
AM225: Assignment 2 Solutions*

Part I: ODE solution methods

1. Adaptive integration with a First Same As Last (FSAL) scheme
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Figure 1: The fourth-order FSAL method is shown on a precision–work plot, comparing its performance to
that of several other methods discussed in lecture.

(a) The Brusselator system is given by

y′1 = 1 + y2
1y2 − 4y1, y′2 = 3y1 − y2

1y2 (1)

with initial conditions y1(0) = 1.5, y2(0) = 3. Its position on a precision–work plot,
when compared with the four methods from lecture, is shown in Figure 1. As expected,
the method is fourth-order, but uses fewer function evaluations than fourth-order Runge-
Kutta.

(b) The two-component system

y′1 = −xy2, y′2 = xy1 (2)

with initial conditions y1(0) = 1, y2(0) = 0 is an oscillating system. The exact solution is
given by yexact

1 (x) = cos x2

2 , yexact
2 = sin x2

2 .

*Solution to Problem 2 written by Dan Fortunato. Solutions to all other problems written by Nick Derr.
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Figure 2: The two-component oscillator is plotted above. The integration points are marked by dots, and the
dense output is plotted as a line.
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Figure 3: The error in the two-component oscillator system is plotted above. The integration points are
marked by dots, and the dense output is plotted as a line.

2



Fig 2 shows the numerically integrated system, produced using λ = 3 × 10−3. The
integration points are marked as points, and dense output is marked as lines. Fig 3
shows the integration error in each component of the solution. Integration points and
dense output are marked as in Fig 2.

2. A high-order adaptive integrator using Richardson extrapolation

(a) Fig. 4 shows a precision–work plot for the sixth-order Richardson-extrapolated Cash–
Karp method applied to the Brusselator problem (1). For comparison, the plot includes
other lower-order methods from lecture. The slope of the Cash–Karp line is −1/6.
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Figure 4: Precision–work plot for the Cash–Karp method applied to the Brusselator problem.

(b) Fig. 5a shows the solution to (2) simulated to x = 8 using the sixth-order Richardson-
extrapolated Cash–Karp scheme, with dense output based on quintic polynomial in-
terpolation. The dense output is saved at intervals of 8

1200 and step size adaptivity is
performed with Atol = Rtol = λ = 3 × 10−3. The error is shown in Fig. 5b.
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(a) Solution
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Figure 5: Computed solution and error to the oscillator problem (2) using the sixth-order Richardson-
extrapolated Cash–Karp method with dense output.
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Part II: ODE applications and analysis

3. Order condition trees. How many unique trees of order k exist? We can consider the question
from a combinatorics point of view. Consider an order-k tree whose root node has n children.
Each child i ∈ [1, n] is the root of an order-qi subtree. Note the qi’s must satisfy ∑n

i=1 qi = k − 1,
since the total tree including the root node must be order k.

Partitions We can take this combination of subtree orders and define the set

q :=

{
qi : i ∈ [1, n] for some n, qi ∈ Z,

n

∑
i=0

qi = k − 1

}

corresponding to a integer partition of the integer k − 1. Some notes:

• The quantity q is a set, not a vector, as there is no ordering of elements. Example: (2,3)
and (3,2) represent the same partition of 5.

• In general, many such partitions of an integer exist and may have different lengths.
Example: the partitions of 5 are (5), (1,4), (2,3), (1,1,3), (1,2,2), (1,1,1,2), and (1,1,1,1,1).

Let’s define q(k,j) as the jth partition of k − 1, and n(k,j) as its length.

Partition classes It may be clear that each partition q(k,j) corresponds to a class of order-k
trees with the following properties:

• root nodes of trees in partition class q(k,j) have nj children

• child i ∈ [1, n(k,j)] is the root of a subtree of order q(k,j)
i

Note that, by definition, a given tree is a member of exactly one partition class. Thus, we can
count the number of trees of a given order by summing the size of each of these classes. Before
computing the size of a single class, we must consider the number of possible combinations
of m subtrees of order o, since there is no ordering of node children.

Combinations of subtrees of the same order Let the number of trees of order o be No. We
wish to choose m trees, with replacement, from No choices. While the ordering of the choices
does not matter, the number of times a given tree is chosen does; in other words, the problem
is analogous to the question of placing m distinguishable balls into No indistinguishable
baskets. The correct number of combinations is therefore

M(m,o) =

(
No + m − 1

m

)
†.

