
Applied Mathematics 225

Unit 1: Advanced ODE integration methods

Lecturer: Chris H. Rycroft

Overview

In this unit, we will look at methods to solve the ODE Initial Value
Problem (IVP)

y ′ = f (x , y), y(x0) = y0

where y(x) ∈ Rn is a vector function of unknowns.

ODE IVPs have a huge range of applications in many different
domains

▶ n could be small – epidemiological models, physical
dynamics models, electric circuits, . . .

▶ n could be billions or trillions – gravitational interactions
between stars, timestepping spatial discretizations of PDEs,
. . .

Topics covered in AM205

▶ Simple low-order timestepping methods (explicit Euler,
implicit Euler, etc.)

▶ Local error, global error, truncation error of a method

▶ Theoretical bounds on error

▶ Basic Runge–Kutta methods, Butcher tableaus

▶ Error estimation, Richardson extrapolation

▶ Multistep Adams–Bashforth methods

For a review, consult Unit 3, part 2 from AM 205.

https://courses.seas.harvard.edu/courses/am205/slides/am205_unit3b.pdf

Questions to answer in this Unit

AM 2051 states Runge–Kutta methods from thin air—where do
they come from? What’s the mathematics behind this?

How do we design efficient and practical timestepping schemes?
How do we compare methods against each other?

Can we design special methods for certain problems, e.g.
high-order methods, symplectic methods for energy-conserving
systems?

How do we deal with stiff ODE systems? What can we say in
general about stability of a method?

Can we exploit parallelism?

1This is true for many scientific computing courses.

Books

Two excellent books on the subject:

▶ E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary
Differential Equations I: Nonstiff Problems. Springer, 1993.

▶ E. Hairer and G. Wanner, Solving Ordinary Differential
Equations II: Stiff and Differential–Algebraic Problems.
Springer, 1996.

We will follow their notational conventions

Their notation is slightly different from AM205, but the main
principles are interchangeable.

The Runge–Kutta methods
Consider taking a step from y0 to y1 of size h. Compute the
sequence of intermediate steps

ki = f (x0 + cih, y0 + h
i−1∑
j=1

aijkj)

for i = 1, . . . , s, after which the solution is given by

y1 = y0 + h
s∑

i=1

biki .

Coefficients in the method are described in a Butcher tableau

0
c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Low-order methods

Explicit Euler

0

1

Ralston’s method

0
2/3 2/3

1/4 3/4

Heun’s 3rd order method

0
1/3 1/3
2/3 0 2/3

1/4 0 3/4

4th order Runge–Kutta method

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Simplifying assumption

Note that all methods on the previous slide satisfy

ci =
i−1∑
j=1

aij .

This condition expresses that all points where f is evaluated are
first-order approximations to the solution. It greatly simplfies the
derivation of high-order methods.

For low orders, this assumption is not necessary.

Method comparison

Standard test problem in Hairer et al. is the Brusselator for
(y1(x), y2(x)),

y ′1 = 1 + y21 y2 − 4y1, y ′2 = 3y1 − y21 y2

with initial conditions

y1(0) = 1.5, y2(0) = 3.

Simple model of chemical kinetics. Good test since the smoothness
of the solution varies over time.

Computer demo: Four black-box solvers for the Brusselator
problem

Brusselator results (Heun method)

0

1

2

3

4

5

0 5 10 15 20

S
ol
u
ti
on

co
m
p
on

en
t

x

y1(x)

y2(x)

Precision–work diagram

100

1000

10000

100000

10−1210−1010−810−610−410−21

F
u
n
ct
io
n
ev
al
u
at
io
n
s

Precision

Euler

Ralston

3rd order Heun

4th order R–K

Order conditions for Runge–Kutta methods

The explicit Euler method is a one-step Runge-Kutta method.
Consider taking a step from y0 to y1 of size h:

k1 = f (x0, y0), y1 = y0 + hk1 = y0 + hf (x0, y0). (1)

Compare to Taylor series expansion of the solution

y1 = y0 + hy ′(x0) + O(h2).

By substituting in y ′ = f (x , y) this yields

y1 = y0 + hf (x0, y0) + O(h2). (2)

Comparing (2) to (1) shows that the two agree up to O(h2).
Hence the explicit Euler method is first-order accurate.

Extension to second order

Consider two-step method with Butcher tableau

0
α β

a b

By comparing to second order, it can be shown2 that if

a+ b = 1, αb = βb = 1/2

then the method is second-order accurate.

