
AM225: Assignment 1 (due 5 PM, February 11)

This homework is designed to get you up to speed with multithreaded programming in OpenMP, and highlight
interesting challenges that can occur. Complete at least four out of six problems. If you submit answers for
more, your grade will be calculated using the four best scores. The questions are roughly ordered from easiest
to hardest.

1. A randomized Casino game. Consider a casino game that costs $250 to play. The casino
draws successive numbers from a uniform distribution U(0, 1) until the sum exceeds 1. The
player then receives $100 for each number that was drawn.

(a) Using OpenMP, write a multithreaded code that simulate 109 instances of this game,
and calculate the expected amount of winnings, reporting your answer to at least five
significant figures. Measure the wall clock time of your code using 1, 2, and 4 threads.
Based on the expected winnings is this a game worth playing?
[Note: A difficulty with this problem is that the C++ rand function for generating random
numbers cannot be accessed by multiple threads simultaneously, since it contains an
internal state that becomes corrupted due to race conditions. In the program files,
you will find a program custom rng.cc that provides a custom self-contained random
number generator. You will need to make multiple instances of this random number
generator, each of which is used by a separate thread.]

(b) Optional. Analytically derive the expected winnings.

2. Cellular automaton mazes. Consider a cellular automaton on a regular periodic m× n grid,
with cells indexed as (i, j) where i ∈ {0, 1, . . . , m− 1} and j ∈ {0, 1, . . . n− 1}. Each cell can
either be alive or empty. Define Ni,j to be the number alive neighbors of (i, j) in the adjacent
orthogonal and diagonal cells. Hence 0 ≤ Ni,j ≤ 8.

In one generation, all the cells are simultaneously updated according to the following rules:

• an alive cell at (i, j) survives if Ni,j ∈ Ssurvive,

• an empty cell at (i, j) becomes alive if Ni,j ∈ Sbirth.

(a) Implement this cellular automaton, using Ssurvive = {1, 2, 3, 4, 5} and Sbirth = {3}. Use a
grid with (m, n) = (80, 40) that is initially empty except for the square m

2 − 6 ≤ i < m
2 + 6

and n
2 − 6 ≤ j < n

2 + 6 where each cell is set alive with probability 3
4 . Print a snapshot of

the initial condition.1 Perform 150 generations, and print a snapshot of the system after
every 25 generations.

(b) Extend your program to use OpenMP to process the grid in parallel. Consider simulating
on a square n× n grid, using the same initial condition as in part (a). Consider grid sizes
of n = 16, 32, 64, 128, 256, 512, 1024 using T = 1, 2, 3, 4 threads. For each combination of
n and T measure the wall clock time w(n, T) to compute a generation.2

(c) For T = 2, 3, 4, make a plot of the parallel efficiency p(n, T) = w(n, 1)/(Tw(n, T)) as
function of log2 n.

1A simple way to do this is to use ASCII art and the printf, puts, etc. functions presented in the lectures.
2To get an accurate measure, you may need to average over the wall clock time to compute a number of generations.

For smaller grids, more generations may be required.
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(d) Optional. On a very large grid, what proportion of cells are alive once the system
reaches a steady state?

(e) Optional. Investigate the alternative growth model Ssurvive = {5, 6, 7, 8} and Sbirth =
{3, 5, 6, 7, 8} and make a movie showing the typical patterns that emerge.

(f) Optional. Is it possible to write the code so that the memory M required scales like
M ∼ mn byte? Is possible to write the code so that M ∼ mn bit?

3. A Mersenne unprime. The Mersenne primes are a special sequence of prime numbers of the
form 2n − 1 for an integer n. In December 2018, a new Mersenne prime of M = 282589933 − 1
was discovered, which is currently the largest known prime number. In decimal notation it
has 24,862,048 digits.

The number M is far too large to be represented using a standard computer integer. However,
it can be represented in a long expansion as

M =
K

∑
k=0

dkBk (1)

where B is the base and dk ∈ {0, 1, . . . , B− 1} are the digits.3 For this question, it is convenient
to set B as a large power of two that fits within a standard computer integer.

(a) Write a program to find4 all prime numbers less than 2× 105.

