
Applied Mathematics 225

Unit 0: Introduction and OpenMP programming

Lecturer: Chris H. Rycroft



Moore’s law

“The transistor density of semiconductor chips will
double roughly every 18 months”



Moore’s second law

I There is exponential growth in the cost of tools for chip
manufacturing

I Power density scales like the cube of clock frequency



Consequence

Serial processors are not getting faster. Instead, the emphasis is on
parallelism via multi-core processors.



A related problem: scaling of memory performance

Improvements in memory access time are significantly slower than
the transistor count



Important questions for scientific computing

Multi-core chips are now standard—even a smartphone has a dual
or quad core chip

But many classic textbook algorithms date from times before these
considerations were important

How well can numerical algorithms exploit parallelism?

Do we need to think differently about algorithms to address
memory access limitations?



Example: BLAS and LAPACK

BLAS: Basic Linear Algebra Subprograms
(http://www.netlib.org/blas/)

LAPACK: Linear Algebra PACKage
(http://www.netlib.org/lapack/)

I Highly successful libraries for linear algebra (e.g. solving linear
systems, eigenvalue computations, etc.)

I Installed by default on most Linux and Mac computers

I Forms the back-end for many popular linear algebra platforms
such as MATLAB and NumPy

I Key advances: refactor basic matrix operations to limit
memory usage

We will examine BLAS and LAPACK in Unit 2 of the course

http://www.netlib.org/blas/
http://www.netlib.org/lapack/


C++ and Python comparison

Computer demo: Ridders’ method for one-dimensional root finding.



Quick note1

The rest of this unit is heavy on computer science principles and
programming

It is not especially indicative of the tone of the rest of the course

Next week will see a shift into mathematics

1Thanks to Georg Stadler (NYU) for allowing me to adapt material from his
HPC17 course.

https://cims.nyu.edu/~stadler/hpc17/


Basic CS terms

I compiler: translates human code into machine language

I CPU/processor: central processing unit performs instructions
of a computer program, i.e., arithmetic/logical operations,
input/output

I core: individual processing unit in a “multicore” CPU

I clock rate/frequency: indicator of speed at which instructions
are performed

I floating point operation (flop): multiplication–add of two
floating point numbers, usually double precision (64 bits, ∼ 16
digits of accuracy)

I peak performance: fastest theoretical flop/s

I sustained performance: flop/s in actual computation

I memory hierarchy: large memories (RAM/disc/solid state) are
slow; fast memories (L1/L2/L3 cache) are small



Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on

I Memory access is slow; memory hierarchies help

I This is a single processor issue, but it’s even more important
on parallel computers

More CS terms:

I latency: time it taks to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second)

Bandwidth grows faster than latency



Memory hierarchies

CPU: O(1 ns), L2/L3: O(10 ns), RAM: O(100 ns), disc:
O(10 ms)



Memory hierarchies

To decrease memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: access an item that
was previously accessed

I Exploit bandwidth by moving a chunk of data into the fast
memory, i.e., spatial locality: access data nearby previous
accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by the compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in the cache =⇒ fast
access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) =⇒ slow access



Programming in C++

I Developed by Bjarne Stroustrup in 1979 as a successor to the
C programming language (1972)

I Efficient and flexible similar to C, but also with features for
high-level program organization2

I Compiled language—input program is converted into machine
code

I Shares many features with other languages (e.g. for loops,
while loops, arrays, etc.), but provides more direct access and
control of memory, which is useful for this course

2B. Stroustrup, Evolving a language in and for the real world: C++
1991–2006. [Link]

http://stroustrup.com/hopl-almost-final.pdf


C++ compilers

I The GNU Compiler Collection (GCC) – free, widely-used
compiler that is available by default on most Linux computers,
and can be installed on many different systems. The GCC
C++ compiler is called g++.

I Clang – another free compiler project that is the back-end for
C++ on Apple systems via Xcode. (For compatibility, if you
type g++ on Macs, you are actually using Clang.)