†This quantity can be computed, for example, using stars and bars.
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k Nk

1 1
2 1
3 2
4 4
5 9
6 20
7 48
8 115
9 286
10 719
11 1,842
12 4,766
13 12,486
14 32,973
15 87,811

Table 1: The number of unique trees Nk of order k, for k ≤ 15

Size of a single partition class Let’s define the sets v(k,j), m(k,j) and the integer l(k,j) as an
alternate representation of the partition q(k,j) and length n(k,m), such that the partition contains
l(k,j) unique values v(k,j)

i , i ∈ [1, l(k,j)], each of which is repeated m(k,m)
i times.

Using the previous section, the size N(j)
k of partition class (k, j) must be equal to

N(j)
k =

l(k,j)

∏
i=1

M
(

m(k,j)
i ,v(k,j)

i

)
.

Number of trees of a given order If the number of partitions Pk of k − 1 is known, then

Nk =
Pk

∑
j=1

N(j)
k =

Pk

∑
j=1

l(k,j)

∏
i=1

(N
v(k,j)

i
+ m(k,j)

i − 1

m(k,j)
i

)
.

The number of unique trees at order k ≤ 15 is shown in Table 1. All of the 48 order-7 trees are
shown in Figure 6.
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Figure 6: The 48 unique trees of order 7
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4. Error analysis of a Richardson extrapolation scheme.

(a) The second-order Ralston method corresponds to the following Butcher tableau.

0
2/3 2/3

1/4 3/4

If we define the four stages
k11 = f (tk, yk),

k12 = f
(

tk +
2h
3

, yk +
2hk1

3

)
,

k21 = f
(

tk + h, yk +
h
4
(k11 + 3k12)

)
,

k22 = f
(

tk +
5h
3

, yk +
h

12
(3k11 + 9k12 + 8k21)

)
,

then the method yields the following second-order approximations to the function
values y(tk + h) and y(tk + 2h):

yk+1 = yk +
h
4
(k11 + 3k12) ,

yk+2 = yk +
h
4
(k11 + 3k12 + k21 + 3k22) .

We can also use the same method to calculate a second-order approximation to y(tk + 2h)
using a single step of size H = 2h, such that

kw1 = f (tk, yk) = k11,

kw2 = f
(

tk +
2H
3

, yk +
2Hk11

3

)
,

w = yk +
H
4
(k11 + 3kw2) = yk +

h
2
(k11 + 3kw2) .

Using Richardson extrapolation, a third-order approximation for y(tk + 2h) is given by

ŷ = yk+2 +
yk+2 − w

2p − 1
=

1
3
(4yk+2 − w) ,

where we’ve used p = 2, since Ralston is second-order. Substituting, this implies

ŷ = yk +
h
3
(k11 + 3k12 + k21 + 3k22)−

1
6
(k11 + 3kw2) ,

= yk +
h
6
(k11 + 6k12 + 2k21 − 3kw2 + 6k22) .
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Writing the Runge-Kutta stages and ŷ in terms of H, we find

k11 = f (tk, yk),

k12 = f
(

tk +
H
3

, yk +
Hk11

3

)
,

k21 = f
(

tk +
H
2

, yk +
H
8
(k11 + 3k12)

)
,

kw2 = f
(

tk +
2H
3

, yk +
2Hk11

3

)
,

k22 = f
(

tk +
5H
6

, yk +
H
24

(3k11 + 9k12 + 8k21)

)
,

ŷ = yk +
H
12

(k11 + 6k12 + 2k21 − 3kw2 + 6k22) .

indicating the third-order approximation to y(tk + H) is a five-stage Runge-Kutta method
with the following Butcher tableau.

0
1/3 1/3

1/2 1/8 3/8

2/3 2/3 0 0
5/6 1/8 3/8 1/3 0

1/12 1/2 1/6 −1/4 1/2

We’ll refer to this as the Ralston+Richardson (R+R) method.

(b) Now, recall that the error coefficients are given for each tree t by

e(t) = 1 − γ(t)
s

∑
j=1

bjΦj(t),

where γ(t) is a function of tree structure and Φj(t) is a function of tree structure and the
Runge-Kutta coefficients ajk. The values for these functions and the error coefficients are
displayed for the R+R and Heun methods in Table 2.

