
AM225: An example finite-element calculation

We now consider a specific example of the finite-element method. Let u(x) be a function
on the interval Ω = (1, 2) that satisfies

− d
dx

(
x

du
dx

)
= f (x) (1)

with the boundary conditions

u(1) = 0, x
du
dx

∣∣∣∣
x=2

= 2g (2)

where g is a real constant. Following the discussion in the lectures, a classical solution of
Eqs. 1 & 2 will satisfy the variational problem

J(v) =
1
2

a(v, v)− ( f , v)0,Ω − (2g, v)0,Γ → min (3)

where

a(u, v) =
∫ 2

1
xu′v′ dx, ( f , v)0,Ω =

∫ 2

1
f v dx, (4)

and the minimization is taken over all functions that satisfy the essential (Dirichlet) bound-
ary condition that v(1) = 0. Here, the boundary Γ where natural (Neumann) boundary
conditions are imposed consists of the single point at x = 2. Hence

(2g, v)0,Γ = 2gv(2). (5)

To solve this problem with the finite element method, introduce a grid with 3N + 1
gridpoints with spacing h = 1/3N between them. The gridpoints are located at xi = 1 + ih
for i = 0, . . . , 3N. Split the domain into N intervals I3q = [x3q, x3q+3] for q = 0, . . . , N − 1
and define the function space

Sh = {v ∈ C(Ω̄) : v is cubic on each interval I3q and v(1) = 0}. (6)

Within Sh, we introduce a nodal basis ψi for i = 1, . . . , 3N such that

ψi(xk) = δik. (7)

Note that we can also define a ψ0 function, but we do not include it in the basis, because
the Dirichlet condition eliminates it from contributing to the solution. Figure 1 shows an
example of the basis functions for N = 3. When i is not a multiple of three, the function
ψi is non-zero only on a single interval. When i is a multiple of three, the function ψi is
non-zero on two intervals Ii and Ii−3.

Using the Ritz–Galerkin method, the solution is written as

uh(x) =
3N

∑
k=1

zkψk(x) (8)
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Figure 1: The ten piecewise cubic functions ψi(x) for the case of N = 3. The functions are plotted
with vertical offsets to better visualize them. Note that ψ0 is shown for completeness, but is not
part of the basis due to the imposed Dirichlet condition at x = 1.
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and must satisfy
a(uh, ψi) = 〈l, ψi〉 (9)

for all i = 1, . . . , 3N. Here 〈l, ψi〉 = ( f , ψi)0,Ω + (2g, ψi)0,Γ. To solve this, we first evaluate
the terms a(ψk, ψi) that form the stiffness matrix. Consider two distinct basis functions
that overlap in an interval I3q. Let k = 3q + α and i = 3q + β for α, β ∈ {0, 1, 2, 3}. Define
the Lagrange interpolants on the interval for the set of points {0, 1, 2, 3} as

L0(z) = −
(z− 1)(z− 2)(z− 3)

6
, (10)

L1(z) =
z(z− 2)(z− 3)

2
, (11)

L2(z) = −
z(z− 1)(z− 3)

2
, (12)

L3(z) =
z(z− 1)(z− 2)

6
. (13)

Then in the interval I3q,

ψk(x) = Lα

(
x− 1

h
− 3q

)
, ψi(x) = Lβ

(
x− 1

h
− 3q

)
. (14)

The derivatives of the Lagrange interpolants are

L′0(z) = −
11
6

+ 2z− z2

2
, (15)

L′1(z) = 3− 5z +
3z2

2
, (16)

L′2(z) = −
3
2
+ 4z− 3z2

2
, (17)

L′3(z) =
1
3
− z +

z2

2
. (18)

Hence, using the substitution x = (3q + z)h + 1,

a(ψk, ψi) =
∫

I3q

xψ′kψ′idx =
1
h

∫ 3

0
(3qh + zh + 1)L′α(z)L′β(z)dz

= (3q + h−1)Bαβ + Cαβ (19)

where

Bαβ =
∫ 3

0
L′α(z)L′β(z)dz, Cαβ =

∫ 3

0
zL′α(z)L′β(z)dz. (20)

