
AM225: General structure of Runge–Kutta order conditions

In AM225 we have introduced several Runge–Kutta methods and examined their order
of accuracy p. For low-order methods, the standard procedure is to Taylor expand the
true solution and the numerical solution for a stepsize h, and compare terms up to O(hp).
However, as the order of the method increases, these calculations become complicated and
tedious. For example, at fourth order, there are eight separate conditions to satisfy, most of
which are nonlinear in the Butcher tableau parameters.

In this document we consider the Runge–Kutta order conditions for arbitrary p. While
the problem may at first seem intractable, we show that it is underpinned by a beautiful
mathematical theory involving trees. The theory is practical and useful: it allows the order
conditions for an arbitrary p to be immediately written down, makes it easy to estimate
error for any method, and provides insight into how to derive high-order methods. This
document is based on the excellent book by Hairer et al. [1]. It provides an abridged version
of the complete derivation, and omits some of the longer proofs.

Preminary definitions

The document follows the notation of Hairer et al., whereby a step of size h is taken from
(x0, y0) to (x1, y1). The Runge–Kutta method has s intermediate steps, which are computed
as

ki = f

(
x0 + cih, y0 + h

i−1

∑
j=1

aijk j

)
(1)

for i = 1, . . . , s, after which the solution is given by

y1 = y0 + h
s

∑
i=1

biki. (2)

Here the coefficients aij, bi, and ci define the method. Usually the simplification ci = ∑j aij
is assumed, since it expresses that each of the ki is evaluated at a first-order approximation
of the solution.

As described in the slides, we can restrict attention to autonomous differential equations

y′ = f (y) (3)

for a vector function y(x) ∈ Rn without loss of generality. Using capital superscript indices
to denote vector components this becomes

(yJ)′ = f J(y1, y2, . . . , yn) (4)

for J = 1, . . . , n. Rather than work with the Runge–Kutta steps directly, we work with their
arguments gi such that ki = f (gi). Then

gJ
i = y0 +

i−1

∑
j=1

aijh f J(g1
j , . . . , gn

j ) (5)
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for i = 1, . . . , s and

yJ
1 = y0 +

s

∑
j=1

bjh f J(g1
j , . . . , gn

j ). (6)

Note that there is a close correspondence between Eqs. 5 and 6, with the right hand sides
being the same apart from replacing aij with bj.

Taylor series: the true solution

We now aim to compare the Taylor series expansion of the true solution at h = 0 with the
numerical one. We consider up to the third derivative in order to deduce a general pattern.
For the true solution, the first derivative is

(yJ)(1) = f J(y). (7)

The second derivative is

(yJ)(2) = ∑
K

f J
K(y)(y

K)(1) = ∑
K

f J
K(y) f K(y), (8)

where subscripts are used to denote derivatives, and so f J
K = ∂ f J/∂yK is the Jacobian. The

third derivative is

(yJ)(3) = ∑
K,L

f J
KL(y) f K(y) f L(y) + ∑

K,L
f J
K(y) f K

L (y) f L(y). (9)

Taylor series: the numerical solution

For the numerical solution, it is useful to recall Leibniz’ formula

(hφ(h))(q)
∣∣∣
h=0

= q(φ(h))(q−1)
∣∣∣
h=0

(10)

for an arbitrary q-differentiable function φ(h). We now consider the derivatives of gi at
h = 0. At zeroth order

(gJ
i )

(0)
∣∣∣
h=0

= yJ
0 (11)

and at first order

(gJ
i )

(1)
∣∣∣
h=0

= ∑
j

aij f J

∣∣∣∣∣
y=y0

. (12)

To proceed to higher order it is useful to first calculate the derivatives of f J(gi). The first
derivative is

( f J(gj))
(1) = ∑

K
f J
K(gj)(gK

j )
(1) (13)
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and the second derivative is

( f J(gj))
(2) = ∑

K,L
f J
KL(gj)(gK

j )
(1)(gL

j )
(1) + ∑

K
f J
K(gj)(gK

j )
(2). (14)

Using these identities, the second and third derivatives of gJ
i at h = 0 are

(gJ
i )

(2)
∣∣∣
h=0

= 2 ∑
j,k

aijajk ∑
K

f J
K f K

∣∣∣∣∣
y=y0

(15)

and

(gJ
i )

(3)
∣∣∣
h=0

= 3 ∑
j,k

aijajkajl ∑
K,L

f J
KL f K f L

∣∣∣∣∣
y=y0

+ 3 × 2 ∑
j,k,l

aijajkakl ∑
K,L

f J
K f K

L f L

∣∣∣∣∣
y=y0

, (16)

respectively. Using the correspondence mentioned above, the formulae in Eqs. 11, 12, 15,
and 16 also apply to the derivatives of y1 under the replacement of aij with bj.

