
AM225: Assignment 4 solutions*

1. See previous solutions.

2. Fitting a square peg in a round hole

Consider two coordinate systems v = (v, w) and x = (x, y). In the v system, introduce
the circle of unit radius, Ω = {v ∈ R : ||v||2 < 1}. In the x system, introduce the square
S = (−1, 1)2. The mapping v = f (x) defined by

v = x

√
1− y2

2
, w = y

√
1− x2

2
(1)

is a differentiable map from S to Ω (Fig. 1). Consider the Poisson problem

f

Figure 1: The mapping f from the square S to the circle Ω used in question 2.

∇2u = f (2)

on the circle Ω with Dirichlet condition u(v) = 0 for v ∈ ∂Ω. Introduce an N × N grid of
squares on S, each with side length h = 2/N. Let φi be the set of bilinear elements on S
corresponding to the nodal basis at square corners. Since the elements on the boundary can
be neglected, this gives (N − 1)2 basis functions in total. On the circle, define basis functions
ψi via the mapping from S, such that

ψi(v) = φi( f−1(v)). (3)

We represent the solution as
u(v, w) = ∑

i
uiψi(v, w) (4)

and solve the PDE problem using the Ritz–Galerkin method. Let us assume that the function
f also has the expansion

f (x) = ∑
i

fiψi(v, w). (5)

Then Eq. 2 gives the weak form

− a(u, ψi) = ( f , ψi)0,Ω (6)

*Solutions to problems 2 and 3 written by Dan Fortunato and Nick Derr, respectively.
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where
a(u, v) =

∫
Ω
∇vu · ∇vvdv, ( f , v)0,Ω =

∫
Ω

f vdv (7)

For this problem, the stiffness and mass matrix calculations vary from element to element,
and we compute them by pulling back the integrals from Ω to S. That is,

Aij = a(ψj, ψi) =
∫

Ω
∇vψj · ∇vψidv

=
∫

S
(D−1∇xφj) · (D−1∇xφi)(det D)dx (8)

and

Mij =
∫

Ω
ψj · ψidv

=
∫

S
φj · φi(det D)dx (9)

where D = ∂v/∂x is the Jacobian of the mapping:

D =

 ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 =



√
1− y2

2
−xy

2

√
1− y2

2

−xy

2

√
1− x2

2

√
1− x2

2


=

 Sy − xy
2Sy

− xy
2x

Sx

 (10)

where

Sx =

√
1− x2

2
, Sy =

√
1− y2

2
. (11)

The determinant is

det D =
2− x2 − y2

√
2− x2

√
2− y2

=
2− x2 − y2

2SxSy
. (12)

The inverse Jacobian is

D−1 =
1

2− x2 − y2

(
(2− x2)Sy xySx

xySy (2− y2)Sx

)
. (13)

We numerically compute the integrals in Eqs. 8 & 9 using Gaussian quadrature.

The final linear system looks like
− Au = M f (14)

where u and f are coefficient vectors of length (N − 1)2.

To test the code, we use a source term of f (v, w) = −e−v(3 + (v− 4)v + w2), which gives the
analytical solution u(v, w) = (1− v2 − w2)e−v. We run the code for a variety of choices of N
and calculate the L2 error between the numerical solution and the analytical solution; Fig. 2
shows that the rate of convergence is O(h2). A solution for N = 40 is shown in Fig. 3.
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Figure 2: The method demonstrates O(h2) convergence.

Figure 3: Solution to Eq. 2 with N = 40.
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3. A generalization of the Lax–Wendroff scheme

(a) Consider characteristics X(t) which move with the spatially dependent velocity A(x).
By definition, such characteristics satisfy the ODE

dX
dt

= A (X(t)) .

Now consider the value of q(x, t) along this characteristic - in other words, consider the
function qc(t) defined by

qc(t) = q (X(t), t) .

We can write
dqc

dt
=

∂q
∂t

+
∂q
∂x

dX
dt

,

and plug in the ODE above and ∂tq + ∂x (A(x)q) = 0 to obtain a second ODE

dqc

dt
= −

(
dA
dx

∣∣∣∣
x=X(t)

)
qc(t).

