
AM225: Assignment 2 (due 5 PM, March 4)

Part I: ODE solution methods

Complete at least one out of two problems in this section. If you submit answers for both, your grade will
be calculated using the best score. Note: question 2 is harder than question 1.

1. Adaptive integration with a First Same As Last (FSAL) scheme. Write an adaptive Runge–
Kutta integration scheme to solve an arbitrary ODE problem y′ = f (x, y) for y(x) ∈ Rn, using
the five step FSAL scheme described in the lectures. Your code should have the following
properties:

• Use the fourth-order solution y1 to step forward, and use the third-order ŷ1 for step size
selection.

• Use the step size selection procedure described in the slides. The parameters fac, facmax,
and facmin from the slide can be used. For the tolerance, you can assume Atol and Rtol
are the same for all components, rather than being specified on a per-component basis.
Use an initial step size of h = 0.01.

• Make your program count the number of function evaluations. Your program should be
parsimonious in the number of function evaluations it performs, by reusing k5 from a
succesful step to be k1 of the next step, and by retaining k1 when a step is rejected.

Once your method is working, complete the following two test problems.

(a) Test your program on the Brusselator test problem using Atol = Rtol = λ. By trying
a range of λ from 10−3 to 10−13 make a precision–work plot as in the lectures. In the
program files, you will find the corresponding precision–work data for the four low-
order methods considered in the lectures, and you may overlay these results on your
plot to compare them.

(b) Extend your code so that it does third-order dense output with Hermite interpolation at
regular intervals. Test your code using the two-component system

y′1 = −xy2, y′2 = xy1 (1)

with initial conditions y1(0) = 1, y2(0) = 0. This problem has the exact solution
yexact

1 (x) = cos x2

2 , yexact
2 = sin x2

2 . Simulate to x = 8 using λ = 3× 10−3, saving dense
output at intervals of 8

1200 . Plot the numerically computed solutions ynum
1 and ynum

2 ,
showing the integration steps as points, and the dense output as lines. Make a second
plot showing ynum

1 − yexact
1 and ynum

2 − yexact
2 .

(c) Optional. The method is not sensitive to the initial step size choice of h = 0.01, since
the adaptive procedure will automatically adjust it. However, Hairer et al. describe an
algorithm for estimating the initial timestep. Extend your method to implement this.

2. A high-order adaptive integrator using Richardson extrapolation. Write an adaptive Runge–
Kutta integration scheme by applying Richardson extrapolation to the fifth-order Cash–Karp
scheme1 in the lectures, thereby obtaining a sixth-order method. Starting from y0, let y1 and

1For the purposes of this question, you can ignore the lower order Cash–Karp formulae, since here the aim is to use
Richardson extrapolation for step size selection.

1

y2 be Cash–Karp steps with size h
2 , and w be a Cash–Karp step of size h. Define the sixth-order

solutions
ŷ1 = y1 +

y2 − w
(2p − 1)2

, ŷ2 = y2 +
y2 − w
2p − 1

. (2)

Your program should use the same step size selection procedure as from Question 1.2 It
should count the number of function evaluations and be as parsimonious as possible. Use
y2 − ŷ2 for step size selection, and use ŷ2 to advance forward in x.

(a) Repeat Question 1(a) for this method.

(b) Extend your code so that it computes dense output at regular intervals, based on quintic
polynomial interpolation using y0, f (x0, y0), ŷ1, f (x0 + h, y1), ŷ2, and f (x0 + 2h, ŷ2).3

Repeat the two-component test from Question 1(b).

Part II: ODE applications and analysis

Complete at least three out of five problems in this section. If you submit answers for more, your grade will
be calculated using the three best scores.

3. Order condition trees. Write a program to enumerate all trees of a given order. Provide a list
of the number of trees up to order 15.4 Extend your program so that it can visualize the trees
in some format of your choice, and use it to show all trees of order 7.

4. Error analysis of a Richardson extrapolation scheme.

(a) Show that Richardson extrapolation applied to the second-order Ralston method can
be reformulated as a five-step, third-order Runge–Kutta method, and find its Butcher
tableau.

(b) The third-order Heun method has Butcher tableau

0
1/3 1/3
2/3 0 2/3

1/4 0 3/4

For both the Heun method, and your method from part (a), determine the error coeffi-
cients e(t) for all trees t of order 4, reporting your answers as rational numbers.

(c) Show that one of the methods has universally smaller error magnitudes |e(t)| than the
other. Once the difference in the number of function evaluations is taken into account,
will that method be better for practical calculations?

2Since Richardson extrapolation requires taking two timesteps of size h/2, you may encounter NaNs for a large
choice of h. You code should reject that step and try again with h× facmin.

3Note that the derivative f (x0 + h, y1) can be used. It is not necessary to evaluate f (x0 + h, ŷ1).
4In the lecture slides you will find the number of trees up to order 10, which you can use to check your solutions.

2

5. A generalized Kuramoto model.5 A recent paper by O’Keeffe et al.6 explores a model for
swarming and synchronization behavior. In the model, we consider N agents with positions
xi(t) and internal phases θi(t), which move according to the differential equations

ẋi = vi +
1
N

[
N

∑
j 6=i

xj − xi

|xj − xi|
(A + J cos(θj − θi))− B

xj − xi

|xj − xi|2

]
, (3)

θ̇i = ωi +
K
N

N

∑
j 6=i

sin(θj − θi)

|xj − xi|
(4)

where J and K are constants, and vi and ωi can be individually controlled for each agent. By
rescaling time and space, we can restrict attention to the case when A = B = 1.