Example: a third-order method

To obtain a method of order p it is necessary for the numerical and true solutions to agree
to that order. At first order, comparing Eqs. 7 and 12 shows that

∑
j

bj = 1. (17)

At second order, comparing Eqs. 8 and 15 shows that

2 ∑
j,k

bjajk = 1. (18)

At third order, comparing Eqs. 9 and 16 results in two separate conditions:

3 ∑
j,k,l

bjajkajl = 1, 6 ∑
j,k,l

bjajkakl = 1. (19)

While the extension of this procedure to higher orders is conceptually clear, the calculations
will rapidly become very complicated and thus we search for a different viewpoint.

The tree correspondence

To infer a general structure, note that equations such as Eq. 16 involve sums over pairs of
indices. A given term such as ∑K f J

K f K can be alternatively represented a graph, where the
superscript indices represent vertices and a summed index makes an edge between two
vertices. At third order, this results in two graph, as shown below.
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Note that since J is not summed over, it has a special status. Hence each graph can be
interpreted as a tree with J at the root. In all terms computed in the Taylor series of the
numerical solution, the corresponding sums over the lower-case indices exactly match in
form. Thus the tree encapsulates both the sum over the aij terms and the sum over the f
terms. We define a tree in terms of mappings to parent nodes, as shown below.

Definition 1 Let Aq = {j < k < l < . . .} be an ordered chain of q indices. A (rooted) labeled
tree is a mapping

t : Aq\{j} → Aq (20)

such that t(z) < z for all z ∈ Aq\{j}. The set of all labeled trees of order q is denoted by LTq.

Definition 2 For a labeled tree t ∈ LTq, define

F J(t)(y) = ∑
K,L,...

f J
K,...(y) f K

...(y) f L
...(y) . . . (21)

to be a product of the f terms, where the superscript indices correspond to the vertices of the tree
and each edge creates a summation over an lower–upper index pair.

Note that the three labeled trees

are topologically alike, and the corresponding differentials

∑
K,L,M

f J
KM f M f K

L FL, ∑
K,L,M

f J
KM f L f K

MFM, ∑
K,L,M

f J
KM f K f L

MFM (22)

are identical. This motivates a further definition.

Definition 3 Define a tree of order q to be the equivalence class of labeled trees under index
permutations. Let α(t) be the number of elements in the equivalence class. Let Tq be the set of all
trees of order q.
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The main results

With these definitions in place, we now show how the Taylor series expansions can be
rewritten as sums over trees. Several of the theorems quoted here involve considerable
work to prove (see Hairer et al. for full details), although where they originate from is
conceptually clear.

Theorem 1 The exact solution of the ODE satisfies

y(q)(x0) = ∑
t∈LTq

F(t)(y0) = ∑
t∈Tq

α(t)F(t)(y0). (23)

Definition 4 For a labeled tree t ∈ Tq denote

Φj(t) = ∑
k,l,...

ajka... . . . (24)

to be the sum over the q − 1 remaining indices k, l, . . ..

Definition 5 Let ρ(t) be the order of a tree. Define γ(t) to be the product of ρ(t) and all orders of
trees that appear if the roots, one after another, are removed from t.

For example,

Theorem 2 The derivatives of gi satisfy

g(q)i

∣∣∣
h=0

= ∑
t∈LTq

γ(t)∑
j

aijΦj(t)F(t)(y0). (25)

The numerical solution satisfies

y(q)1

∣∣∣
h=0

= ∑
t∈LTq

γ(t)∑
j

bjΦj(t)F(t)(y0)

= ∑
t∈Tq

γ(t)α(t)∑
j

bjΦj(t)F(t)(y0). (26)

By comparing Eqs. 23 and 26, we arrive at the main result.
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Theorem 3 A Runge–Kutta method is of order p if and only if

s

∑
j=1

bjΦj(t) =
1

γ(t)
(27)

for all trees of order less than or equal to p.

The “if” part of Theorem 3 follows by equating terms in Eqs. 23 and 26. The “only if”
part of the theorem is established by showing that for every term in Eqs. 23 and 26, there is
an ODE system such that only that term is non-zero.

Theorem 3 provides us with a general procedure for finding the order conditions for
arbitrary p: we must first find all trees, and then each one will give a corresponding
condition. For example, for order three, we obtain the following.

This exactly matches the conditions that were found by direct calculation in Eqs. 17, 18,
and 19. The number of conditions grows rapidly with the order p, as shown in the table
below.

Order p 1 2 3 4 5 6 7 8 9 10
# trees 1 1 2 4 9 20 48 115 286 719
# conditions 1 2 4 8 17 37 85 200 486 1205

This makes it increasingly difficult to find high-order methods. For p ≥ 5, it is no longer
possible to find s-stage methods with s = p, and it becomes necessary to consider s > p.
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