AM225: Assignment 2 (due 5 PM, March 4)

Part I: ODE solution methods

Complete at least one out of two problems in this section. If you submit answers for both, your grade will be calculated using the best score. Note: question 2 is harder than question 1.

- 1. Adaptive integration with a First Same As Last (FSAL) scheme. Write an adaptive Runge– Kutta integration scheme to solve an arbitrary ODE problem y' = f(x, y) for $y(x) \in \mathbb{R}^n$, using the five step FSAL scheme described in the lectures. Your code should have the following properties:
 - Use the fourth-order solution y_1 to step forward, and use the third-order \hat{y}_1 for step size selection.
 - Use the step size selection procedure described in the slides. The parameters *fac*, *facmax*, and *facmin* from the slide can be used. For the tolerance, you can assume *Atol* and *Rtol* are the same for all components, rather than being specified on a per-component basis. Use an initial step size of h = 0.01.
 - Make your program count the number of function evaluations. Your program should be parsimonious in the number of function evaluations it performs, by reusing k_5 from a successful step to be k_1 of the next step, and by retaining k_1 when a step is rejected.

Once your method is working, complete the following two test problems.

- (a) Test your program on the Brusselator test problem using $Atol = Rtol = \lambda$. By trying a range of λ from 10^{-3} to 10^{-13} make a precision–work plot as in the lectures. In the program files, you will find the corresponding precision–work data for the four low-order methods considered in the lectures, and you may overlay these results on your plot to compare them.
- (b) Extend your code so that it does third-order dense output with Hermite interpolation at regular intervals. Test your code using the two-component system

$$y_1' = -xy_2, \qquad y_2' = xy_1$$
 (1)

with initial conditions $y_1(0) = 1$, $y_2(0) = 0$. This problem has the exact solution $y_1^{\text{exact}}(x) = \cos \frac{x^2}{2}$, $y_2^{\text{exact}} = \sin \frac{x^2}{2}$. Simulate to x = 8 using $\lambda = 3 \times 10^{-3}$, saving dense output at intervals of $\frac{8}{1200}$. Plot the numerically computed solutions y_1^{num} and y_2^{num} , showing the integration steps as points, and the dense output as lines. Make a second plot showing $y_1^{\text{num}} - y_1^{\text{exact}}$ and $y_2^{\text{num}} - y_2^{\text{exact}}$.

- (c) **Optional.** The method is not sensitive to the initial step size choice of h = 0.01, since the adaptive procedure will automatically adjust it. However, Hairer *et al.* describe an algorithm for estimating the initial timestep. Extend your method to implement this.
- 2. A high-order adaptive integrator using Richardson extrapolation. Write an adaptive Runge– Kutta integration scheme by applying Richardson extrapolation to the fifth-order Cash–Karp scheme¹ in the lectures, thereby obtaining a sixth-order method. Starting from *y*₀, let *y*₁ and

¹For the purposes of this question, you can ignore the lower order Cash–Karp formulae, since here the aim is to use Richardson extrapolation for step size selection.

 y_2 be Cash–Karp steps with size $\frac{h}{2}$, and w be a Cash–Karp step of size h. Define the sixth-order solutions

$$\hat{y}_1 = y_1 + \frac{y_2 - w}{(2^p - 1)2}, \qquad \hat{y}_2 = y_2 + \frac{y_2 - w}{2^p - 1}.$$
 (2)

Your program should use the same step size selection procedure as from Question 1.² It should count the number of function evaluations and be as parsimonious as possible. Use $y_2 - \hat{y}_2$ for step size selection, and use \hat{y}_2 to advance forward in *x*.

- (a) Repeat Question 1(a) for this method.
- (b) Extend your code so that it computes dense output at regular intervals, based on quintic polynomial interpolation using y_0 , $f(x_0, y_0)$, \hat{y}_1 , $f(x_0 + h, y_1)$, \hat{y}_2 , and $f(x_0 + 2h, \hat{y}_2)$.³ Repeat the two-component test from Question 1(b).

Part II: ODE applications and analysis

Complete at least three out of five problems in this section. If you submit answers for more, your grade will be calculated using the three best scores.