2https:
//courses.seas.harvard.edu/courses/am205/notes/am205_rk2_multi.pdf

https://courses.seas.harvard.edu/courses/am205/notes/am205_rk2_multi.pdf
https://courses.seas.harvard.edu/courses/am205/notes/am205_rk2_multi.pdf

Extension to fourth order

Repeated Taylor expansions show that a general four-step method
must satisfy

b1 + b2 + b3 + b4 = 1,

b2c2 + b3c3 + b4c4 = 1/2,

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1/3,

b3a32c2 + b4(a42c2 + a43c3) = 1/6,

b2c
3
2 + b3c

3
3 + b4c

3
4 = 1/4,

b3c3a32c2 + b4c4(a42c2 + a43c3) = 1/8,

b3a32c
2
2 + b4(a42c

2
2 + a43c

2
3) = 1/12,

b4a43a32c2 = 1/24

to be fourth-order accurate. As stated by Hairer et al.,
These computations . . . are very tedious. And they

grow enormously with higher orders.

First simplification

Suppose y ∈ Rn. Rewrite the equation y ′(x) = f (x , y) as the
augmented problem (

x
y

)′
=

(
1

f (x , y)

)
and define a new variable Y = (x , y) ∈ Rn+1 such that the
equation becomes

Y ′ = F (Y).

Explicit x dependence is removed—this is referred to as
autonomous form.

Hang onto your hats

The reader is now asked to take a deep breath, take
five sheets of reversed computer paper, remember the ba-
sic rules of differential calculus, and begin the following
computations.

– Hairer et al. (1993)

It is difficult to keep a cool head when discussing the
various derivatives . . .

– S. Gill (1956)

Beginning notation

Consider autonomous ODE y ′ = f (y) where y(x) ∈ Rn. Use
capital superscript indices for vectors, so that

(yJ)′ = f J(y1, y2, . . . , yn), J = 1, . . . , n.

Rather than work with the RK steps ki directly, we work with their
arguments gi such that ki = f (gi). Then

gJ
i = yJ0 +

i−1∑
j=1

aijhf
J(g1

j , . . . , g
n
j), i = 1, . . . s,

yJ1 = yJ0 +
s∑

j=1

bjhf
J(g1

j , . . . , g
n
j).

Main result (see notes for definitions)

A Runge–Kutta method is of order p if and only if

s∑
j=1

bjΦj(t) =
1

γ(t)

for all trees t of order ≤ p.

The number of conditions grows rapidly with the order p.

Order p 1 2 3 4 5 6 7 8 9 10

trees 1 1 2 4 9 20 48 115 286 719

conditions 1 2 4 8 17 37 85 200 486 1205

Principal error term

If the Runge–Kutta method is order p and f is (p + 1)-times
continuously differentiable, then

yJ(x0 + h)− yJ1 =
hp+1

(p + 1)!

∑
t∈Tp+1

α(t)e(t)F J(t)(y0) + O(hp+2)

where

e(t) = 1− γ(t)
s∑

j=1

bjΦj(t)

For 4th order Runge–Kutta method, we must consider the nine
trees of order 5. Coefficients e(t) are given by(

− 1

24
,− 1

24
,
1

16
,−1

4
,−2

3
,
1

6
,
1

6
,−1

4
, 1

)
Good methods aim to minimize these numbers.

Butcher barriers

For a five-step method, there are ten available ajk coefficients and
five available bj coefficents

For order p = 5 there are 17 constraints. Kutta hypothesized that
there might still be a solution, but this was later disproved:

Theorem: For p ≥ 5 no explicit Runge–Kutta method exists of
order p with s = p stages.

Hence we must use s > p stages to reach higher orders

Error estimation

To estimate error, can derive Butcher tableaus with a second
estimate for the solution ŷ1 with order p̂. For example, Zonneveld’s
4(3) method with s = 5 is

0

1/2 1/2

1/2 0 1/2

1 0 0 1

3/4 5/32 7/32 13/32 −1/32

y1 1/6 1/3 1/3 1/6

ŷ1 −1/2 7/3 7/3 13/6 −16/3

Solution y1 is of order p = 4. Solution ŷ1 is of order p̂ = 3. Use
y1 − ŷ1 as an error estimate.

FSAL (First Same As Last)

For s = 4 stages, it is impossible to find a pair of order 4(3). But
y1 can be added as a fifth stage, and we can search for a third
order method that uses all function values. One such method is

0

1/3 1/3

2/3 −1/3 1

1 1 −1 1

1 1/8 3/8 3/8 1/8

y1 1/8 3/8 3/8 1/8

ŷ1 1/12 1/2 1/4 0 1/6

The computation of k5 is used to evaluate ŷ1, but is then re-used
as k1 in the next integration step.

