AM225: Assignment 4 solutions”

1. See previous solutions.

2. Fitting a square peg in a round hole

Consider two coordinate systems v = (v, w) and x = (x,y). In the v system, introduce
the circle of unit radius, QO = {v € R : ||v||2 < 1}. In the x system, introduce the square
S = (—1,1). The mapping v = f(x) defined by

2 x2
1-Z,  w=y1-% (1)

is a differentiable map from S to ) (Fig. 1). Consider the Poisson problem
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Figure 1: The mapping f from the square S to the circle () used in question 2.
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on the circle Q) with Dirichlet condition u(v) = 0 for v € dQ). Introduce an N x N grid of
squares on S, each with side length i = 2/N. Let ¢; be the set of bilinear elements on S
corresponding to the nodal basis at square corners. Since the elements on the boundary can
be neglected, this gives (N — 1)2 basis functions in total. On the circle, define basis functions
; via the mapping from S, such that

$i(v) = ¢i(f (V). 3)
We represent the solution as

w) = ) uiti(o,w) @)

and solve the PDE problem using the Ritz—Galerkin method. Let us assume that the function
f also has the expansion

x) =) fii(v,w). (5)
Then Eq. 2 gives the weak form
—a(u, ¢i) = (f, ¥i)oo (6)

*Solutions to problems 2 and 3 written by Dan Fortunato and Nick Derr, respectively.



where

a(u,v) :/QVvu-Vvvdv, (f,U)O’Q:A)fUdV (7)

For this problem, the stiffness and mass matrix calculations vary from element to element,
and we compute them by pulling back the integrals from ) to S. That is,

= a(y;, i) :/ Vi - Vyipidv

- / “1V,) - (D~ 1Vygpr) (det D) dx ®)
and
Mij = /Q%'llfz‘dV
- /S ¢; - i(det D)dx ©)

where D = dv/0dx is the Jacobian of the mapping:
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where
_ o x Y
= 1—2, Sy = 1—2. (11)

2—X2—y2 _2_x2_y2
\/Z—XZ\/Z—]/Z 2sty

The determinant is

detD = (12)

The inverse Jacobian is

2
D= i_ i (2—x%)S,y iyszx , (13)
X —y xySy (2—y")Sx

We numerically compute the integrals in Egs. 8 & 9 using Gaussian quadrature.
The final linear system looks like

— Au = Mf (14)
where u and f are coefficient vectors of length (N — 1)2.

To test the code, we use a source term of f(v,w) = —e ?(3 + (v — 4)v + w?), which gives the
analytical solution u(v,w) = (1 — v> — w?)e~°. We run the code for a variety of choices of N
and calculate the L, error between the numerical solution and the analytical solution; Fig. 2
shows that the rate of convergence is O(h?). A solution for N = 40 is shown in Fig. 3.
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L, error

Figure 2: The method demonstrates O(h?) convergence.

Figure 3: Solution to Eq. 2 with N = 40.



3. A generalization of the Lax-Wendroff scheme

(a) Consider characteristics X(t) which move with the spatially dependent velocity A(x).
By definition, such characteristics satisfy the ODE

dx
= AX().

Now consider the value of q(x, t) along this characteristic - in other words, consider the
function g.(t) defined by

We can write
dgec _ 09  9qdX

dt ot oxdt’
and plug in the ODE above and 9¢4 + 0y (A(x)q) = 0 to obtain a second ODE

dg. dA
T _ _ < > qc(t)'
x=X(t)

dt dx
X(0) = xo0, 9(x0,0) = qo,

Along with the initial conditions

this system of coupled ODEs can be solved analytically; see Figure 4 for a method of
doing so using Mathematica. The resulting system of equations, after some algebra,
reveals that X(f) and g.(t) are time-periodic with the same period.

To see this, we can introduce the variables

()
¢ = 2arctan [\}5 (—2 —3tan <xzo>>] ,

p=0—9,

and write the solutions in terms of ¢. If we define

f(x) = —(83+2sinx),

9+ 4cos —Zﬁsin
() = s g

then the solution to the coupled ODE in terms of the phase is
_ 1 4
X(¢) = —2arctan [3 (2 —+/5tan <2))] ,

q.(9) = qo f(xo) f [X(g)]/X(#s(®)
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(d)

ially dependent velocity *)

:= 2+(4/3)Sin[x];

ODEs *)

X’[t] == A[X[t]];

Q’[t] == -A’[X[t]] Qlt];
initial conditions *)
X[0] == x0;

Q[0] == qO0;

system is solvable *)

Figure 4: An approach for solving the system of coupled ODEs with Mathematica

You can verify that X(—¢) = x¢ and g(—¢) = —1/f(x0), so that g.(—¢) = qo as
required for the satisfcation of the initial conditions.

Note that X(¢) and g.(¢) are both 27t-periodic in ¢. This is equivalent to X(t) and g.(t)
being periodic in time t with period

3r
T=""
V5
Using these facts, we can write
glx, t+T) =q(X(t),t+T) =q(X(t+T),t+T), (X(t) is time-periodic)
=q.(t+T) =qc(t), (9¢(t) is time-periodic)

= q(X(t),t) = q(x 1),

showing that g(x,t) = q(x,t+T). R

The CFL condition states that we require At < /c, where c is the velocity at which
information in the problem propagates; in this case, this is just the velocity A in the
advection equation.)

Since the velocity is spatially varying, we must choose At such that the condition is
satisfied at all locations in our domain. This corresponds to identifying c as the maximum
velocity

c= max A(x)= E
x€[0,27) 3

The initial condition g(x, ) = exp (sinx + % sin4x) is shown in Figure 5. Snapshots at
T =T/4,7/2,3T/4,and T for this initial condition are shown in Figure 6.

The calculated L2 error for a range of m is shown in Figure 7. The method converges at
second order.
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Figure 5: The initial condition g(x,0) = exp(sinx + 1 sin4x)
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Figure 6: Snapshots of the solution given the initial condition g(x,0) = exp(sinx + § sin4x) at the times
t =T/4, T/2, 3T/4,and T for m = 2048
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Figure 7: A log-log plot of the L2 error and number of grid points m for the initial condition g(x,0) =
exp(sinx + 1 sin4x).

(e) The initial condition g(x,t) = max{% — [x — 7|, 0} is shown in Figure 8. Snapshots at
T =T/4,7/2,3T/4,and T for this initial condition are shown in Figure 9. The calculated
L2 error for a range of m is shown in Figure 10. The method converges at first rather
than second order for the case with the kinked initial condition.
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Figure 8: The initial condition g(x,0) = max{5 — |x — 7t|,0}
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Figure 9: Snapshots of the solution given the initial condition q(x,0) = max{7 — |x — 7r|,0} at the times
t=T/4, T/2, 3T/4,and T for m = 8192
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Figure 10: A log-log plot of the L2 error and number of grid points m for the initial condition g(x,0) =
max{% — [x — 7|,0}.



