
Eigenvalue Problems and Iterative Methods

Motivation: Eigenvalue Problems

A matrix A ∈ Cn×n has eigenpairs (λ1, v1), . . . , (λn, vn) ∈ C× Cn

such that
Avi = λivi , i = 1, 2, . . . , n

(We will order the eigenvalues from smallest to largest, so that
|λ1| ≤ |λ2| ≤ · · · ≤ |λn|)

It is remarkable how important eigenvalues and eigenvectors are in
science and engineering!

Motivation: Eigenvalue Problems

For example, eigenvalue problems are closely related to resonance

▶ Pendulums

▶ Natural vibration modes of structures

▶ Musical instruments

▶ Lasers

▶ Nuclear Magnetic Resonance (NMR)

▶ ...

Motivation: Resonance

Consider a spring connected to a mass

Suppose that:

▶ the spring satisfies Hooke’s Law,1 F (t) = ky(t)

▶ a periodic forcing, r(t), is applied to the mass

1Here y(t) denotes the position of the mass at time t

Motivation: Resonance

Then Newton’s Second Law gives the ODE

y ′′(t) +

(
k

m

)
y(t) = r(t)

where r(t) = F0 cos(ωt)

Recall that the solution of this non-homogeneous ODE is the sum
of a homogeneous solution, yh(t), and a particular solution, yp(t)

Let ω0 ≡
√
k/m, then for ω ̸= ω0 we get:2

y(t) = yh(t) + yp(t) = C cos(ω0t − δ) +
F0

m(ω2
0 − ω2)

cos(ωt),

2C and δ are determined by the ODE initial condition

Motivation: Resonance

The amplitude of yp(t),
F0

m(ω2
0−ω2)

, as a function of ω is shown

below

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

−15

−10

−5

0

5

10

15

20

Clearly we observe singular behavior when the system is forced at
its natural frequency, i.e. when ω = ω0

Motivation: Forced Oscillations

Solving the ODE for ω = ω0 gives yp(t) =
F0

2mω0
t sin(ω0t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

y p
(t
)

This is resonance!

Motivation: Resonance

In general, ω0 is the frequency at which the unforced system has a
non-zero oscillatory solution

For the single spring-mass system we substitute3 the oscillatory
solution y(t) ≡ xe iω0t into y ′′(t) +

(
k
m

)
y(t) = 0

This gives a scalar equation for ω0:

kx = ω2
0mx =⇒ ω0 =

√
k/m

3Here x is the amplitude

Motivation: Resonance

Suppose now we have a spring-mass system with three masses and
three springs

Motivation: Resonance

In the unforced case, this system is governed by the ODE system

My ′′(t) + Ky(t) = 0,

where M is the mass matrix and K is the stiffness matrix

M ≡

 m1 0 0
0 m2 0
0 0 m3

 , K ≡

 k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3


We again seek a nonzero oscillatory solution to this ODE, i.e. set
y(t) = xe iωt , where now y(t) ∈ R3

This gives the algebraic equation

Kx = ω2Mx

Motivation: Eigenvalue Problems

Setting A ≡ M−1K and λ = ω2, this gives the eigenvalue problem

Ax = λx

Here A ∈ R3×3, hence we obtain natural frequencies from the
three eigenvalues λ1, λ2, λ3

Motivation: Eigenvalue Problems

The spring-mass systems we have examined so far contain discrete
components

But the same ideas also apply to continuum models

For example, the wave equation models vibration of a string (1D)
or a drum (2D)

∂2u(x , t)

∂t2
− c∆u(x , t) = 0

As before, we write u(x , t) = ũ(x)e iωt , to obtain

−∆ũ(x) =
ω2

c
ũ(x)

which is a PDE eigenvalue problem

Motivation: Eigenvalue Problems

We can discretize the Laplacian operator with finite differences to
obtain an algebraic eigenvalue problem

Av = λv ,

where

▶ the eigenvalue λ = ω2/c gives a natural vibration frequency of
the system

▶ the eigenvector (or eigenmode) v gives the corresponding
vibration mode

Motivation: Eigenvalue Problems

We will use the Python (and Matlab) functions eig and eigs to
solve eigenvalue problems

▶ eig: find all eigenvalues/eigenvectors of a dense matrix

▶ eigs: find a few eigenvalues/eigenvectors of a sparse matrix

We will examine the algorithms used by eig and eigs in this Unit

Motivation: Eigenvalue Problems

Python demo: Eigenvalues/eigenmodes of Laplacian on [0, 1]2,
zero Dirichlet boundary conditions

Based on separation of variables, we know that eigenmodes are
sin(πix) sin(πjy), i , j = 1, 2, . . .

Hence eigenvalues are (i2 + j2)π2

i j λi ,j

1 1 2π2 ≈ 19.74
1 2 5π2 ≈ 49.35
2 1 5π2 ≈ 49.35
2 2 8π2 ≈ 78.96
1 3 10π2 ≈ 98.97
...

