, S generally turns out to be better conditioned than the
original matrix.

Generalization to more subdomains

Consider k > 2 non-overlapping subdomains, with the boundary
gridpoints indexed as k + 1. The matrix has the form

A =

A1,1 0 A1,k+1

. . .
...

0 Ak,k Ak,k+1

AT
1,k+1 · · · AT

k,k+1 Ak+1,k+1

and the Schur complement is

S = Ak+1,k+1 −
k∑

j=1

AT
j ,k+1A

−1
j ,j Aj ,k+1.

Note that many steps (e.g. the inversions A−1
j ,j) can be computed

in parallel.

Case II: Overlapping domains

Consider solving the Poisson equation with zero Dirichlet boundary
conditions on the domain shown below.

1 2 3 4

5

9

10 19

23

25 26 27

12

14

13

15

16 17

24

6 7 8

10

11 18

21 2220

This domain consists of two overlapping squares with N = 4. It
can be broken down into (B) points in the first square but not the
second, (C) points common to both squares, and (D) points in the
second square but not the first.

Case II: Overlapping domains

The matrix has the form

A =

 AB,B AB,C 0
AC ,B AC ,C AC ,D

0 AD,C AD,D

 .

The representation can be amalgamated in two ways:

A =

(
ABC ,BC ABC ,D

AD,BC AD,D

)
=

(
AB,B AB,CD

ACD,B ACD,CD

)
.

Here the BC and CD suffixes correspond to the combined
gridpoints in those domains. Similarly the solution vector can be
decomposed as

v =

(
vBC
vD

)
=

(
vB
vCD

)
.

Iterative Schwarz methods
For overlapping domains, we introduce two different iterative
approaches. Define b = h2f to the be source term and consider
solving Av = b.

Given a solution vi , the additive Schwarz method proceeds as
follows to obtain a better answer vi+1:

1. Calculate r = b − Avi .

2. Calculate w = A−1
BC ,BC rBC .

3. Calculate x = A−1
CD,CDrCD .

4. Define the new solution22 as

vi+1 = vi +

 wB

(wC + xC)/2
xD

 .

22Note that this is a bit different to the Applied Numerical Linear Algebra
textbook. In the C domain, Demmel takes a sum instead of an average. I have
found an average leads to better convergence.

Comments on the additive Schwarz method

Note that steps 2 and 3 can be calculated efficiently using the fast
solvers on the square grids. Steps 2 and 3 can also be done in
parallel.

In step 3 of the additive Schwarz method, we use the original
residual r from step 1, even though we have new information from
doing the solve on the BC in step 2. This suggests a modified
approach.

The multiplicative Schwarz method

The multiplicative Schwarz method recomputes the residual before
doing the solve on CD.23 This leads to the following iteration:

1. rBC = (b − Avi)BC

2. vi+ 1
2
= vi + A−1

BC ,BC rBC

3. rCD = (b − Avi+ 1
2
)CD

4. vi+1 = vi+ 1
2
+ A−1

CD,CDrCD

This typically gives better performance than the additive Schwarz
method. However, the ability to parallelize in a straightforward
manner is lost, since the second solve A−1

CD,CD incorporates
information from the first.

23This is similar to the logic behind moving from the Jacobi method to the
Gauss–Seidel method. See the AM205 notes.

http://iacs-courses.seas.harvard.edu/courses/am205/notes/iter_lecture.pdf