- 3. **Order condition trees.** Write a program to enumerate all trees of a given order. Provide a list of the number of trees up to order 15.⁴ Extend your program so that it can visualize the trees in some format of your choice, and use it to show all trees of order 7.
- 4. Error analysis of a Richardson extrapolation scheme.
 - (a) Show that Richardson extrapolation applied to the second-order Ralston method can be reformulated as a five-step, third-order Runge–Kutta method, and find its Butcher tableau.
 - (b) The third-order Heun method has Butcher tableau

$$\begin{array}{c|cccc} 0 & & \\ 1/3 & 1/3 & \\ 2/3 & 0 & 2/3 & \\ \hline & 1/4 & 0 & 3/4 \end{array}$$

For both the Heun method, and your method from part (a), determine the error coefficients e(t) for all trees t of order 4, reporting your answers as rational numbers.

(c) Show that one of the methods has universally smaller error magnitudes |e(t)| than the other. Once the difference in the number of function evaluations is taken into account, will that method be better for practical calculations?

²Since Richardson extrapolation requires taking two timesteps of size h/2, you may encounter NaNs for a large choice of h. You code should reject that step and try again with $h \times facmin$.

³Note that the derivative $f(x_0 + h, y_1)$ can be used. It is not necessary to evaluate $f(x_0 + h, \hat{y}_1)$.

⁴In the lecture slides you will find the number of trees up to order 10, which you can use to check your solutions.

5. A generalized Kuramoto model.⁵ A recent paper by O'Keeffe *et al.*⁶ explores a model for swarming and synchronization behavior. In the model, we consider N agents with positions $\mathbf{x}_i(t)$ and internal phases $\theta_i(t)$, which move according to the differential equations

$$\dot{\mathbf{x}}_{i} = \mathbf{v}_{i} + \frac{1}{N} \left[\sum_{j \neq i}^{N} \frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{|\mathbf{x}_{j} - \mathbf{x}_{i}|} (A + J\cos(\theta_{j} - \theta_{i})) - B \frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{|\mathbf{x}_{j} - \mathbf{x}_{i}|^{2}} \right],$$
(3)

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_{j \neq i}^N \frac{\sin(\theta_j - \theta_i)}{|\mathbf{x}_j - \mathbf{x}_i|}$$
(4)

where *J* and *K* are constants, and \mathbf{v}_i and ω_i can be individually controlled for each agent. By rescaling time and space, we can restrict attention to the case when A = B = 1.

(a) By making use of your favorite adaptive integrator with dense output⁷ solve Eqs. 3 & 4 using N = 1250 agents. Set $\mathbf{v}_i = \omega_i = 0$ for all agents. Simulate from t = 0 to t = 200, and use dense output to save the positions at *n* equally-spaced intervals, where $N \ge 401$. Use $Atol = Rtol = 10^{-6}$ in your adaptive integration routine.

Use initial conditions of random positions in the unit disk, $||\mathbf{x}|| \le 1$, and random phases over $[0, 2\pi)$. Visualize the agents as dots that are colored according to their phase. A suggested color palette is

$$(R, G, B) = (f(\theta), f(\theta - 2\pi/3), f(\theta + 2\pi/3))$$

where $f(\theta) = 0.45(1 + \cos \theta)$. Simulate the model with the following parameters:

- i. J = 0.5, K = 0.5,
- ii. J = 0.3, K = -0.2,
- iii. J = 1, K = -0.2.

For each case, state the total number of timesteps taken. Either

- include snapshots after t = 10, 20, 50, 200,
- or make a movie of the snapshots.
- (b) Simulate at least one possible variation. Examples include: (i) changing \mathbf{v}_i and ω_i , (ii) simulating two systems to steady state and then making a new initial condition with both superimposed, and (iii) implementing the method in 3D.⁸
- (c) **Optional.** Extend your code to calculate right hand sides of Eqs. 3 & 4 using OpenMP. Note that the influence of actor A on actor B is equal and opposite to the influence of actor B on actor A. Structure your code so that it only considers each pair once.

⁵This question was suggested by Nick Boffi (boffi@g.harvard.edu), and could be the basis for a final project.

⁶K. P. O'Keeffe, H. Hong, and S. H. Strogatz, *Oscillators that sync and swarm*, Nat. Commun. **8**, 1504 (2017). doi:10.1038/s41467-017-01190-3

⁷You could use your code from Q1 or Q2. You could use the DOP853 implementation found in the course example codes.

⁸See O'Keeffe *et al.* to see how they alter the strengths of the terms in 3D.