The terms Bαβ and Cαβ are elementary integrals that can be performed using Mathematica.
Their values are shown in Table 1.
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Bαβ α = 0 α = 1 α = 2 α = 3

β = 0 37
30 −63

40
9

20 − 13
120

β = 1 −63
40

18
5 −99

40
9

20

β = 2 9
20 −99

40
18
5 −63

40

β = 3 − 13
120

9
20 −63

40
37
30

Cαβ α = 0 α = 1 α = 2 α = 3

β = 0 17
40 −51

80
3
8 −13

80

β = 1 −51
80

27
8 −297

80
39
40

β = 2 3
8 −297

80
297
40 −327

80

β = 3 −13
80

39
40 −327

80
131
40

Table 1: The terms Bαβ (left) and Cαβ that are used to assemble the stiffness matrix in the finite
element calculation.

The above calculation also applies to i = k, which implies α = β. If α = 1 or α = 2 then
Eq. 19 applies directly. If α = 3 and i < 3N, then

a(ψi, ψi) =
∫

I3q

xψ′iψ
′
idx +

∫
I3(q+1)

xψ′iψ
′
idx (21)

since the basis functions overlap in two intervals. In this case, two integral contributions
of the form of Eq. 19 must be counted.

Let us assume that the function f has the expansion

f (x) =
3N

∑
k=0

fkψk(x). (22)

Then to evaluate ( f , ψi)0,Ω we must evaluate (ψk, ψi)0,Ω. Again, choose distinct k and i so
that their basis function overlap in an interval I3q and define k = 3q + α and i = 3q + β for
α, β ∈ {0, 1, 2, 3}. Then

(ψk, ψi)0,Ω =
∫

I3q

ψkψidx = h
∫ 3

0
Lα(z)Lβ(z)dz = hDαβ (23)

where

Dαβ =
∫ 3

0
Lα(z)Lβ(z)dz. (24)

The values of Dαβ are shown in Table 2. The case of i = k is handled using the same
procedure as for the stiffness matrix.

With these calculations in place, we can formulate a linear system

Az = b (25)

where Eq. 19 is used to assemble A, and Eq. 23 is used to assemble b. In addition, for the
line corresponding to ψ3N a contribution from Eq. 5 is included for (2g, v)0,Γ.

The program fe 1d test.cc in the AM225 examples Git repository solves this finite
element problem. Since the matrix A is symmetric positive definite, the conjugate gradient
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α = 0 α = 1 α = 2 α = 3

β = 0 8
35

99
560 − 9

140
19

560

β = 1 99
560

81
70 − 81

560 − 9
140

β = 2 − 9
140 − 81

560
81
70

99
560

β = 3 19
560 − 9

140
99

560
8

35

Table 2: The terms Dαβ that are used to assemble the source term in the finite element calculation.

algorithm is used. Figure 2 shows the solution for the source term of f (x) = x− 3/2 and
g = 1.

To test the convergence of the method, we use the method of manufactured solutions
and propose that

u(x) = e1−x sin 5πx. (26)

Then
u′(x) = e1−x (5π cos 5πx− sin 5πx) (27)

and therefore g = u′(2) = e−15π. In addition

f (x) = − d
dx
(
xu′(x)

)
= −e1−x

(
5π(1− 2x) cos 5πx +

(
(1− 25π2)x− 1)

)
sin 5πx

)
.

(28)
The program fe 1d conv.cc tests the convergence of the finite element method using
this manufactured solution. It tests using 31 grids from size N = 10 to N = 1000, and
calculates the L2 error between the exact and numerical solutions using the trapezoid rule.
The results, shown in Fig. 3, demonstrate fourth-order convergence.
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Figure 2: Example finite element solution using the source term f (x) = x − 3/2 and boundary
conditions u(1) = 0, u(2) = −1/20.
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Figure 3: L2 error of the finite element solution as a function of the grid spacing h, demonstrating
fourth-order convergence.
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