I Intel compiler – proprietary compiler that sometimes gives a
small (e.g. 5%–10%) performance boost

I Portland (PGI) compiler

I Microsoft Visual C++



Good references

I The C++ Programming Language, 4th edition by Bjarne
Stroustrup, 2013.

I http://www.cplusplus.com – extensive documentation and
language tutorial.

I http://en.cppreference.com/w/ – very nice, but more
designed as a reference.

I Chris, Nick, and Eder: they love C++! They’ll talk about it
for hours!

http://www.cplusplus.com
http://en.cppreference.com/w/


Evolving standards

I C++98 – original standardized version from ANSI3/ISO4

committees

I C++11 – many useful features like auto keyword and
nullptr added

I C++14, C++17, C++20, . . .

Trade-offs in the choice of standard:

I Newer versions provide more flexibility and fix small issues
with the original version

I Older versions are more widely supported and inter-operable
with different systems

Chris’s preference (mainly borne out of developing software
libraries) is to use the original C++98 standard for maximum
compatibility

3American National Standards Institute
4International Organization for Standardization



Basic command-line compilation

To compile a program hello world.cc into hello world:

g++ -o hello_world hello_world.cc

To enable optimization, pedantically enforce ANSI C++98 syntax,
and switch on all warnings:

g++ -O3 -Wall -ansi -pedantic -o hello_world \
hello_world.cc



Quick C++ example #1

#include <cstdio>

int main() {
puts("Hello world!");

}



Quick C++ example #1 (annotated)

// Include system header with
// input/output functions
#include <cstdio>

// Main program is defined
// as a function called "main"
int main() {

// Call system function
// to print a string
puts("Hello world!");

}



Quick C++ example #2

#include <cstdio>
int main() {

// Variables must explicitly declared with a type
int a=1,b;

// Single-precision and double-precision
// floating point numbers
float c=2.0;
double d=3.4;

// Arithmetic
b=3*(a++);

// Formatted print
printf("%d %d %g %g\n",a,b,c,d);

}



Quick C++ example #3

#include <cstdio>
#include <cmath>

int main() {

// Standard math functions
// are in the <cmath> header
double a,b,c;
a=sqrt(1.2);
b=4*atan(1.0);
c=tanh(5.0);

// Formatted print
printf("%g %g %g\n",a,b,c);

}



Quick C++ example #45

#include <cstdio>

int main() {

// Implement Fizz Buzz children’s game
for(int i=1;i<20;i++) {
if(i%3==0) puts(i%5==0?"Fizz Buzz":"Fizz");
else {
if(i%5==0) puts("Buzz");
else printf("%d\n",i);

}
}

}

5https://en.wikipedia.org/wiki/Fizz_buzz

https://en.wikipedia.org/wiki/Fizz_buzz


Quick C++ example #5

#include <cstdio>

int main() {

// Simple array construction
double v[32];
v[3]=4.;

// A pointer to a double
double* w;

// Assign pointer. Note v itself is a pointer to the start
// of the array.
w=v+3;
printf("%p %g\n",w,*w);

// For-loop with pointers
for(w=v;w<v+32;w++) *w=1.;

// Out of bounds. May cause segmentation fault error. But
// may not. With great power comes great responsibility.
v[40]=0.;

}



C++ and Python comparison

Computer demo: Timing comparison for Ridders’ method in
Python and C++



C++/Python timing results (on Mid 2014 MacBook Pro)

altair:% python ridders_array.py
Time: 26.1 s (total)
Time: 26.0999 microseconds (per value)

altair:% ./ridders_array
Time: 0.237 s (total)
Time: 0.236984 microseconds (per value)



C++ version is about 110 times faster

I In-class poll showed most people expected roughly a 20× to
50× speedup.

I Relative slowness of Python is well-documented and is due to
many reasons: interpreted language, dynamic typing, etc.6

I Many considerations in language choice:
I Python offers great flexibility
I Many Python library routines (e.g. NumPy) are in compiled

code and are much faster
I Extra speed not required for many tasks; need to weigh the

time of the programmer against the time of computation

I Compiled languages are a good choice for critical code
bottlenecks

6Good article suggested by W. Burke:
https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/


Levels of parallelism

I Parallelism at the bit level (64-bit
operations)

I Parallelism by pipelining
(overlapping of execution of
multiple instructions); several
operators per cycle

I Multiple functional units
parallelism: ALUs (algorithic
logical units), FPUs (floating
point units), load/store memory
units, . . .