(c) For each tree t, we find |eR+R(t)| ≤ 1/2|eHeun(t)|, indicating the R+R method will have
about double the precision of Heun at a given step size. Similarly, since Heun requires
three function evaluations and R+R requires five, we can see that R+R takes about 5/3

as much work as Heun. In other words, we could see a 100% increase in precision by
switching from Heun to R+R, corresponding to a 67% increase in work. Is this worth
the trade?
The answer is no. Since the methods are third order, we could also see a 100% increase
in precision by keeping Heun and decreasing our step size by a factor of 21/3 ≈ 1.26,
corresponding to about 26% more work. We conclude that Heun takes fewer function
evaluations to reach a given precision.
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t
γ(t) 4 8 12 24
Φj(t) ajkajlajm ajkaklajm ajkaklakm ajkaklalm

Ralston + Richardson extrapolation
Φ1(t) 0 0 0 0
Φ2(t) 1/27 0 0 0
Φ3(t) 1/8 1/16 1/24 0
Φ4(t) 8/27 0 0 0
Φ5(t) 125/216 35/144 1/8 1/24

e(t) −1/54 −1/18 1/6 1/2

Heun
Φ1(t) 0 0 0 0
Φ2(t) 1/27 0 0 0
Φ3(t) 8/27 4/27 2/27 0
e(t) 1/9 1/9 1/3 1

Table 2: The functions γ(t) and Φj(t) are shown for each of
the order-4 trees (top). The function Φj(t) for each stage and
resulting error coefficient e(t) are plotted with respect to the
Ralston+Richardson extrapolation method (middle). The same
functions are plotted with respect to the Heun method (bottom).

As an aside, note that consideration of the methods’ order is absolutely necessary for
this analysis. For instance, if the methods were first order, the 67% increase in work
from switching to R+R would have been more efficient than the 100% increase in work
needed to get the corresponding increase in precision by halving the Heun step size.
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5. A generalized Kuramoto model.

(a) Snapshots at t = 10, 20, 50, and 200 are shown for each model. The corresponding
movies are available on the am225 solutions GitHub repository.

i. J = 0.5, K = 0.5, 507 timesteps
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Figure 7: Four snapshots of the first Kuramato swarming model
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nothing

ii. J = 0.3, K = −0.2, 1148 timesteps
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Figure 8: Four snapshots of the second Kuramato swarming model
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nothing

iii. J = 1, K = −0.2, 1950 timesteps
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Figure 9: Four snapshots of the third Kuramato swarming model
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6. Symplectic integration for galactic dynamics.

The system can be written explicitly as

q̇ =

 p1 + Ωq2

p2 − Ωq1

p3

 , ṗ =

 Ωp2

-Ωp1

0

− 2A2

V(q)

 q1/a2

q2/b2

q3/c2

 ,

and with the provided values, the values of p2 for which H = 2 are

p2 =
1

40

(
25 ±

√
6961 − 3200 log 5

)
.

The larger root is p2 ≈ 1.68884.

(a) The convergence of Geng’s method applied to the Brusselator is shown in Figure 10.
Because the method is implicit, the number of function evalutions required for a given
step size is orders of magnitude higher than the 4th-order explicit Runge-Kutta method.
Since the method is fifth-order, it rapidly reaches machine precision as that step size is
decreased.

(b) The simulated trajectory of the galactic system and the corresponding Hamiltonian value
H are plotted from time t = 0 to 2000 in Figures 11 and 12, respectively. Note that the
quantity H(t) is preserved by the symplectic method, in the sense that any long-term
drift in the value is small compared to variations in the value between time steps (on the
order of 10−5).
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Figure 10: The convergence of Geng’s method compared with that of the
fourth-order Runge-Kutta method, applied to the Brusselator

(c) A few definitions:

• In general, the solution to a periodic ODE can be represented by a trajectory through
n-dimensional space. In this problem, the galactic system is represented by a
trajectory within a six-dimensional (q1, q2, q3, p1, p2, p3) space.
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Figure 11: The star’s trajectory plotted from t = 0 to 2000, from a canted view
(left) and from directly above (right), where time is expressed by line color

−1.5

−1

−0.5

0

0.5

1

1.5

0 500 1000 1500 2000

(H
−

2)
×

10
−

5

t

Figure 12: The deviation from the system’s initial Hamiltonian (H0 = 2) for t = 0 to 2000

• A Poincaré section is an (n− 1)-dimensional subspace which is repeatedly intersected
by the solution trajectory. In this case, the section is the five-dimensional half-half-
space with q1 > 0, p2 > 0, q2 = 0.

• The Poincaré map is a mapping from the Poincaré section to itself. Consider time t
and location within the Poincaré section v. Let a trajectory intersect the section at
series of times tk, at the locations vk. The Poincaré map P maps an intersection point
to the next intersection point; that is, P(vk) = vk+1 for all k.

There are many ways we can try to visualize the distibution of crossings with the Poincaré
section and qualities of the Poincaré map. Two that may reveal some information
about the system are shown in the next few figures: we can look at the distribution of
interaction locations projected onto 2D planes, and we can look at mappings of the value
of individual coordinates at one intersection to their values at the next.
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Figure 13: (Top) distributions of crossing points of the Poincaré section, projected onto 2D planes in the
q1, p1, p2 subspace. (Bottom) one-dimensional Poincaré maps for the three coordinates q1, p1, p2, such that
the point (x, y) represents a mapping from a coordinate’s value x as it intersects the Poincaré section to its
value y on its next intersection with the section.