Fehlberg’s order 4(5) method, RKF45

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2

−8
27 2 −3544

2565
1859
4104 −11

40

y1
25
216 0 1408

2565
2197
4104 −1

5 0

ŷ1
16
135 0 6656

12825
28561
56430 − 9

50
2
55

Coefficients are chosen to minimize the error on the fourth-order
solution y1. Other formula ŷ1 is order 5. Use y1 − ŷ1 to estimate
error.

Practical step size selection

We want to write a code to automatically adjust the step size.
Aim to satisfy

|y1i − ŷ1i | < sci , sci = Atoli + Rtoli max{|y0i |, |y1i |}

where Atoli and Rtoli are the absolute and relative error
tolerances, respectively. A scaled measure of error is then

err =

√√√√1

n

n∑
i=1

(
y1i − ŷ1i

sci

)2

.

Expect err ≈ Chq+1 where q = min{p, p̂}. Aim for err < 1 for an
acceptable step. Thus if the current step is of size h, then the
optimal step size is

hopt = h(1/err)1/(q+1).

Practical step size selection

Since we want the next step to be selected with high probability,
we decrease hopt by a safety factor fac. Also, we do not want the
step size to increase or decrease too much. Hence define

hnew = hmin{facmax,max{facmin, fac(1/err)1/(q+1)}}.

Reasonable parameters are

fac = 0.9, facmax = 3, facmin = 1/3.

Now, if err < 1 then the current step is accepted and a new step of
size hnew is tried. Otherwise the current step is rejected and the
code tries again with hnew. From the formula, hnew will be smaller
than h in the case of a rejection.

A note about p(p̂) methods

In Fehlberg’s 4(5) method, the error coefficients are minimized on
the fourth order solution y1. Since the other solution ŷ1 is of order
five, the value y1 − ŷ1 is an estimate of the local error of y1.

Thus by using y1 for integration, we get an accurate fourth-order
solution, and local error estimates

Wouldn’t it be natural to use the high order method for
integration?

You can do this! You can still use y1 − ŷ1 for step size selection,
but the concept of error estimation is abandoned.

Not clear the local error estimation is very useful for predicting
global errors, anyway.

Dormand–Prince 5(4) method (DOPRI5)

Minimizes the error terms on the higher order result, the opposite
of RKF45. Fifth-order y1 intended to be used for integration.

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

y1
35
384 0 500

1113
125
192 −2187

6784
11
84 0

ŷ1
5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Uses FSAL approach for error estimation in ŷ1.

Cash–Karp method 5(4,3,2,1)

Contains embedded formulae for all lower orders. Lower order
formulae can be used to quit early when there are unacceptable
errors, without evaluating all steps.

0
1
5

1
5

3
10

3
40

9
40

3
5

3
10 − 9

10
6
5

1 − 11
54

5
2 − 70

27
35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

(Order 5) y1
37
378 0 250

621
125
594 0 512

1771

(Order 4) ŷ1
2825
27648 0 18575

48384
13525
55296

277
14336

1
4

(Order 3) ŷ1
19
54 0 − 10

27
55
54 0 0

(Order 2) ŷ1 − 3
2

5
2 0 0 0 0

(Order 1) ŷ1 1 0 0 0 0 0

Dense output

Integration
timepoints

y

x

Required output
timepoints

Adaptive high-order RK methods require infrequent, intermittent
timesteps. But often we need to output the solution at frequent,
specific times.

Simple solution: decrease timestep to exactly match the output
times. Requires more timesteps and function evaluations.

Better solution: create polynomial interpolant of order p∗ over
each timestep, then cheaply evaluate the solution over the entire
interval.

Dense output

Consider step of size h from (x0, y0) to (x1, y1). Aim to find a
polynomial function u of degree p∗ such that

y(x0 + hθ) = u(θ)

Hermite interpolation can be used for p∗ = 3:

▶ Know function values y0 and y1.

▶ Know derivatives f0 = f (x0, y0) and f1 = f (x0 + h, y1).

Four constraints for four unknowns in the cubic. Hermite
interpolant is

u(θ) = (1− θ)y0 + θy1

+ θ(θ − 1) ((1− 2θ)(y1 − y0) + (θ − 1)hf0 + θhf1) .