(b) Write a program that performs division with remainder on a number represented in the
format of Eq. 1. You can assume that the divisor is smaller than B.

(c) Use your program from part (b) to test how many primes less than 2× 105 are factors of
M. Extend your program to use OpenMP so that several primes can be simultaneously
tested using multiple threads.

(d) The number N = 282589932 − 1 is presumably not prime. Using your program from (c),
determine the number of primes less than 106 that are factors of N.

(e) Optional. Compute the decimal expansion of M. Count the frequencies of the numbers
0, 1, . . . , 9 and show that they pass a χ2 test for randomness.

4. A multithreaded Sudoku solver. Sudoku is a popular puzzle that involves filling numbers
from 1 to 9 in a 9× 9 grid according to simple rules. In magazines and newspapers, you will
often find partially completed grids of numbers from which you can fill in the remaining
numbers to uniquely complete the puzzle.

Suppose that the grid squares are numbered from 0 to 80 in some order. Then a simple
recursive algorithm to solve a Sudoku is shown in Algorithm 1.

(a) Implement Algorithm 1 and use it to find the unique solution to the partial grid shown
in Fig. 1(a). Find the wall clock time required to solve the puzzle. To gain accurate
statistics, you may need to time N repeats, and then take the average.

3Hence, if B = 10 this is equivalent to the standard decimal notation for a number.
4This could be done using the Sieve of Eratosthenes, for example. The Sieve is well-suited to being multithreaded.
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(b) Use your program to count the total number of solutions to the partial grid shown in
Fig. 1(b). Show that there are exactly 283576 solutions.

(c) Extend your program from the previous section to use OpenMP. Calculate wall clock
times using 1, 2, and 4 threads.

(d) Find the total number of solutions to the partial grid shown in Fig. 1(c).

(e) Optional. It turns out that many Sudoku puzzles found online and in magazines have
redundancies, meaning that some numbers can be removed while still achieving a
unique solution. Find an example of real puzzle with a redundancy and use your code
to demonstrate this.

(f) Optional. Use your program to collect some interesting statistics, such as how the
number of solutions scales with the number of initially filled-in squares.

(g) Optional. Implement some algorithmic improvements to the solver.

5. Testing thread performance on the diffusion equation. Consider the diffusion equation

∂u
∂t

= ∇2u (2)

in the two-dimensional plane with coordinate system x = (x, y). Suppose that instead of
solving Eq. 2 directly, the equation is solved in a transformed coordinate system X = (X, Y)
where x = TX for some constant 2× 2 matrix T. Show that Eq. 2 can be rewritten as

∂u
∂t

= α
∂2u
∂X2 + β

∂2u
∂X∂Y

+ γ
∂2u
∂Y2 (3)

and determine α, β, and γ in terms of the components of T. Consider discretizing Eq. 3
using an explicit finite difference scheme with equal spacing h in the X and Y directions, and
timestep ∆t in time, so un

j,k = u(jh, kh, n∆t). Use an explicit Euler step for ∂u/∂t, the standard
centered finite difference formula for ∂2u/∂X2 and ∂2u/∂Y2, and the stencil[

∂2u
∂X∂Y

]n

j,k
=

un
j+1,k+1 − un

j−1,k+1 − un
j+1,k−1 + un

j−1,k−1

4h2 (4)

for the cross-derivative term.

(a) Suppose that α = γ. Perform a Fourier stability analysis5 by substituting in the ansatz
un

j,k = [λ(l, m)]nei(jl+km)h into the discretized formula, where λ(l, m) is the amplification
factor. You may find it useful to express λ in terms of

q = cos
(l + m)h

2
, r = cos

(l −m)h
2

. (5)

Show that there exists a β∗ such that if |β| > β∗ the method is unconditionally unstable,
but that if |β| ≤ β∗ then the method is conditionally stable. In the latter case, determine
the maximum allowable timestep.