Along with the initial conditions

X(0) = x0, q(x0, 0) = q0,

this system of coupled ODEs can be solved analytically; see Figure 4 for a method of
doing so using Mathematica. The resulting system of equations, after some algebra,
reveals that X(t) and qc(t) are time-periodic with the same period.
To see this, we can introduce the variables

θ =

(
2
√

5
3

)
t,

φ = 2 arctan
[

1√
5

(
−2− 3 tan

( x0

2

))]
,

ϕ = θ − φ,

and write the solutions in terms of ϕ. If we define

f (x) = − (3 + 2 sin x) ,

g(ϕ) =
9 + 4 cos ϕ− 2

√
5 sin ϕ

15
,

then the solution to the coupled ODE in terms of the phase is

X(ϕ) = −2 arctan
[

1
3

(
2−
√

5 tan
( ϕ

2

))]
,

qc(ϕ) = q0 f (x0) f [X(ϕ)] f [X(ϕ)]g(ϕ) .
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1 (* spatially dependent velocity *)

2 A[x_] := 2+(4/3) Sin[x];

3

4 (* two ODEs *)

5 Xeq := X’[t] == A[X[t]];

6 Qeq := Q’[t] == -A’[X[t]] Q[t];

7

8 (* two initial conditions *)

9 Xic := X[0] == x0;

10 Qic := Q[0] == q0;

11

12 (* the system is solvable *)

13 DSolve [{Xeq ,Qeq ,Xic ,Qic},{X[t],Q[t]},t]

Figure 4: An approach for solving the system of coupled ODEs with Mathematica

You can verify that X(−φ) = x0 and g(−φ) = −1/ f (x0), so that qc(−φ) = q0 as
required for the satisfcation of the initial conditions.
Note that X(ϕ) and qc(ϕ) are both 2π-periodic in ϕ. This is equivalent to X(t) and qc(t)
being periodic in time t with period

T =
3π√

5
.

Using these facts, we can write

q(x, t + T) = q(X(t), t + T) = q(X(t + T), t + T), (X(t) is time-periodic)
= qc(t + T) = qc(t), (qc(t) is time-periodic)
= q(X(t), t) = q(x, t),

showing that q(x, t) = q(x, t + T). �

(b) The CFL condition states that we require ∆t < h/c, where c is the velocity at which
information in the problem propagates; in this case, this is just the velocity A in the
advection equation.)
Since the velocity is spatially varying, we must choose ∆t such that the condition is
satisfied at all locations in our domain. This corresponds to identifying c as the maximum
velocity

c = max
x∈[0,2π)

A(x) =
10
3

.

(c) The initial condition q(x, t) = exp
(
sin x + 1

2 sin 4x
)

is shown in Figure 5. Snapshots at
T = T/4, T/2, 3T/4, and T for this initial condition are shown in Figure 6.

(d) The calculated L2 error for a range of m is shown in Figure 7. The method converges at
second order.
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Figure 5: The initial condition q(x, 0) = exp(sin x + 1
2 sin 4x)
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Figure 6: Snapshots of the solution given the initial condition q(x, 0) = exp(sin x + 1
2 sin 4x) at the times

t = T/4, T/2, 3T/4, and T for m = 2048
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Figure 7: A log-log plot of the L2 error and number of grid points m for the initial condition q(x, 0) =

exp(sin x + 1
2 sin 4x).

(e) The initial condition q(x, t) = max{π
2 − |x− π|, 0} is shown in Figure 8. Snapshots at

T = T/4, T/2, 3T/4, and T for this initial condition are shown in Figure 9. The calculated
L2 error for a range of m is shown in Figure 10. The method converges at first rather
than second order for the case with the kinked initial condition.
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Figure 8: The initial condition q(x, 0) = max{π
2 − |x− π|, 0}
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Figure 9: Snapshots of the solution given the initial condition q(x, 0) = max{π
2 − |x− π|, 0} at the times

t = T/4, T/2, 3T/4, and T for m = 8192
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Figure 10: A log-log plot of the L2 error and number of grid points m for the initial condition q(x, 0) =
max{π

2 − |x− π|, 0}.
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