Dense output: required accuracy

Fourth-order methods (e.g. the classic 4th-order Runge–Kutta
method) are popular. Is a cubic polynomial good enough?

Consider pth order method, and a dense output polynomial u of
order p∗

Consider interval away from initial value, [xn, xn+1]. Denote z(x)
to be the local solution starting from (xn, yn). Difference between
true solution and dense output is

u(θ)− y(xn + θh) = (u(θ)− z(xn + θh))

Polynomial error, O(hp
∗+1)

+ (z(xn + θh)− y(xn + θh))

Global error, O(hp)

Thus obtaining a polynomial with p∗ = p − 1 gives commensurate
error terms.

Bootstrapping to higher order

Suppose we have a third order approximation available. Fix
α ∈ (0, 1) and denote the third-order approximation by yα. Then
hf (x0 + αh, yα) is a fourth-order approximation to hy ′(x0 + αh).

Find quartic polynomial u(θ) such that

u(0) = y0, u(1) = y1, u′(0) = hf (x0, y0),

u′(1) = hf (x0 + h, y1), u′(α) = hf (x0 + αh, yα)

Can be generalized to higher orders.

More general dense output formulae

The connection between the RK stages ki and the polynomial
interpolant is not straightforward

For some higher-order RK method with s stages, we can add
s∗ − s new stages and then evaluate

u(θ) = y0 + h
s∗∑
i=1

bi (θ)ki

for some polynomials bi (θ).

Dormand–Prince 8(5,3) (DOP853)
Eigth-order method with s = 13 steps and the FSAL property.
Contains embedded formulae of orders 5 and 3 for adaptive step
size control.

Steps 14, 15, and 16 are used for dense output.

DOP853 on the Brusselator (Atol = 10−6)

0

1

2

3

4

5

0 5 10 15 20

S
ol
u
ti
on

co
m
p
on

en
t

x

y1(x)
y2(x)

y1(x) dense output
y2(x) dense output

Updated work–precision plot

100

1000

10000

100000

10−1210−1010−810−610−410−21

F
u
n
ct
io
n
ev
al
u
at
io
n
s

Precision

Euler
Ralston

3rd order Heun
4th order R–K

DOP853

Implicit methods

Implicit methods are more complicated, but frequently have better
stability properties that allow for larger timesteps

Simple implicit method is the backward Euler method,

y1 = y0 + hf (x1, y1).

Another is the implicit midpoint method,3

y1 = y0 + hf

(
x0 +

h

2
,
y0 + y1

2

)
If rewritten as

k1 = f

(
x0 +

h

2
, y0 +

hk1
2

)
, y1 = y0 + hk1,

then it starts to look like a Runge–Kutta method.

3This featured on an AM205 homework assignment.

https://courses.seas.harvard.edu/courses/am205/hw/am205_hw3.pdf

A more general Runge–Kutta definition

The method given by

ki = f

x0 + cih, y0 + h
s∑

j=1

aijkj


for i = 1, . . . , s, and

y1 = y0 + h
s∑

i=1

biki

is called an s-stage Runge–Kutta method. Furthermore

▶ If aij = 0 for all i ≤ j we have an explicit (ERK) method.

▶ If aij = 0 for i < j and at least one aii ̸= 0, we have a
diagonal implicit Runge–Kutta (DIRK) method.

▶ Otherwise we have an implicit Runge-Kutta (IRK) method.

Low-order methods

Implicit Euler
(DIRK, order 1)

1 1

1

Implicit midpoint rule
(DIRK, order 2)

1/2 1/2

1

Hammer & Hollingsworth #1
(DIRK)

0 0 0
2/3 1/3 1/3

1/4 3/4

Hammer & Hollingsworth #2
(IRK, order 4)

1/2−
√
3/6 1/4 1/4−

√
3/6

1/2 +
√
3/6 1/4 +

√
3/6 1/4

1/2 1/2

Connection with Gaussian quadrature

Consider applying Hammer & Holligsworth #2 (HH2) to the
simplified problem

y ′ = f (x)

with initial condition y(0) = 0. This has an integral solution

y(x) =

∫ x

0
f (t)dt.

One step of size h with HH2 yields

y1 = y0 +
h

2
(f

(
h(1/2−

√
3/6)

)
+ f

(
h(1/2 +

√
3/6)

)
).

This is exactly equivalent to two-point Guassian quadrature!

HH2 is fourth-order accurate, even when applied to the general
case y ′ = f (x , y).

Connection with Gaussian quadrature

Similarly, the order 2 implicit midpoint rule is equivalent to
one-point Gaussian quadrature.

