
AM225: Assignment 3 solutions1

1. Strassen’s algorithm. In Table 1, we show timing results for each method. In Figure 1, we
plot those results along with fit parameters to a distribution T = aNb, where two matrices
of size N × N require time T to multiply. As expected, BLAS is fastest over a wide range of
matrix sizes, but has worse scaling than Strassen’s algorithm.

N Strassen standard BLAS
4 6.04×10−7 6.11×10−8 7.35×10−8

8 4.44×10−6 3.10×10−7 3.07×10−7

16 3.25×10−5 2.32×10−6 1.99×10−6

32 2.31×10−4 2.36×10−5 1.95×10−5

64 8.61×10−4 1.96×10−4 1.31×10−4

128 6.10×10−3 1.61×10−3 9.50×10−4

256 4.30×10−2 3.01×10−2 7.48×10−3

512 0.302 0.298 5.91×10−2

1024 2.12 2.28 0.470
2048 15.0 75.6 5.40
4096 104 650 46.0
8192 732 5757 370

Table 1: Timing results, in seconds, for the three multiplication methods. As expected, BLAS is the fastest
method accross a large number of possible matrix sizes

−10

−8

−6

−4

−2

0

2

4

0.5 1 1.5 2 2.5 3 3.5 4

lo
g

T

log N

Strassen
a = 10−8.14, b = 2.81

standard
a = 10−10.4, b = 3.65

BLAS
a = 10−9.65, b = 3.12

Figure 1: Timing results for the three multiplication methods, such that two matrices of size N × N take time
T to multiply, fit to a distribution T = aNb.

1Solutions to problems 1 and 2 by Nick Derr. Solutions to problems 3-5 written by Dan Fortunato.

1

2. Fractal-based preconditioning. Figure 2 shows the beneficial effects of choosing a point-
sorting method to ensure dense Jacobi blocks. The top part of the figure shows that using
the Hilbert curve does in fact produce denser blocks, and the bottom part shows that the
resulting solve using PCG takes less time to converge.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
(k
)/

T
(k
)

k

y-coordinate
Hilbert curve

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 5000 10000 15000 20000 25000

ti
m

e
(s

ec
on

ds
)

k

y-coordinate
Hilbert curve

Figure 2: (Top) The fraction of nonzero entries in Jacobi blocks to total nonzero matrix entries is plotted
against the grid size k for two methods of sorting points: 1) in order of rising y-coordinate and 2) position
along the Hilbert curve. (Bottom) The time required for solution using the preconditioned conjugate gradient
method is plotted for k in both cases.

3. Alternative cubic elements We consider solving the elliptic problem

d
dx

(
x

du
dx

)
= f (x) (1)

for a function u(x) on Ω = (1, 2) with the boundary conditions

u(1) = 0,
du
dx

∣∣∣∣
x=2

= g (2)

where g is a real constant.

2

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

φ0
φ1
φ2
φ3

Figure 3: The local basis functions are cubic Hermite splines.

(a) The local finite element basis functions φ on the interval [0, 1] satisfy

φ0(0) = 1, φ′0(0) = 0, φ0(1) = 0, φ′0(1) = 0
φ1(0) = 0, φ′1(0) = 1, φ1(1) = 0, φ′1(1) = 0
φ2(0) = 0, φ′2(0) = 0, φ2(1) = 1, φ′2(1) = 0
φ3(0) = 0, φ′3(0) = 0, φ3(1) = 0, φ′3(1) = 1

That is, the functions are analogues of the nodal basis functions in both value and
derivative space. Such functions are cubic Hermite splines, given by

φ0(x) = 2x3 − 3x2 + 1,

φ1(x) = x3 − 2x2 + x,

φ2(x) = −2x3 + 3x2,

φ3(x) = x3 − x2.

On neighboring elements the local basis functions φ can be matched together at the
endpoints of each interval, where both functions have either value 1 or derivative 1. This
gives the global finite element basis, ψ.
A plot of the finite element basis functions for N = 3 is shown in Fig. 4. When N
intervals are used, the dimension of the finite element function space is 2N + 1 (the
additional function ψ0 is not considered since it is constrained to zero by the Dirichlet
condition at x = 1).

