AM225: An example finite-element calculation

We now consider a specific example of the finite-element method. Let u(x) be a function on the interval $\Omega = (1, 2)$ that satisfies

$$-\frac{d}{dx}\left(x\frac{du}{dx}\right) = f(x) \tag{1}$$

with the boundary conditions

$$u(1) = 0, \qquad x \frac{du}{dx}\Big|_{x=2} = 2g$$
 (2)

where *g* is a real constant. Following the discussion in the lectures, a classical solution of Eqs. 1 & 2 will satisfy the variational problem

$$J(v) = \frac{1}{2}a(v,v) - (f,v)_{0,\Omega} - (2g,v)_{0,\Gamma} \to \min$$
(3)

where

$$a(u,v) = \int_{1}^{2} x u' v' \, dx, \qquad (f,v)_{0,\Omega} = \int_{1}^{2} f v \, dx, \tag{4}$$

and the minimization is taken over all functions that satisfy the essential (Dirichlet) boundary condition that v(1) = 0. Here, the boundary Γ where natural (Neumann) boundary conditions are imposed consists of the single point at x = 2. Hence

$$(2g, v)_{0,\Gamma} = 2gv(2). \tag{5}$$

To solve this problem with the finite element method, introduce a grid with 3N + 1 gridpoints with spacing h = 1/3N between them. The gridpoints are located at $x_i = 1 + ih$ for i = 0, ..., 3N. Split the domain into N intervals $I_{3q} = [x_{3q}, x_{3q+3}]$ for q = 0, ..., N - 1 and define the function space

$$S_h = \{ v \in C(\overline{\Omega}) : v \text{ is cubic on each interval } I_{3q} \text{ and } v(1) = 0 \}.$$
(6)

Within S_h , we introduce a nodal basis ψ_i for i = 1, ..., 3N such that

$$\psi_i(x_k) = \delta_{ik}.\tag{7}$$

Note that we can also define a ψ_0 function, but we do not include it in the basis, because the Dirichlet condition eliminates it from contributing to the solution. Figure 1 shows an example of the basis functions for N = 3. When *i* is not a multiple of three, the function ψ_i is non-zero only on a single interval. When *i* is a multiple of three, the function ψ_i is non-zero on two intervals I_i and I_{i-3} .

Using the Ritz–Galerkin method, the solution is written as

$$u_h(x) = \sum_{k=1}^{3N} z_k \psi_k(x)$$
(8)

Figure 1: The ten piecewise cubic functions $\psi_i(x)$ for the case of N = 3. The functions are plotted with vertical offsets to better visualize them. Note that ψ_0 is shown for completeness, but is not part of the basis due to the imposed Dirichlet condition at x = 1.

and must satisfy

$$a(u_h, \psi_i) = \langle l, \psi_i \rangle \tag{9}$$

for all i = 1, ..., 3N. Here $\langle l, \psi_i \rangle = (f, \psi_i)_{0,\Omega} + (2g, \psi_i)_{0,\Gamma}$. To solve this, we first evaluate the terms $a(\psi_k, \psi_i)$ that form the stiffness matrix. Consider two distinct basis functions that overlap in an interval I_{3q} . Let $k = 3q + \alpha$ and $i = 3q + \beta$ for $\alpha, \beta \in \{0, 1, 2, 3\}$. Define the Lagrange interpolants on the interval for the set of points $\{0, 1, 2, 3\}$ as

$$L_0(z) = -\frac{(z-1)(z-2)(z-3)}{6},$$
(10)

$$L_1(z) = \frac{z(z-2)(z-3)}{2},$$
(11)

$$L_2(z) = -\frac{z(z-1)(z-3)}{2},$$
(12)

$$L_3(z) = \frac{z(z-1)(z-2)}{6}.$$
(13)

Then in the interval I_{3q} ,

$$\psi_k(x) = L_\alpha \left(\frac{x-1}{h} - 3q\right), \qquad \psi_i(x) = L_\beta \left(\frac{x-1}{h} - 3q\right). \tag{14}$$

The derivatives of the Lagrange interpolants are

$$L_0'(z) = -\frac{11}{6} + 2z - \frac{z^2}{2},$$
(15)

$$L_1'(z) = 3 - 5z + \frac{3z^2}{2},\tag{16}$$

$$L_2'(z) = -\frac{3}{2} + 4z - \frac{3z^2}{2},$$
(17)

$$L'_{3}(z) = \frac{1}{3} - z + \frac{z^{2}}{2}.$$
(18)

Hence, using the substitution x = (3q + z)h + 1,

$$a(\psi_k, \psi_i) = \int_{I_{3q}} x \psi'_k \psi'_i dx = \frac{1}{h} \int_0^3 (3qh + zh + 1) L'_{\alpha}(z) L'_{\beta}(z) dz$$

= $(3q + h^{-1}) B_{\alpha\beta} + C_{\alpha\beta}$ (19)

where

$$B_{\alpha\beta} = \int_0^3 L'_{\alpha}(z) L'_{\beta}(z) dz, \qquad C_{\alpha\beta} = \int_0^3 z L'_{\alpha}(z) L'_{\beta}(z) dz.$$
(20)

The terms $B_{\alpha\beta}$ and $C_{\alpha\beta}$ are elementary integrals that can be performed using Mathematica. Their values are shown in Table 1.