Kuntzmann and Butcher showed it is possible to compute s-stage
IRK methods of order 2s based on Gaussian quadrature, for any s.
Three point Gaussian quadrature leads to the following sixth-order
scheme

1/2−
√
15/10 5/36 2/9−

√
15/15 5/36−

√
15/30

1/2 5/36 +
√
15/24 2/9 5/36−

√
15/24

1/2 +
√
15/10 5/36 +

√
15/30 2/9 +

√
15/15 5/36

5/18 4/9 5/18

Other quadrature schemes (e.g. Gauss–Lobatto) also lead to IRK
schemes.

Existence of a solution

Solving an IRK will require root finding in general. Is a solution
guaranteed? Yes, under certain conditions.

Theorem: Let f (x , y) satisfy a Lipschitz condition4 with constant
L. If

h <
1

Lmaxi
∑

j |aij |

then there exists a unique solution which can be obtained by
iteration.

4With respect to y .

Existence of a solution
Proof: Consider an iterative process where superscript (m) marks
the mth iteration. Then

k
(m+1)
i = f

x0 + cih, y0 + h
s∑

j=1

aijk
(m)
j


Define K ∈ Rsn as K = (k1, k2, . . . , ks)

T and use the norm
∥K∥ = maxi ∥ki∥. Then

Fi (K) = f

x0 + cih, y0 + h
s∑

j=1

aijkj


for i = 1, . . . s. Then the Lipschitz condition and the triangle
inequality show that

∥F (K1)− F (K2)∥ ≤ hLmax
i

s∑
j=1

|aij |∥K1 − K2∥

Work–precision plot with Hammer–Hollingsworth

100

1000

10000

100000

10−1210−1010−810−610−410−21

F
u
n
ct
io
n
ev
al
u
at
io
n
s

Precision

Euler
Ralston

3rd order Heun
4th order R–K

4th order H–H IRK

Hammer–Hollingsworth performance5

Hammer–Hollingsworth code exhibits asympototically fourth-order
convergence

Larger prefactor than the classic fourth-order RK scheme, since
each step requires multiple (roughly 5–10) fixed-point iterations to
reach convergence

Could be sped up by using faster root-finding methods
(e.g. Newton–Raphson)

Since it is implicit, Hammer–Hollingsworth is better suited to stiff
problems

5Note: the Hammer–Hollingsworth code is added to the “low order ODE”
example codes.

Richardson extrapolation

Suppose that yk+2 is the numerical result of two steps with size h
of a Runge–Kutta method of order p, and w is the result of one
big step with step size 2h. Then the error of yk+2 can be
approximated as

y(tk + 2h)− yk+2 =
yk+2 − w

2p − 1
+ O(hp+2)

and

ŷk+2 = yk+2 +
yk+2 − w

2p − 1

is an approximation of order p + 1 to y(t0 + 2h).

Extrapolation methods

Richardson extrapolation relies on the structure of local error. But
global error is also structured.

Theorem (Gragg, 1964): The global error of a numerical method6

of order p is

y(x)−yh(x) = ep(x)h
p+ep+1(x)h

p+1+ . . .+eN(x)h
N+Eh(x)h

N+1

where Eh(x) is bounded for x0 ≤ x ≤ xend and 0 ≤ h ≤ h0.
Furthermore ej(x) are the solutions to inhomogeneous diffferential
equations with ej(x0) = 0.

6Under mild conditions; see Hairer et al., Chapter II.8 for full details.

Extrapolation methods

The extrapolation methods are a family of numerical methods that
generalize Richardson extrapolation to exploit the structured
nature of the error terms.

Let H be a basic step size. Introduce a seqeuence of positive
integers

n1 < n2 < n3 < . . .

and define corresponding step sizes of hi = H/ni . For each i ,
compute ni steps of size hi to obtain

yhi (x0 + H) = Ti ,1

Extrapolation methods

Define a polynomial

p(h) = ŷ − eph
p − ep+1h

p+1 − . . .− ep+k−2h
p+k−2

such that p(hi) = Ti ,1 for i = j , j − 1, . . . , j − k + 1.

This gives k constraints for the k unknowns ŷ , ep, . . . , ep+k−2.

Extrapolate to h = 0 and define

Tj ,k = p(0) = ŷ

Then Tj ,k is numerical approximation with order p + k − 1.

Extrapolation methods

Obtain a family of solutions

T11

T21 T22

T31 T32 T33

T41 T42 T43 T44

T51 T52 T53 T54 T55
...