(b) Following the discussion in the lectures, a classical solution of Eqs. 1 & 2 will satisfy the
variational problem

J(v) =
1
2

a(v, v)− (f , v)0,Ω − (g, v)0,Γ → min (3)

3

0

1

2

3

4

5

1 1.2 1.4 1.6 1.8 2

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

ψ
i(

x)
+

2i 3

x

Figure 4: An example of the alternative cubic basis considered in question 1 that consists of C1 piecewise
cubic elements. The basis is illustrated for the case of three intervals over the range [1, 2].

4

where

a(u, v) =
∫ 2

1
xu′v′ dx, (f , v)0,Ω =

∫ 2

1
f v dx, (4)

and the minimization is taken over all functions that satisfy the essential (Dirichlet)
boundary condition that v(1) = 0. Here, the boundary Γ where natural (Neumann)
boundary conditions are imposed consists of the single point at x = 2. Hence

(g, v)0,Γ = gv(2). (5)

We split the domain into N intervals Iq = [xq, xq+1] for q = 0, . . . , N − 1. Using the
Ritz–Galerkin method, the solution is written as

uh(x) =
2N+1

∑
k=1

zkψk(x) (6)

and must satisfy
a(uh, ψi) = 〈l, ψi〉 (7)

for all i = 1, . . . , 2N + 1. Here 〈l, ψi〉 = (f , ψi)0,Ω + (g, ψi)0,Γ. To solve this, we first
evaluate the terms a(ψk, ψi) that form the stiffness matrix. Consider two distinct basis
functions that overlap in an interval Iq. Let k = q + α and i = q + β for α, β ∈ {0, 1, 2, 3}.
Then in the interval Iq,

ψk(x) = φα

(
x− 1

h
− q
)

, ψi(x) = φβ

(
x− 1

h
− q
)

. (8)

The derivatives of the cubic Hermite splines are

φ′0(x) = 6x2 − 6x,

φ′1(x) = 3x2 − 4x + 1,

φ′2(x) = 6x− 6x2,

φ′3(x) = 3x2 − 2x.

Hence, using the substitution x = (q + z)h + 1,

a(ψk, ψi) =
∫

Iq

xψ′kψ′idx =
1
h

∫ 1

0
(qh + zh + 1)φ′α(z)φ

′
β(z)dz

= (q + h−1)Bαβ + Cαβ (9)

where

Bαβ =
∫ 1

0
φ′α(z)φ

′
β(z)dz, Cαβ =

∫ 1

0
zφ′α(z)φ

′
β(z)dz. (10)

The terms Bαβ and Cαβ are elementary integrals that can be performed using Mathematica.
Their values are shown in Table 2.
Let us assume that the function f has the expansion

f (x) =
2N+1

∑
k=0

fkψk(x). (11)

5

Bαβ α = 0 α = 1 α = 2 α = 3

β = 0 6
5

1
10 − 6

5
1
10

β = 1 1
10

2
15 − 1

10 − 1
30

β = 2 − 6
5 − 1

10
6
5 − 1

10

β = 3 1
10 − 1

30 − 1
10

2
15

Cαβ α = 0 α = 1 α = 2 α = 3

β = 0 3
5

1
10 − 3

5 0

β = 1 1
10

1
30 − 1

10 − 1
60

β = 2 − 3
5 − 1

10
3
5 0

β = 3 0 − 1
60 0 1

10

Table 2: The terms Bαβ (left) and Cαβ that are used to assemble the stiffness matrix in the finite element
calculation.

α = 0 α = 1 α = 2 α = 3

β = 0 13
35

11
210

9
70 − 13

420

β = 1 11
210

1
105

13
420 − 1

140

β = 2 9
70

13
420

13
35 − 11

210

β = 3 − 13
420 − 1

140 − 11
210

1
105

Table 3: The terms Dαβ that are used to assemble the source term in the finite element calculation.

