
AM225: Assignment 4 (due 5 PM, April 16)

Complete at least two questions. If you submit answers for more, your grade will be calculated using the
best scores.

1. A previous question. Complete a question from HW3 that you have not already done. In
particular, question 3 from HW3 on the finite-element method is recommended.

2. Fitting a square peg in a round hole. Consider two coordinate systems v = (v, w) and
x = (x, y). In the v system, introduce the circle of unit radius, Ω = {v ∈ R : ‖v‖2 < 1}. In
the x system, introduce the square S = (−1, 1)2. The mapping v = f (x) defined by

v = x

√
1− y2

2
, w = y

√
1− x2

2
(1)

is a differentiable map from S to Ω (Fig. 1). Consider the Poisson problem

−∇2u = f (2)

on the circle Ω with Dirichlet condition u(v) = 0 for v ∈ ∂Ω. Introduce an N × N grid of
squares on S, each with side length h = 2/N. Let φi be a set of finite element basis functions
on S. You can use the bilinear elements corresponding to the nodal basis at square corners.1

Since the elements on the boundary can be neglected, this gives (N − 1)2 basis functions in
total. On the circle, define basis functions ψi via the mapping from S, such that

ψi(v) = φi( f−1(v)). (3)

Consider representing your solution as

u(v, w) = ∑
i

uiψ(v, w) (4)

and solve the PDE problem using the Ritz–Galerkin method. Use a source term of f (v, w) =
e−v(3 + (v− 4)v + w2), which gives the analytical solution u(v, w) = (1− v2 − w2)e−v. For
this problem, the stiffness and mass matrix calculations will vary from element to element,
and you can compute them by pulling back the integrals from Ω to S. For example

a(ψi, ψj) =
∫

Ω
∇vψi · ∇vψj dv

=
∫

S
(D−1∇xφi) · (D−1∇xφj)(det D)dx (5)

where D = ∂v/∂x is the Jacobian of the mapping. In general these integrals will not analyti-
cally solvable, but they can be performed accurately and efficiently using Gaussian quadrature.
In the class example files, you will find a demo program 3a f element/q2d test.cc, which
demonstrates integrating a function on a square using Gaussian quadrature.2

Use your code for a variety of choices of N to calculate the L2 error between the numerical
solution and analytical solution, and determine the rate of convergence.

1You can use an alternative basis if you prefer, such as the C1 Bogner–Fox–Schmit element.
2Note that because each integral like Eq. 5 is only done over a small patch, the integrand should be well-approximated

by a low-order Taylor series, and thus not many quadrature points are require to achieve very high accuracy.
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Figure 1: The mapping f from the square S to the circle Ω used in question 2.

3. A generalization of the Lax–Wendroff scheme. Consider the hyperbolic conservation equa-
tion

qt + [A(x)q]x = 0 (6)

for a function on q(x, t) on the periodic interval [0, 2π). Let A(x) = 2 + 4
3 sin x. Following

the finite volume approach, divide the intervals into m domains Ci of length h = 2π
m , for

i = {0, 1, . . . , m− 1}. Let Qn
i ≈ q((i + 1/2)h, n∆t) be the discretized solution at the center of

each Ci. The generalized Lax–Wendroff scheme for this equation is given by

Qn+1
i = Qi −

∆t
h
[
F n

i+1/2 −F n
i−1/2

]
(7)

where the fluxes are

F n
i−1/2 =

Ai−1Qn
i−1 + AiQn

i

2
− Ai−1/2∆t

2h
[
AiQn

i − Ai−1Qn
i−1
]

. (8)

Here, Ai = A((i + 1/2)h) and Ai−1/2 = A(ih).

(a) By the considering the characteristics, or otherwise, show that the mathematical solution
to Eq. 6 is time-periodic, so that q(x, t + T) = q(x, t) for some T > 0. Determine T.3

(b) The CFL condition requires that ∆t ≤ h
c for stability. What is c in this case?

(c) Implement Eq. 8 and set ∆t = h
3c . Use the initial condition

q(x, 0) = exp
(
sin x + 1

2 sin 4x
)

. (9)

For m = 512, plot snapshots of the solution for t = 0, T
4 , T

2 , 3T
4 , T.4

(d) By considering a range of m (e.g. 256 and upward) with the initial condition in Eq. 9
calculate the L2 norm between the numerical solution at t = T and the exact answer.
Determine the order of convergence.5

(e) Repeat parts (c) and (d) for the initial condition

q(x, 0) = max{π
2 − |x− π|, 0}. (10)

3This is not as straightforward as it may seem. You may need to use a symbolic solver such as Mathematica.
4Since multiples of ∆t do not exactly match these snapshot times, you may need to make a small adjustment to the

timestep.
5When determining the order of convergence, you are interested in the asymptotic properites of error as m gets large.

You can ignore initial transients in error.
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