6. Symplectic integration for galactic dynamics. The following fifth-order IRK method due to Geng is symplectic, meaning that it exactly preserves the Hamiltonian H(p,q) for a Hamiltonian system:

$\frac{4-\sqrt{6}}{10}$	$\frac{16-\sqrt{6}}{72}$	$\frac{328 - 167 \sqrt{6}}{1800}$	$\frac{-2+3\sqrt{6}}{450}$
$\frac{4+\sqrt{6}}{10}$	$\frac{328 + 167\sqrt{6}}{1800}$	$\frac{16+\sqrt{6}}{72}$	$\frac{-2-3\sqrt{6}}{450}$
1	$\frac{85-10\sqrt{6}}{180}$	$\frac{85+10\sqrt{6}}{180}$	$\frac{1}{18}$
	$\frac{16-\sqrt{6}}{36}$	$\frac{16+\sqrt{6}}{36}$	$\frac{1}{9}$

A simple model for the movement of star in a galaxy is described by the Hamiltonian

$$H(\mathbf{p},\mathbf{q}) = \frac{p_1^2 + p_2^2 + p_3^2}{2} + \Omega(p_1q_2 - p_2q_1) + V(\mathbf{q}),$$
(5)

where the star's position is $\mathbf{q}(t) = (q_1(t), q_2(t), q_3(t))$ and its momentum is $\mathbf{p}(t) = (p_1(t), p_2(t), p_3(t))$. Here, Ω is the galaxy's velocity, and *V* is the gravitational potential, which is approximated as

$$V(\mathbf{q}) = A \log \left(C + \frac{q_1^2}{a^2} + \frac{q_2^2}{b^2} + \frac{q_3^2}{c^2} \right).$$
(6)

We use non-dimensionalized parameters a = 1.25, b = 1, c = 0.75, A = 1, C = 1, $\Omega = 0.25$. The Hamiltonian differential equation system is given by

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}, \qquad \dot{q}_i = \frac{\partial H}{\partial p_i}$$
(7)

for i = 1, 2, 3. Initial conditions are given by $q_2(0) = q_3(0) = p_1(0) = 0$, $q_1(0) = 2.5$, and $p_3(0) = 0.2$. The remaining momentum coordinate is chosen to be the larger of the two roots that yields H = 2.

- (a) Implement Geng's method, and test it on an ODE of your choice to verify that it is fifth-order accurate.⁹ Make a convergence plot demonstrating fifth-order accuracy.
- (b) Simulate the galaxy ODE system up to t = 2000 using a step size of 1/20 and make a 3D plot of the trajectory. Plot the Hamiltonian up to t = 2000.
- (c) Simulate up $t = 10^5$ and make a Poincaré map by tracking all intersections with the half-plane $q_1 > 0$, $q_2 = 0$, where $\dot{q}_2 > 0$. You can find the intersection points by approximating the trajectory as a linear segments between successive timesteps.
- Integrating ODEs with discontinuities. Consider the two-component ODE system for functions x(t) and y(t) given by

$$\frac{dx}{dt} = \begin{cases} 0 & \text{if } |x| \ge |y|, \\ -y & \text{if } |x| < |y|, \end{cases}$$
(8)

⁹You do not need to test the method on a symplectic ODE system.

and

$$\frac{dy}{dt} = \begin{cases} x & \text{if } |x| \ge |y|, \\ 0 & \text{if } |x| < |y|. \end{cases}$$
(9)

Use the initial condition x(0) = 1 and y(0) = 0.

- (a) Calculate the analytical solutions of x(t) and y(t). Show that they are periodic, and find the period.
- (b) Simulate the ODE system in Eqs. 8 and 9 to $t = 48 + e^{-1}$, using the classic fixed-step fourth-order Runge–Kutta (RK4) method. Make a work–precision plot using a range of total step numbers from 10^3 to 10^7 . Your calculation of precision should be based on the difference between the numerical solution and the exact solution from part (a). Is the convergence data consistent with RK4 being fourth-order accurate? If not, why not?
- (c) Repeat part (b) with your favorite adaptive integrator, using *Rtol* = 0, and a range of absolute tolerances of *Atol* ∈ [10⁻¹², 10⁻²]. Overlay the results on the work–precision plot from part (b).
- (d) **Optional.** Consider the variant ODE system

$$\frac{dx}{dt} = \begin{cases} 0 & \text{if } |x| \ge |y|, \\ -\operatorname{sign}(y) & \text{if } |x| < |y|, \end{cases}$$
(10)

and

$$\frac{dy}{dt} = \begin{cases} \operatorname{sign}(x) & \text{if } |x| \ge |y|, \\ 0 & \text{if } |x| < |y|, \end{cases}$$
(11)

with initial conditions x(0) = 1 and y(0) = 0. Here

$$sign(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0. \end{cases}$$
(12)

Find the exact solution for this ODE system. Repeat the convergence analysis from parts (b) and (c), and compare the work–precision plots.