Then to evaluate (f , ψi)0,Ω we must evaluate (ψk, ψi)0,Ω. Again, choose distinct k and i
so that their basis function overlap in an interval Iq and define k = q + α and i = q + β
for α, β ∈ {0, 1, 2, 3}. Then

(ψk, ψi)0,Ω =
∫

Iq

ψkψidx = h
∫ 1

0
φα(z)φβ(z)dz = hDαβ (12)

where

Dαβ =
∫ 1

0
φα(z)φβ(z)dz. (13)

The values of Dαβ are shown in Table 3.
With these calculations in place, we can formulate a linear system

Au = b (14)

where Eq. 9 is used to assemble A, and Eq. 12 is used to assemble b. In addition, for the
line corresponding to ψ2N+1 a contribution from Eq. 5 is included for (g, v)0,Γ.
To test the convergence of the method, we use the method of manufactured solutions
and propose that

u(x) = e1−x sin 5πx. (15)

Then
u′(x) = e1−x (5π cos 5πx− sin 5πx) (16)

and therefore g = u′(2) = e−15π. In addition

f (x) =
d

dx
(
xu′(x)

)
= e1−x (5π(1− 2x) cos 5πx +

(
(1− 25π2)x− 1)

)
sin 5πx

)
. (17)

A log–log plot of the L2 error as a function of N for a range of values from N = 10 to
N = 1000 is shown in Fig. 5. Also shown is the L2 error for the original cubic nodal
basis.

6

10−10

10−8

10−6

10−4

10−2

10 100 1000

10−10

10−8

10−6

10−4

10−2

10−4 10−3 10−2 10−1

L 2
er

ro
r

N

alternative
original
O(h4)

L 2
er

ro
r

time (s)

alternative
original

Figure 5: L2 error versus N (left) and wall clock time (right) for both the alternative cubic basis and the
original cubic basis.

(c) A log–log plot of the L2 error for the two methods versus the wall clock time for the
computation is shown in Fig. 5. The bases seem to be equally efficient in achieving a
desired level of accuracy.

4. Simulating an MRI We model an MRI with the Helmholtz equation

∇2u(x) + k2u(x) = v(x), (18)

where u(x) is the electric field strength, k is the wave number, and v(x) is the electric excitation.
In general, both u(x) and k can be complex-valued. Note that k2 = ω2µε, where ω = 2π f , µ
is the magnetic permeability, and ε is the electric permittivity. In free space, k2 = k2

0 = ω2µ0ε0,
where µ0 = 4π × 10−7 H m−1 and ε0 = 8.8542× 10−12 F m−1.

(a) We use a second-order accurate finite difference scheme for Eq. 18 in free space on the
domain [0, 1]2 with homogeneous Dirichlet boundary conditions. We set v(x) to be the
impulse v(x) = δ(x− (0.5, 0.5)), discretized to a vector of zeros with a single element of
1/h2 at the appropriate row. We use a frequency of f = 21.3 MHz and assume u(x) is
complex-valued.
To solve this problem with the banded solver, we write the discretized equations as

Au = v

where u and v are flattened versions of u(x) and v(x) sampled on the finite difference

7

grid,

A =
1
h2 (K⊗ I + I ⊗ K) + k2

0(I ⊗ I), K =

−2 1
1 −2 1

.

1 −2 1
1 −2

,

and K and I are (N − 1)× (N − 1).
To solve this problem with the DST, we write the discretized equations as

1
h2 (XK + KX) + k2

0X = F

where X and F are (N − 1)× (N − 1) matrices containing the values of u(x) and v(x)
sampled on the finite difference grid. We can share the k2

0 component between the first
two matrices to make this amenable to the DST:

1
h2

[
X
(

K +
k2

0
2

I
)
+

(
K +

k2
0

2
I
)

X
]
= F.

Now we can perform an eigendecomposition on K +
k2

0
2 I:

K +
k2

0
2

I = S−1
(

Λ +
k2

0
2

I
)

S,

where S is the DST matrix and Λ is a diagonal matrix whose entries are the eigenvalues
of K, given by λj = −2 + 2 cos(jπ/N). After some manipulation, this leads to

1
h2

[(
K +

k2
0

2
I
)

Y + Y
(

K +
k2

0
2

I
)]

= SFS−1

where Y = SXS−1. Note that the multiplications by S and S−1 can be computed fast
using the DST.2

The timings for the banded and DST-based solvers in free space are shown in Figure 6.
Note that the DST-based solver is not faster than the banded solver until about N > 64.

(b) The MRIs of the human head using the banded solver with N = 256 and v(x) =
δ(x− (0.6, 0.7)) are shown in Figures 7a and 7b for frequencies of f = 21.3 MHz and
f = 298.3 MHz, respectively. The plots show the values of |u|. The solution has been
clipped to the head for visualization purposes.