...
...

...
...

. . .

with variable order; very convenient for error estimation and
designing an adaptive order method

Choices for the integer sequence n1 < n2 < . . .

The Romberg sequence

1, 2, 4, 8, 16, 32, 64, 128, . . .

The Bulirsch sequence7

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, . . .

The harmonic sequence

1, 2, 3, 4, 5, 6, 7, 8, . . .

7This is made by alternately multiplying by 2 and 1.5.

Direct method to find Tj ,k

System of equations is

H×


1 1/npj . . . 1/np+k−2

j

1 1/npj+1 . . . 1/np+k−2
j+1

...
...

. . .
...

1 1/npj−k+1 . . . 1/np+k−2
j−k+1




ŷ
ep
...

ep+k−2

 =


Tj ,1

Tj+1,1
...

Tj−k+1,1

 .

Then Tj ,k = ŷ .

Note that this is similar to a Vandermonde matrix problem, which
occurs during polynomial interpolation of set of discrete points.

Aitken–Neville recurrence relation

We only need ŷ , not all of the ei . The Aitken–Neville recurrence
relation gives

Tj ,k+1 = Tj ,k +
Tj ,k − Tj−1,k

nj
nj−k
− 1

,

which does not require matrix inversion.

Extrapolation method convergence

Computer demo: testing the extrapolation method on the test
ODE system

y ′1 = −xy2
y ′2 = xy1

with initial conditions y1(0) = 1, y2(0) = 0. Has exact solution

y1(x) = cos
x2

2
, y2(x) = sin

x2

2
.

Extrapolation method convergence for (j , k) for Tj ,k

100

1000

10000

10−1210−1010−810−610−410−21

F
u
n
ct
io
n
ev
al
u
at
io
n
s

Precision

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(7,1)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(7,2)

(3,3)

(4,3)

(5,3)

(6,3)

(7,3)

(4,4)

(5,4)

(6,4)

(7,4)

(5,5)

(6,5)

(7,5)

(6,6)

(7,6)(7,7)

A further improvement

Consider a centered finite-difference derivative of a function f (x):

f (x + h)− f (x − h)

2h
= f ′(x) + e2h

2 + e4h
4 + e6h

6 + . . .

By symmetry only even powers of h are present in the asymptotic
expansion.

If we use a similar approach here, we can double the order of an
extrapolation method . . .

. . . but we need a basic forward integration method with only even
error terms.

Gragg’s method

Consider Gragg’s method

y1 = y0 + hf (x0, y0)

yi+1 = yi−1 + 2hf (xi , yi), i = 1, 2, . . . , 2n

with smoothing operator

Sh(x) =
y2n−1 + 2yn + y2n+1

4
.

This has an asymptotic expansion in powers of h2. Must modify
recurrence relation to

Tj ,k+1 = Tj ,k +
Tj ,k − Tj−1,k(

nj
nj−k

)2
− 1

.

Using extrapolation on this yields the powerful and practical
Gragg–Bulirsch–Stoer (GBS) method.

GBS convergence for different Tj ,k (Bulirsch seqence)

100

1000

10000

10−1610−1410−1210−1010−810−610−410−21

F
u
n
ct
io
n
ev
al
u
at
io
n
s

Precision

Original extrap. method
GBS method

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(7,1)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(7,2)

(3,3)

(4,3)

(5,3)

(6,3)

(7,3)

(4,4)

(5,4)

(6,4)

(7,4)

(5,5)

(6,5)

(7,5)

(6,6)

(7,6)(7,7)

Comments on GBS method convergence

As expected, the GBS method doubles the order over the original
extrapolation approach, leading to a very good ratio of precision to
function evaluations

For k = 5 (tenth order) and beyond, numerical roundoff begins to
dominate and there is limited practical benefit

These methods are still useful for extended-precision calculations.
There are libraries for quadruple-precision float point numbers,8

using 16 bytes each, yielding about 32 decimal digits of precision.

8See the QD library: http://crd-legacy.lbl.gov/˜dhbailey/mpdist/

http://crd-legacy.lbl.gov/~dhbailey/mpdist/

Parallelizing timestepping methods

In parallel computations, it is common practice to divide the
workload in space

But there is also interest in methods to divide the workload in
time, i.e., devising a timestepping that processes multiple parts of
the update simultaneously

Possible advantage: parallelization can be part of a black box
timestepper without requiring any adjustments to the main
simulation

Runge–Kutta schemes involve multiple intermediates—there is
hope they can be computed in parallel

Parallelizing timestepping methods

Question: can parts of this Runge–Kutta scheme be processed
simultaneously?