All of the above assume single sequential control flow

I process/thread level parallelism: independent processor cores,
mulitcore processors; parallel control flow



Strong versus weak scaling



Load (im)balance in parallel computations

In parallel computations, the work should be distributed evenly
across workers/processors

I Load imbalance: idle time due to insufficient parallelism or
unequal-sized tasks

I Initial/static load balancing: distribution of work at beginning
of computation

I Dynamic load balancing: workload needs to be re-balanced
during computation. Imbalance can occur, e.g., due to
adaptive mesh refinement



Shared memory programming model (the focus of this
course)

I Program is a collection of control
threads that are created
dynamically

I Each thread has private and
shared variables

I Threads can exchange data by
reading/writing shared variables

I Danger: more than one processor
core reads/writes to a memory
location – a race condition

Programming model must manage different threads and avoid race
conditions

OpenMP: Open Multi-Processing is the application interface that
supports shared memory parallelism, http://www.openmp.org/

http://www.openmp.org/


Distributed memory programming model (for comparison)7

I Program is run as a collection of
named processes; fixed at start-up

I Local address space; no shared
data

I Logically shared data is
distributed (e.g. every processor
only has access to a chunk of
rows of a matrix)

I Explicit communication through
send/receive pairs

Programming model must accommodate communication

MPI: Message Passing Interface (different implementations: LAM,
OpenMPI, Mpich), http://www.mpi-forum.org/

7For full details, see COMPSCI 205 offered this semester.

http://www.mpi-forum.org/


Hybrid distributed/shared programming model

I Pure MPI approach splits the memory of a multicore processor
into independent memory pieces, and uses MPI to exchange
information between them

I Hybrid approach uses MPI across processors and OpenMP for
processor cores that have access to the same memory. This
often results in optimal performance.

I A similar hybrid approach is also used for hybrid architectures,
e.g. computers that contain CPUs and GPUs



OpenMP introduction

I Built into all modern versions of GCC, and enabled with the
-fopenmp compiler flag.

I Clang has OpenMP support. Unfortunately, Apple’s custom
version of Clang doesn’t.

I On the Mac, you can obtain an OpenMP-capable compiler via
the package management systems MacPorts8 and Homebrew9

I Excellent online tutorial at
https://bisqwit.iki.fi/story/howto/openmp/

I Standard C++ but with additional #pragma commands to
denote areas that require multithreading

8http://www.macports.org
9https://brew.sh

https://bisqwit.iki.fi/story/howto/openmp/
http://www.macports.org
https://brew.sh


Quick OpenMP example #1

#include <cstdio>

int main() {

#pragma omp parallel
{
// Since this is within a parallel block,
// each thread will execute it
puts("Hi");

}
}



Quick OpenMP example #2

#include <cstdio>

// OpenMP header file with specific
// thread-related functions
#include "omp.h"

int main() {

#pragma omp parallel
{
// Variables declared within a
// parallel block are local to it
int i=omp_get_thread_num(),

j=omp_get_max_threads();

printf("Hello from thread %d of %d\n",i,j);
}

}



Quick OpenMP example #3

#include <cstdio>
#include <cmath>

int main() {
double a[1024];

// Since each entry of the array can
// be filled in separately, this loop
// can be parallelized

#pragma omp parallel for
for(int i=0;i<1024;i++) {
a[i]=sqrt(double(i));

}
}



A practical OpenMP example

Computer demo: Extending the Ridders’ method code to use
multithreading



An important point

By default, OpenMP programs run with all available threads on
the machine

Some multicore workstations might have, e.g., 64 threads
available. You probably don’t want all of them—often you should
aim for a happy medium depending on the size of the workload
(this will be explored on Homework 1)

Option 1: Run your program with

OMP_NUM_THREADS=4 ./openmp_example3

Option 2: Explicitly control with the num threads keyword:

#pragma omp parallel for num_threads(4)
for(int i=0;i<1024;i++) {
a[i]=sqrt(double(i));

}



A numerical example: finite-difference simulation of the
diffusion equation

Consider the diffusion equation

∂u

∂t
= b

∂2u

∂x2

for the function u(x , t) and diffusion constant b > 0. Discretize as
unj ≈ u(hj , n∆t) for timestep ∆t and grid spacing h. Explicit
finite-difference scheme is

un+1
j − unj

∆t
= b

unj+1 − 2unj + unj−1

h2

or
un+1
j = unj + ν(unj+1 − 2unj + unj−1)

where ν = b∆t/h2. Stability achieved for ν < 1/2.



A numerical example: finite-difference simulation of the
diffusion equation

Computer demo: Multithreading the diffusion equation simulation



Summing numbers – a race condition

I A pitfall of shared memory parallel programming is the race
condition, where two threads access the same memory, leading
to unpredictable behavior

I The code below is legitimate if interpreted serially, but is
unpredictable if run with multiple threads, due to conflicts
between the loading/storage of c

#include <cstdio>

int main() {
unsigned int c=0;

#pragma omp parallel for
for(unsigned int i=0;i<1024;i++) {

c=i*i+c;
}
printf("Sum=%u\n",c);

}



A more subtle race condition

#include <cstdio>

int main() {
int c[4096],d;

// Fill table with square numbers
#pragma omp parallel for

for(int i=0;i<4096;i++) {
d=i*i;
c[i]=d;

}

// Print out discrepancies
for(int i=0;i<4096;i++)
if(c[i]!=i*i) printf("%d %d\n",i,c[i]);

}

I d is shared among all threads. Its value will be continually
overwritten. Values in the c array will be inconsistent.

I Practical tip: if you suspect problems, compare to the serial
version with one thread



Summing numbers – solution #1

#include <cstdio>

int main() {
unsigned int c=0;

#pragma omp parallel for
for(unsigned int i=0;i<1024;i++) {

int d=i*i;
#pragma omp atomic

c+=d;
}
printf("Sum=%u\n",c);

}

I OpenMP atomic keyword ensures the following statement is
executed as an indivisible unit.

I Only works for very simple statements

I Fast, but not as fast as a regular operation



Summing numbers – solution #2

#include <cstdio>

int main() {
unsigned int c=0;

#pragma omp parallel for
for(unsigned int i=0;i<1024;i++) {

int d=i*i;
#pragma omp critical

{
if(i%100==0) printf("Processing %d\n",i);
c+=d;

}
}
printf("Sum=%u\n",c);

}

I OpenMP critical keyword marks a statement or block to
only be processed by one thread at a time

I Unlike atomic it works for general blocks of code

I Comes with a performance penalty—threads will stand idle
waiting for the block to become free



Summing numbers – solution #3

#include <cstdio>

int main() {
unsigned int c=0;

#pragma omp parallel for reduction(+:c)
for(unsigned int i=0;i<1024;i++) {

c+=i*i;
}
printf("Sum=%u\n",c);

}

I The reduction keyword marks a variable for accumulation
across threads

I Cleanest solution for this scenario



An illustrative example – happy numbers

I For a given positive number n, repeat the following process:
replace n by the sum of the square of its digits.10 If the
process ends in 1, the number is happy. Otherwise it is sad.

I For example

97→ 92 + 72 = 130→ 12 + 32 + 02 = 10→ 12 + 02 = 1

and hence 97 is a happy number

I It can be shown that all sad numbers end in a cycle involving 4

I Key point: the number of iterations varies depending on n.
Could lead to load imbalance.

I OpenMP schedule(dynamic) option allows cases to be
passed out dynamically to threads, instead of the cases being
assigned a priori

10In base 10.



Happy number calculation

Computer demo: OpenMP dynamic for-loop calculation of happy
numbers



A challenge

From Wikipedia:

I Problem 3 on HW1 involves constructing a representation of
Mersenne primes

I Optional challenge: fix Wikipedia!



A performance subtlety: false sharing

Computer demo: memory organization affects thread performance