5Notes from AM205 Unit 3 may be useful.
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(b) Write a multithreaded code using OpenMP that integrates this scheme on a N × N grid
by dividing the gridpoint updates among P threads. Use the periodic domain [0, 1]2, the
matrix

T =

(
1 1/2

0 1

)
(6)

and the initial condition
u(X, Y, 0) = e− cos 2πX−cos 2πY. (7)

Choose a timestep that satisfies the restriction in part (a). Find the wall clock time to run
1000 timesteps for N = 64, 128, 256, 512, 1024, 2048 and P = 1, 2, 3, 4.

(c) Define

〈uk〉(t) =
∫ 1

0
dX

∫ 1

0
dY [u(X, Y, t)]k (8)

and
S(t) =

√
〈u2〉 − [〈u〉]2. (9)

Using N = 400 and your choice of threads, plot S(t) over the range 0 ≤ t ≤ 1/10 for the
transform T and initial conditions used in part (b). On the same graph, plot S(t) when
the transform T is just the identity. Which of the two S(t) curves decreases more rapidly,
and why?

(d) Optional. Extend your analysis from part (a) to the case when α 6= γ.

6. A wooden puzzle. Chris has a large collection of wooden puzzles, which he mainly received
as gifts from his father. Recently, Chris received the Letter Block Puzzle in a series from
Professor Puzzle, a UK-based company. It consists of fourteen wooden pieces that spell out
the letters of “ALBERT EINSTEIN” (Fig. 2). The puzzle contains several different challenges,
and the hardest one is to arrange the pieces into 4× 4× 5 cuboid. This can be done with a
recursive algorithm.

(a) Consider the nine distinct pieces in Fig. 2. For each piece, write down the number of
different orientations in which it could be placed into the cuboid. You should find that
the pieces can be divided into four sets with different orientation groups.

(b) Let the individual blocks in the 4× 4× 5 cuboid be labeled from i = 0, 1, . . . , 79 in some
order.6 Let the nine distinct pieces be labeled j = 0, 1, . . . , 8 and let Nj be the number of
available pieces of type j. Using Algorithm 2 write a program to find a valid arrangement
of the pieces in the 4× 4× 5 cuboid.

(c) Extend your program to use OpenMP, and find the total number of ways that the pieces
can be assembled to make the cuboid.

(d) Optional. Extend your program to find the following solutions:

i. Using two complete sets of pieces, assemble them into a 2× 8× 10 cuboid.
ii. Using three complete sets of pieces, assemble them into a 5× 6× 8 cuboid.

iii. Using four complete sets of pieces, assemble them into the shape in Fig. 3.

6For example, if the blocks are indexed as (r, s, t) with r ∈ {0, 3}, s ∈ {0, 3}, and t ∈ {0, 4}, then the blocks could be
labeled using i = r + 4s + 16t.
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Figure 1: Three partial Sudoku grids.

For these cases, the search tree of possible solutions becomes considerably larger, and
you may need to implement code optimizations in order to find.

void SudokuSolve (i)
if i = 81 then

The grid is complete;
else

if square i is empty then
for j ∈ {1, 2, . . . , 9} do

if j allowed at square i then
Add j to square i;
Call SudokuSolve(i + 1);
Remove j from square i;

end
end

else
Call SudokuSolve(i + 1)

end
end

Algorithm 1: A recursive Sudoku solver. Here the squares in the 9× 9 Sudoku grid are
labeled from i = 0 to i = 80.
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Figure 2: The nine pieces that make up the wooden puzzle in question 6. The brackets show how
many times that piece is repeated.

void PuzzleSolve (i)
if i = 80 then

The grid is complete;
else

if block i is empty then
for j ∈ {0, 1, . . . , 8} do

if Nj > 0 then
for all valid positions P of piece j at i do

Insert piece j into grid with position P;
Decrement Nj;
Call PuzzleSolve(i + 1);
Increment Nj;
Remove piece j from grid with position P;

end
end

end
else

Call PuzzleSolve(i + 1)
end

end
Algorithm 2: A recursive algorithm to solve the wooden puzzle. Here, the blocks in the
4× 4× 5 cuboid are labeled from i = 0 to i = 79. Nj is the number of available pieces of
type j.
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Figure 3: A target shape to make using four complete sets of the Letter Block Puzzle with pieces
shown in Fig. 2.
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