(c) The DST-based method no longer works if k(x) is spatially-varying. This is because the
eigenvectors of the operator ∇2 + k(x)2 are no longer given by a sine series; in fact, we
don’t know what the eigenvectors are! Therefore, the operator is not diagonalizable by
the DST. In the case of constant k, the operator ∇2 + k2 has the same eigenvectors as ∇2,
but the eigenvalues are shifted by k2/2.

2Note that for complex numbers a + bi, DST(a + bi) = DST(a) + DST(b)i.

8

 0.0001

 0.001

 0.01

 0.1

 1

 10

 16 32 64 128 256 512 1024

ti
m

e
 (

s
)

N

banded solver
DST-based solver

Figure 6: Timings for the banded and DST-based solvers.

(d) The iterative scheme utilizing the DST-based solver is

∇2u(i+1) + k2
0u(i+1) = v−

(
k(x)2 − k2

0
)

u(i), (19)

with u(0) = 0. The computed solutions are shown in Figures 7c and 7d for frequencies of
f = 21.3 MHz and f = 298.3 MHz, respectively. Convergence plots for both frequencies
are shown in Figures 7e and 7f. The iterative method converges for the lower frequency
but diverges for the higher frequency.

(e) Define the error at iteration i to be δu(i) = u(i) − u. Substituting u(i+1) = δu(i+1) + u into
Eq. 19 yields

∇2u(i+1) + k2
0u(i+1) = v− (k(x)2 − k2

0)u
(i)

=⇒ (∇2 + k2
0)u

(i+1) = v− (k(x)2 − k2
0)u

(i)

=⇒ (∇2 + k2
0)(δu(i+1) + u) = v− (k(x)2 − k2

0)u
(i)

=⇒ (∇2 + k2
0)δu(i+1) + (∇2 + k2

0)u = v− (k(x)2 − k2
0)u

(i)

=⇒ (∇2 + k2
0)δu(i+1) = v− (k(x)2 − k2

0)u
(i) − (∇2 + k2

0)u

9

Since u satisfies the PDE, ∇2u = v− k(x)2u. Substituting this in, we obtain

(∇2 + k2
0)δu(i+1) = v− (k(x)2 − k2

0)u
(i) − (∇2 + k2

0)u

= v− (k(x)2 − k2
0)u

(i) − (v− k(x)2u + k2
0u)

= (k2
0 − k(x)2)(u(i) − u)

= (k2
0 − k(x)2)δu(i)

Thus, we have
δu(i+1) = (∇2 + k2

0)
−1(k2

0 − k(x)2)δu(i).

The iterative scheme will converge if the error is reduced at each iteration. We can
rewrite the error at the (i + 1)-th iteration in terms of the initial error as

δu(i+1) = (∇2 + k2
0)
−1(k2

0 − k(x)2)i+1δu(0).

The norm of the error at the (i + 1)-th iteration is then bounded by

‖δu(i+1)‖ = ‖(∇2 + k2
0)
−1(k2

0 − k(x)2)i+1δu(0)‖
≤ ‖(∇2 + k2

0)
−1(k2

0 − k(x)2)‖i+1‖δu(0)‖.

Thus, in order for the iterations to converge we need ‖(∇2 + k2
0)
−1(k2

0 − k(x)2)‖ < 1.
This is true only when the spectral radius ρ((∇2 + k2

0)
−1(k2

0 − k(x)2)) = |λmax| < 1.
Therefore, we need all eigenvalues of (∇2 + k2

0)
−1(k2

0 − k(x)2) to have magnitude < 1.
We can more explicitly determine this condition, since (∇2 + k2

0)
−1 is symmetric:

‖(∇2 + k2
0)
−1(k2

0 − k(x)2)‖ ≤ ‖(∇2 + k2
0)
−1‖‖k2

0 − k(x)2‖
= ρ((∇2 + k2

0)
−1)‖k2

0 − k(x)2‖

= max
j

∣∣∣∣ 1
λj

∣∣∣∣ ‖k2
0 − k(x)2‖

=
1

minj
∣∣λj
∣∣‖k2

0 − k(x)2‖

< 1.

where λj are the eigenvalues of ∇2 + k2
0. This implies that

‖k2
0 − k(x)2‖ < min

j

∣∣λj
∣∣ = min

j

∣∣∣∣− 2
h2

(
1− cos

jπ
N

)
+

k2
0

2

∣∣∣∣ .