(a) By making use of your favorite adaptive integrator with dense output7 solve Eqs. 3 & 4
using N = 1250 agents. Set vi = ωi = 0 for all agents. Simulate from t = 0 to t = 200,
and use dense output to save the positions at n equally-spaced intervals, where N ≥ 401.
Use Atol = Rtol = 10−6 in your adaptive integration routine.
Use initial conditions of random positions in the unit disk, ‖x‖ ≤ 1, and random phases
over [0, 2π). Visualize the agents as dots that are colored according to their phase. A
suggested color palette is

(R, G, B) = (f (θ), f (θ − 2π/3), f (θ + 2π/3))

where f (θ) = 0.45(1 + cos θ). Simulate the model with the following parameters:

i. J = 0.5, K = 0.5,
ii. J = 0.3, K = −0.2,

iii. J = 1, K = −0.2.

For each case, state the total number of timesteps taken. Either

• include snapshots after t = 10, 20, 50, 200,
• or make a movie of the snapshots.

(b) Simulate at least one possible variation. Examples include: (i) changing vi and ωi, (ii)
simulating two systems to steady state and then making a new initial condition with
both superimposed, and (iii) implementing the method in 3D.8

(c) Optional. Extend your code to calculate right hand sides of Eqs. 3 & 4 using OpenMP.
Note that the influence of actor A on actor B is equal and opposite to the influence of
actor B on actor A. Structure your code so that it only considers each pair once.

5This question was suggested by Nick Boffi (boffi@g.harvard.edu), and could be the basis for a final project.
6K. P. O’Keeffe, H. Hong, and S. H. Strogatz, Oscillators that sync and swarm, Nat. Commun. 8, 1504 (2017).

doi:10.1038/s41467-017-01190-3
7You could use your code from Q1 or Q2. You could use the DOP853 implementation found in the course example

codes.
8See O’Keeffe et al. to see how they alter the strengths of the terms in 3D.

3

http://dx.doi.org/10.1038/s41467-017-01190-3

6. Symplectic integration for galactic dynamics. The following fifth-order IRK method due to
Geng is symplectic, meaning that it exactly preserves the Hamiltonian H(p, q) for a Hamilto-
nian system:

4−
√

6
10

16−
√

6
72

328− 167
√

6
1800

−2 + 3
√

6
450

4 +
√

6
10

328 + 167
√

6
1800

16 +
√

6
72

−2− 3
√

6
450

1
85− 10

√
6

180
85 + 10

√
6

180
1
18

16−
√

6
36

16 +
√

6
36

1
9

A simple model for the movement of star in a galaxy is described by the Hamiltonian

H(p, q) =
p2

1 + p2
2 + p2

3
2

+ Ω(p1q2 − p2q1) + V(q), (5)

where the star’s position is q(t) = (q1(t), q2(t), q3(t)) and its momentum is p(t) = (p1(t),
p2(t), p3(t)). Here, Ω is the galaxy’s velocity, and V is the gravitational potential, which is
approximated as

V(q) = A log
(

C +
q2

1
a2 +

q2
2

b2 +
q2

3
c2

)
. (6)

We use non-dimensionalized parameters a = 1.25, b = 1, c = 0.75, A = 1, C = 1, Ω = 0.25.
The Hamiltonian differential equation system is given by

ṗi = −
∂H
∂qi

, q̇i =
∂H
∂pi

(7)

for i = 1, 2, 3. Initial conditions are given by q2(0) = q3(0) = p1(0) = 0, q1(0) = 2.5, and
p3(0) = 0.2. The remaining momentum coordinate is chosen to be the larger of the two roots
that yields H = 2.

(a) Implement Geng’s method, and test it on an ODE of your choice to verify that it is
fifth-order accurate.9 Make a convergence plot demonstrating fifth-order accuracy.

(b) Simulate the galaxy ODE system up to t = 2000 using a step size of 1/20 and make a 3D
plot of the trajectory. Plot the Hamiltonian up to t = 2000.

(c) Simulate up t = 105 and make a Poincaré map by tracking all intersections with the
half-plane q1 > 0, q2 = 0, where q̇2 > 0. You can find the intersection points by
approximating the trajectory as a linear segments between successive timesteps.

7. Integrating ODEs with discontinuities. Consider the two-component ODE system for func-
tions x(t) and y(t) given by

dx
dt

=

{
0 if |x| ≥ |y|,
−y if |x| < |y|,

(8)

9You do not need to test the method on a symplectic ODE system.

4

https://en.wikipedia.org/wiki/Poincare_map

and
dy
dt

=

{
x if |x| ≥ |y|,
0 if |x| < |y|.

(9)

Use the initial condition x(0) = 1 and y(0) = 0.

(a) Calculate the analytical solutions of x(t) and y(t). Show that they are periodic, and find
the period.

(b) Simulate the ODE system in Eqs. 8 and 9 to t = 48 + e−1, using the classic fixed-step
fourth-order Runge–Kutta (RK4) method. Make a work–precision plot using a range of
total step numbers from 103 to 107. Your calculation of precision should be based on the
difference between the numerical solution and the exact solution from part (a). Is the
convergence data consistent with RK4 being fourth-order accurate? If not, why not?

(c) Repeat part (b) with your favorite adaptive integrator, using Rtol = 0, and a range of
absolute tolerances of Atol ∈ [10−12, 10−2]. Overlay the results on the work–precision
plot from part (b).

(d) Optional. Consider the variant ODE system

dx
dt

=

{
0 if |x| ≥ |y|,
− sign(y) if |x| < |y|,

(10)

and
dy
dt

=

{
sign(x) if |x| ≥ |y|,
0 if |x| < |y|,

(11)

with initial conditions x(0) = 1 and y(0) = 0. Here

sign(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0.

(12)

Find the exact solution for this ODE system. Repeat the convergence analysis from parts
(b) and (c), and compare the work–precision plots.

5