0
× ×
× × 0
× × × 0

× × × ×

Here the × symbol represents a non-zero entry

Parallelizing timestepping methods

In the previous example, k2 and k3 can be process simultaneously,
and k4 can begin as soon as k2 is done.

Unfortunately, we hit a severe restriction.

Theorem: For an explicit Runge–Kutta method with σ sequential
stages the order p satisfies p ≤ σ for any number of available
processors.

This follows from the order condition for the “tall tree” of order p,
corresponding to a long chain of p vertices. This requires at least p
sequential stages to satisfy.

Parallelization: there is hope

We saw that high order methods require s > p stages. Processing
in parallel could feasibly reduce the number of sequential stages to
p.

Extrapolation methods are highly suited to parallelization: each
Tj ,1 can be computed independently.

Other contemporary methods (e.g. spectral deferred corrections)
have been shown to be well-suited to parallelization.9

9M. L. Minion, Comm. App. Math. and Comp. Sci. 5, 265–301 (2010).

Second-order differential equations

We frequently need to solve second-order differential equations of
the form

y ′′ = f (x , y ′, y ′′)

A simple method of solution is to write as a first-order system(
y
y ′

)′
=

(
y ′

f (x , y , y ′)

)
with initial conditions y(x0) = y0, y

′(x0) = y ′0.

Second-order differential equations

Substituting into a standard Runge–Kutta scheme gives

ki = y ′0 + h
s∑

k=1

aijk
′
j

k ′i = f

x0 + cih, y0 + h
s∑

j=1

aijkj , y
′
0 + h

s∑
j=1

aijk
′
j


y1 = y0 + h

s∑
i=1

biki

y ′1 = y ′0 + h
s∑

i=1

bik
′
i

Second-order differential equations

Can eliminate ki by direct substitution to obtain

k ′i = f

x0 + cih, y0 + cihy
′
0 + h2

s∑
j=1

āijk
′
j , y

′
0 + h

s∑
j=1

aijk
′
j


y1 = y0 + hy ′0 + h2

s∑
i=1

b̄ik
′
i

y ′1 = y ′0 + h
s∑

i=1

bik
′
i

where

āij =
s∑

k=1

aikakj , b̄i =
s∑

j=1

bjaji

Nyström methods

In the rewritten form, aij & bi are used to find y1, and āij & b̄i are
used to update y ′1. Nyström began to look for general tableaus for
the two sets of coefficients that do not satisfy the algebraic
constraints for āij and b̄i on the previous slide.

0

1/2 1/8 āij 1/2 aij
1/2 1/8 0 0 1/2

1 0 0 1/2 0 0 1

b̄i → 1/6 1/6 1/6 0 1/6 2/6 2/6 1/6 ← bi

Does not result in a large speedup.

Nyström methods

However we do gain a big advantage for problems with the form
y ′′ = f (x , y)!

Method becomes

k ′i = f

x0 + cih, y0 + cihy
′
0 + h2

s∑
j=1

āijk
′
j

 ,

y1 = y0 + hy ′0 + h2
s∑

i=1

b̄ik
′
i , y ′1 = y ′0 + h

s∑
i=1

bik
′
i .

The aij coefficients are no longer needed.

Nyström methods

An example of a very efficient four-step fifth-order10 Nyström
method has Butcher tableau

0

1/5 1/50 āij

2/3 −1/27 7/27

1 3/10 −2/35 9/35

b̄i 14/336 100/336 54/336 0

bi 14/336 125/336 162/336 35/336

10Specifically, y(x0 + h)− y1 = O(hp+1) and y ′(x0 + h)− y ′
1 = O(hp+1). In

this case p = 5.

Symplectic methods

Important class of ODEs arise from Hamiltonian systems given by

ṗi = −
∂H

∂qi
(p, q), q̇i =

∂H

∂pi

where p = (p1, p2, . . . , pn) are generalized momentum variables
and q = (q1, q2, . . . , qn). Represent energy-conserving physical
systems where H(p, q) is the energy (e.g. mechanical systems,
orbital dynamics)

Symplectic integration methods exactly conserve H(p, q). This is
not true for most methods we have covered—for an order p
method we could obtain global errors in H of size O(hp).

See supplemental notes and optional homework question.

Stability

An important consideration in ODE integration is stability—will
the numerical scheme be well-behaved for a given step size?11

Consider test equation y ′ = λy . For λ < 0, two solutions that start
from similar initial conditions y0 and y0 + ϵ will stay close together.
We want our numerical scheme to do the same.

