Principal component analysis

- Suppose a number of students take math and english tests
- Typically, we'd expect that the scores for each individual are highly correlated, and roughly lie along a diagonal line
- Given this correlation, is there a better way to view this data?

Principal component analysis

- Introduce new rotated coordinate system
- Academic aptitude is most important coordinate: it explains the majority of the variance in the students
- If we just stored academic aptitude for each student, that would capture most of what the data says

Principal component analysis

- To automatically find the coordinates, first construct the covariance matrix

$$
M=\left(\begin{array}{cc}
\operatorname{Var}(X) & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}(Y)
\end{array}\right)
$$

- Symmetric positive-definite matrix, so eigenvalues are positive
- Order eigenvalues

$$
\lambda_{1} \leq \lambda_{2} \leq \ldots
$$

- Take components as corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, \mathbf{v}_{3}, \ldots

PCA for image analysis

- An $M \times N$ image can be thought of as an $M N$ dimensional vector $\left(v_{1}, v_{2}, \ldots, v_{M N}\right)$
- Suppose we have many images of similar things, then the points are likely to be on a much lowerdimensional surface within the $M N$-dimensional space
- Principal components capture the majority of information from the images

View from Magazine St and Upton St, Cambridge April 20th, 2014

http://seas.harvard.edu/~ chr/teach/pca/office view.mov

Mean image

Each pixel is the mean color over the 72 frames in the movie

First component

Positive contribution

Negative contribution

The component has a negative part and a positive part, so it's hard to visualize. Hence split the component into two images showing the positive and negative parts separately.

Variance in this component: 85.99% of total

Second component

Positive contribution

Negative contribution

Variance in this component: 7.80% of total

Third component

Positive contribution

Negative contribution

Variance in this component: 2.34% of total

Fourth component

Positive contribution

Negative contribution

Variance in this component: 1.46% of total

Fifth component

Positive contribution

Negative contribution

Variance in this component: 0.78% of total

Evolution of components

Classification

Image reconstruction

Original movie

One-mode representation

Image reconstruction (3 modes)

Original movie

Three-mode representation

Image reconstruction (10 modes)

Original movie

Ten-mode representation