• At first order, the orbit is very similar to a planar trajectory in (q1, q2, p1, p2) space.
Accordingly, Figure 13 shows Poincaré map-related visualizations of q1, p1, p2 with
tight grouping and clear structure.

• At next order, we expect the orbit would display oscillation about the q3 = 0 plane.
Figure 14 shows visualizations of q3, p3 which show clear structure, but are not quite
as clean as those in Figure 13.

• These visualizations of crossings of the Poincaré section (the top row of Figure
13 and the left plot in Figure 14) are quite clean, as they represent projections of
the crossings onto planes where we’ve reasoned the coordinate values are highly
correlated.

• We expect that projections onto planes of less correlated variables, i.e. combinations
of (q1, p1, p2) and (q3, p3), will produce maps of a different sort, as the relationships
between the variables is not so obvious as a planar elliptical orbit or oscillation about
a plane. Figure 15 shows these projections, which largely confirm our expectation:
there is clear structure, but it is just as clear that trajectory crossings wander over a
larger region in a more scattershot way.
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Figure 14: (Left) distributions of crossing points of the Poincaré section, projected onto the q3, p3 plane.
(Middle, right) Poincaré maps of the two coordinates.
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Figure 16: The cartesian plane can be divided into the four regions Ωi, each consisting of one of the quadrants
created by the intersection of the lines y = x and y = −x. The black dot above will follow the square trajectory
shown.

7. Integrating ODEs with discontinuities

(a) We can write our ODE in terms of a vector r(t) = [x(t), y(t)]⊺, so that

dr
dt

=

{
−yx, r ∈ Ω1 or Ω3,
xy, r ∈ Ω2 or Ω4,

where the Ωi’s label quadrants of the Cartesian plane as shown in Figure 16. From the
same figure, it’s clear than trajectory will move along the perimeter of a square of size
determined by the initial position. In turn, this shows the magnitude of the time rate of
change must be constant (i.e. that y for r ∈ Ω1 or Ω3 will equal x for r ∈ Ω2 or Ω4.)
The initial condition r = [1, 0]⊺ corresponds to a square of side length 2 and a velocity
magnitude 1; the perimeter of the square is therefore 8 and the period of the trajectory
must be 8 as well. By inspection, we can write down the solution

r(t) = r(t mod 8),

for the piecewise functions defined on τ ∈ [0, 8):

x(τ) =


1, τ ∈ [0, 1) or τ ∈ [7, 8),
2 − τ, τ ∈ [1, 3),
−1, τ ∈ [3, 5),
τ − 6, τ ∈ [5, 7),

y(τ) =



τ, τ ∈ [0, 1),
1, τ ∈ [1, 3),
4 − τ, τ ∈ [3, 5),
−1, τ ∈ [5, 7),
τ − 8, τ ∈ [7, 8).
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Figure 17: A precision–work plot showing the performance of 4th-order classic RK, 4th-order adaptive FSAL,
and 6th-order adaptive Cash–Karp with Richardson extrapolation.

(b) A precision–work plot showing the performance of classic, fixed-step Runge Kutta on
the above system is shown in Figure 17. While it’s noisier than most work–precision
plots we’ve seen, it shows roughly first-order convergence.
Note that any integrator of first-order or higher will exactly integrate the “sides” of the
square—the only error introduced into the problem occurs at the corners. The integrator
has no way of knowing it’s required to immediately turn left at y = x or y = −x; as a
result, it will slightly overshoot, and move to a square of slightly larger size. The amount
of the overshoot will be less than or equal to the step size, indicating the error should
scale with h. This is the source of the “envelope” slope in the work–precision plot.
A final note: why doesn’t the integration at the corner get better faster than O(h) given
we’re using a multi-step method? Runge-Kutta methods are based on zeroing out terms
in Taylor expansions with the assumption that the remaining terms will be small (i.e. of
some order or below, as determined, for instance, by the order tree analysis in Problem
3.) At the corner, though, the derivative is not continuous (i.e. the second derivative
becomes infinite), and much of this Taylor series analysis is no longer valid.

(c) The performances of the adaptive FSAL and Cash–Karp with Richardson extrapolation
integrators are also plotted in Figure 17. In general, an adaptive method, upon hitting
the corner, can reduce the time step until the error added is on the scale of the tolerance,
while still taking large steps to exactly integrate the straight regions. As a result, we see
extremely fast convergence.
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