For explicit Euler, timestep restriction is −2 ≤ λh ≤ 0. Large λ
implies small h.

11See AM205 unit 3 for details and definitions.

Stiffness

We frequently encounter stiff ODE systems. There is no
mathematical definition of stiffness, but main principle is that the
system has components that evolve on different scales, e.g.(

y1
y2

)′
=

(
−1000 0

0 −1

)(
y1
y2

)
.

Eigenvalues of λ = −1,−1000. Step size restriction is set by
largest eigenvalue, and thus 0 ≤ h1000 ≤ 2.

Stability analysis for Runge–Kutta methods

Let φ(x) be a smooth solution of y ′ = f (x , y). Then

y ′(x) = f (x , φ(x)) +
∂f

∂y
(x , φ(x))(y(x)− φ(x)) +

Substituting in ȳ(x) = y(x)− φ(x) gives

ȳ ′(x) =
∂f

∂x
(x , φ(x)) · ȳ(x) + . . . = J(x)ȳ(x) + . . .

where J is the Jacobian of f with respect to y . Thus assuming J is
approximately constant over an interval,

ȳ ′(x) = Jȳ

Thus studying the stability properties of y ′ = λy , provides insight
about any general nonlinear ODE system.

Definition of stability

Applying Explicit Euler to this problem gives

ym+1 = R(hλ)ym

where R(z) = 1 + z .

For a general method, define R(z) as the stability function, which
is the numerical solution after one step of

y ′ = λy , y0 = 1, z = hλ,

which is called the Dahlquist test equation. The set

S = {z ∈ C : |R(z)| ≤ 1}

is the stability domain of the method.

Stability analysis for Runge–Kutta methods

For a Runge–Kutta method

gi = 1 + z
s∑

j=1

aijgj ,

R(z) = 1 + z
s∑

j=1

bjgj .

For an explicit method

R(z) = 1 + z
∑
j

bj + z2
∑
j ,k

bjajk + z3
∑
j ,k,l

bjajkakl + . . .

Stability analysis for Runge–Kutta methods

Theorem: If the Runge–Kutta method is of order p, then

R(z) = 1 + z +
z2

2!
+

z3

3!
+ . . .+

zp

p!
+ O(zp+1)

Since the numerical solution of the test equation is ez , we must
have ez − R(z) = O(zp+1).

Stability analysis for implicit Runge–Kutta methods

Applying the implicit Euler method to the Dahlquist test equation
yields

y1 = 1 + hλy1 =⇒ y1 =
1

1− hλ
=⇒ R(z) =

1

1− z

Stability analysis for implicit Runge–Kutta methods

Quiz: what are the stability functions for the following implicit
schemes?

Implicit midpoint rule

1/2 1/2

1

Hammer & Hollingsworth #1
(DIRK)

0 0 0
2/3 1/3 1/3

1/4 3/4

Hammer & Hollingsworth #2
(IRK)

1/2−
√
3/6 1/4 1/4−

√
3/6

1/2 +
√
3/6 1/4 +

√
3/6 1/4

1/2 1/2

Solutions

Implicit midpoint rule:

R(z) =
1 + z/2

1− z/2

Hammer–Hollingsworth #1:

R(z) =
1 + 4z/6 + z2/6

1− z/3

Hammer–Hollingsworth #2:

R(z) =
1 + z/2 + z2/12

1− z/2 + z2/12

Definitions

Definition: A method is called A-stable if its stability domain
satisfies

S ⊇ {z ∈ C : z ≤ 0}.

Also follows from properties of analytic functions: a method is
A-stable if

R(iy) ≤ 1

for all y ∈ R, and R(z) is analytic for z < 0.

A further definition

Some methods (e.g. implicit midpoint) have stability regions that
exactly coincide with the left half plane.

This is not as desirable as expected. Since R is an analytic
function,

lim
z→−∞

R(z) = lim
z→∞

R(z) = lim
z=iy ,y→∞

R(iy)

and the final term is equal to one in this case. Very stiff
components are damped out very slowly.

Definition: A method is called L-stable if it is A-stable and

lim
z→∞

R(z) = 0.

One last definition

The previous argument suggests A-stability is too weak. But in
other ways it is too strong, since many good methods are ruled
out. This motivates one final definition.

Definition: A method is said to be A(α)-stable if the sector

Sα = {z ∈ C : | arg(−z)| < α, z ̸= 0}

is contained in the stability region.