Β _{αβ}	$\alpha = 0$	$\alpha = 1$	α = 2	<i>α</i> = 3	$C_{\alpha\beta}$	$\alpha = 0$	$\alpha = 1$	α = 2	<i>α</i> = 3
$\beta = 0$	$\frac{37}{30}$	$-\frac{63}{40}$	$\frac{9}{20}$	$-\frac{13}{120}$	$\beta = 0$	$\frac{17}{40}$	$-\frac{51}{80}$	$\frac{3}{8}$	$-\frac{13}{80}$
$\beta = 1$	$-\frac{63}{40}$	$\frac{18}{5}$	$-\frac{99}{40}$	$\frac{9}{20}$	$\beta = 1$	$-\frac{51}{80}$	$\frac{27}{8}$	$-\frac{297}{80}$	$\frac{39}{40}$
$\beta = 2$	$\frac{9}{20}$	$-\frac{99}{40}$	$\frac{18}{5}$	$-\frac{63}{40}$	$\beta = 2$	$\frac{3}{8}$	$-\frac{297}{80}$	$\frac{297}{40}$	$-\frac{327}{80}$
$\beta = 3$	$-\frac{13}{120}$	$\frac{9}{20}$	$-\frac{63}{40}$	$\frac{37}{30}$	$\beta = 3$	$-\frac{13}{80}$	$\frac{39}{40}$	$-\frac{327}{80}$	$\frac{131}{40}$

Table 1: The terms $B_{\alpha\beta}$ (left) and $C_{\alpha\beta}$ that are used to assemble the stiffness matrix in the finite element calculation.

The above calculation also applies to i = k, which implies $\alpha = \beta$. If $\alpha = 1$ or $\alpha = 2$ then Eq. 19 applies directly. If $\alpha = 3$ and i < 3N, then

$$a(\psi_i, \psi_i) = \int_{I_{3q}} x \psi'_i \psi'_i dx + \int_{I_{3(q+1)}} x \psi'_i \psi'_i dx$$
(21)

since the basis functions overlap in two intervals. In this case, two integral contributions of the form of Eq. 19 must be counted.

Let us assume that the function *f* has the expansion

$$f(x) = \sum_{k=0}^{3N} f_k \psi_k(x).$$
 (22)

Then to evaluate $(f, \psi_i)_{0,\Omega}$ we must evaluate $(\psi_k, \psi_i)_{0,\Omega}$. Again, choose distinct *k* and *i* so that their basis function overlap in an interval I_{3q} and define $k = 3q + \alpha$ and $i = 3q + \beta$ for $\alpha, \beta \in \{0, 1, 2, 3\}$. Then

$$(\psi_k,\psi_i)_{0,\Omega} = \int_{I_{3q}} \psi_k \psi_i dx = h \int_0^3 L_\alpha(z) L_\beta(z) dz = h D_{\alpha\beta}$$
(23)

where

$$D_{\alpha\beta} = \int_0^3 L_\alpha(z) L_\beta(z) dz.$$
(24)

The values of $D_{\alpha\beta}$ are shown in Table 2. The case of i = k is handled using the same procedure as for the stiffness matrix.

With these calculations in place, we can formulate a linear system

$$Az = b \tag{25}$$

where Eq. 19 is used to assemble *A*, and Eq. 23 is used to assemble *b*. In addition, for the line corresponding to ψ_{3N} a contribution from Eq. 5 is included for $(2g, v)_{0,\Gamma}$.

The program fe_1d_test.cc in the AM225 examples Git repository solves this finite element problem. Since the matrix *A* is symmetric positive definite, the conjugate gradient

	$\alpha = 0$	$\alpha = 1$	$\alpha = 2$	$\alpha = 3$
$\beta = 0$	$\frac{8}{35}$	$\frac{99}{560}$	$-\frac{9}{140}$	$\frac{19}{560}$
$\beta = 1$	$\frac{99}{560}$	$\frac{81}{70}$	$-\frac{81}{560}$	$-\frac{9}{140}$
$\beta = 2$	$-\frac{9}{140}$	$-\frac{81}{560}$	$\frac{81}{70}$	$\frac{99}{560}$
$\beta = 3$	$\frac{19}{560}$	$-\frac{9}{140}$	$\frac{99}{560}$	$\frac{8}{35}$

Table 2: The terms $D_{\alpha\beta}$ that are used to assemble the source term in the finite element calculation.

algorithm is used. Figure 2 shows the solution for the source term of f(x) = x - 3/2 and g = 1.

To test the convergence of the method, we use the method of manufactured solutions and propose that

$$u(x) = e^{1-x} \sin 5\pi x.$$
 (26)

Then

$$u'(x) = e^{1-x} \left(5\pi \cos 5\pi x - \sin 5\pi x \right)$$
(27)

and therefore $g = u'(2) = e^{-1}5\pi$. In addition

$$f(x) = -\frac{d}{dx} \left(xu'(x) \right) = -e^{1-x} \left(5\pi (1-2x)\cos 5\pi x + \left((1-25\pi^2)x - 1) \right) \sin 5\pi x \right).$$
(28)

The program fe_1d_conv.cc tests the convergence of the finite element method using this manufactured solution. It tests using 31 grids from size N = 10 to N = 1000, and calculates the L_2 error between the exact and numerical solutions using the trapezoid rule. The results, shown in Fig. 3, demonstrate fourth-order convergence.

Figure 2: Example finite element solution using the source term f(x) = x - 3/2 and boundary conditions u(1) = 0, u(2) = -1/20.

Figure 3: L_2 error of the finite element solution as a function of the grid spacing h, demonstrating fourth-order convergence.