So given a discretization spacing h we have a condition on k(x) that guarantees conver-
gence.

(f) It takes about 2 seconds for the iterative solver to converge to machine precision with
N = 1024 and f = 21.3 MHz. The scaling from Figure 6 indicates that it would take
about 100 seconds for the banded solver to solve this same problem!

10

(a) Low frequency MRI solution using banded solver. (b) High frequency MRI solution using banded solver.

(c) Low frequency MRI solution using DST-based iterative
method.

(d) High frequency MRI solution using DST-based iterative
method.

 1x10
-14

 1x10
-12

 1x10
-10

 1x10
-8

 1x10
-6

 0.0001

 0.01

 1 2 4 8 16

re
la

ti
v
e
 e

rr
o
r

iteration

(e) Low frequency convergence of iterative method.

 1

 100000

 1x10
10

 1x10
15

 1x10
20

 1x10
25

 1 2 4 8 16

re
la

ti
v
e
 e

rr
o
r

iteration

(f) High frequency divergence of iterative method.

Figure 7

11

5. Testing the Schur complement for the Poisson equation

We wish to solve the Poisson equation −∇2u = f on the domain [0, 1]2 with zero Dirichlet
boundary conditions using (a) a single Poisson solve on a 112× 112 grid using the FFT and
(b) the Schur complement method on the perfect squared square (see Figure 8), with each
subdomain solve using the FFT.

50

33

29

37 42

24

19

2735
8

25
16

18

11

6

1715

9 7
2

4

Figure 8: A perfect squared square.

The Poisson problem on the 21-subdomain perfect squared square leads to a linear system of
the form

A1,1 A1,Γ

A2,2 A2,Γ
. . .

...
A21,21 A21,Γ

AΓ,1 AΓ,2 · · · AΓ,21 AΓ,Γ

u1

u2
...

u21

uΓ

=

f1

f2
...

f21

fΓ

where Γ indicates the gridpoints that lie on the interfaces or “glue” between the subdomains.
Applying the Schur complement method to eliminate the degrees of freedom on the interiors
of the subdomains results in an equation for the unknowns on the glue,

ΣuΓ = fΓ −
21

∑
i=1

AΓ,i A−1
i,i fi (20)

where Σ = AΓ,Γ −∑21
i=1 AΓ,i A−1

i,i Ai,Γ is called the Schur complement matrix.

Note that the matrix A−1
i,i applied to a vector corresponds to solving a Poisson problem on

subdomain i, which can be done by calling our fast FFT-based Poisson solver. Additionally,

12

the matrix Ai,Γ applied to a vector transfers information from the glue to the subdomain by
injecting the given vector as Dirichlet data for the subdomain, and the matrix AΓ,i applied
to a vector transfers information from the subdomain solution to the glue. Therefore, there
is no need to form these matrices explicitly; if we use an iterative method such as conjugate
gradient to solve Eq. 20, then it suffices to be able to multiply Σ by a vector.

The solution to the interface problem Eq. 20 is shown in Figure 9d. Note that Eq. 20 only gives
us the computed solution on the glue; it remains to compute the solution on the subdomains.

Once we have solved Eq. 20, we can compute the solutions on the subdomains by solving the
decoupled Poisson problems

Ai,iui = fi − Ai,ΓuΓ

for i = 1, 2, . . . , 21.

The solutions computed by methods (a) and (b) with f (x, y) = ex−y are shown in Figures 9a
and 9b, respectively. The error between the two solutions is shown in Figure 9c. The maximum
norm error is 8.46545× 10−16, indicating that the two solutions agree up to machine precision.

The trickiest aspect of this problem is the indexing, which determines how the glue talks to the
subdomains and vice versa. In the provided code, the relationships between the glue and the
subdomains are computed once and stored in a dictionary structure (std::unordered map).
This makes the indexing much easier, as the communication between the glue and subdomains
amounts to looking up the indices in the dictionary.

13

(a) The solution on the single domain. (b) The solution using the Schur complement method.

(c) The error between the computed solutions. (d) The solution on the interface.

Figure 9

14