...
...

Motivation: Eigenvalue Problems

λ=19.7376

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ=49.3342

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ=49.3342

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ=78.9309

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ=98.6295

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ=98.6295

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In general, for repeated eigenvalues, computed eigenmodes are L.I.
members of the corresponding eigenspace

e.g. eigenmodes corresponding to λ = 49.3 are given by

α1,2 sin(πx) sin(π2y) + α2,1 sin(π2x) sin(πy), α1,2, α2,1 ∈ R

Motivation: Eigenvalue Problems

And of course we can compute eigenmodes of other shapes...

λ=9.6495

x

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ=15.1922

x
y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ=19.7327

x

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ=29.5031

x

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ=31.9194

x

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ=41.4506

x

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Motivation: Eigenvalue Problems

A well-known mathematical question was posed by Mark Kac in
1966: “Can one hear the shape of a drum?”

The eigenvalues of a shape in 2D correspond to the resonant
frequences that a drumhead of that shape would have

Therefore, the eigenvalues determine the harmonics, and hence the
sound of the drum

So in mathematical terms, Kac’s question was: If we know all of
the eigenvalues, can we uniquely determine the shape?

Motivation: Eigenvalue Problems

It turns out that the answer is no!

In 1992, Gordon, Webb, and Wolpert constructed two different 2D
shapes that have exactly the same eigenvalues!

Drum 1 Drum 2

Motivation: Eigenvalue Problems

We can compute the eigenvalues and eigenmodes of the Laplacian
on these two shapes using the algorithms from this Unit4

The first five eigenvalues are computed as:

Drum 1 Drum 2

λ1 2.54 2.54
λ2 3.66 3.66
λ3 5.18 5.18
λ4 6.54 6.54
λ5 7.26 7.26

We next show the corresponding eigenmodes...

4Note here we employ the Finite Element Method (outside the scope of
AM205), an alternative to F.D. that is well-suited to complicated domains

Motivation: Eigenvalue Problems

eigenmode 1 eigenmode 1

Motivation: Eigenvalue Problems

eigenmode 2 eigenmode 2

Motivation: Eigenvalue Problems

eigenmode 3 eigenmode 3

Motivation: Eigenvalue Problems

eigenmode 4 eigenmode 4

Motivation: Eigenvalue Problems

eigenmode 5 eigenmode 5

Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of real-valued matrices can be
complex

Hence in this Unit we will generally work with complex-valued
matrices and vectors, A ∈ Cn×n, v ∈ Cn

For A ∈ Cn×n, we shall consider the eigenvalue problem: find
(λ, v) ∈ C× Cn such that

Av = λv ,

∥v∥2 = 1

Note that for v ∈ Cn, ∥v∥2 ≡
(∑n

k=1 |vk |2
)1/2

, where | · | is the
modulus of a complex number

Eigenvalues and Eigenvectors

This problem can be reformulated as:

(A− λI)v = 0

We know this system has a solution if and only if (A− λI) is
singular, hence we must have

det(A− λI) = 0

p(z) ≡ det(A− zI) is a degree n polynomial, called the
characteristic polynomial of A

The eigenvalues of A are exactly the roots of the characteristic
polynomial

Characteristic Polynomial

By the fundamental theorem of algebra, we can factorize p(z) as

p(z) = cn(z − λ1)(z − λ2) · · · (z − λn),

where the roots λi ∈ C need not be distinct

Note also that complex eigenvalues of a matrix A ∈ Rn×n must
occur as complex conjugate pairs

That is, if λ = α+ iβ is an eigenvalue, then so is its complex
conjugate λ = α− iβ

Characteristic Polynomial

This follows from the fact that for a polynomial p with real
coefficients, p(z) = p(z) for any z ∈ C:

p(z) =
n∑

k=0

ck(z)
k =

n∑
k=0

ckzk =
n∑

k=0

ckzk = p(z)

Hence if w ∈ C is a root of p, then so is w , since

0 = p(w) = p(w) = p(w)

Companion Matrix

We have seen that every matrix has an associated characteristic
polynomial

Similarly, every polynomial has an associated companion matrix

The companion matrix, Cn, of p ∈ Pn is a matrix which has
eigenvalues that match the roots of p

Divide p by its leading coefficient to get a monic polynomial, i.e.
with leading coefficient equal to 1 (this doesn’t change the roots)

pmonic(z) = c0 + c1z + · · ·+ cn−1z
n−1 + zn

Companion Matrix

Then pmonic is the characteristic polynomial of the n × n
companion matrix

Cn =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1



Companion Matrix

We show this for the n = 3 case: Consider

p3,monic(z) ≡ c0 + c1z + c2z
2 + z3,

which has companion matrix

C3 ≡

 0 0 −c0
1 0 −c1
0 1 −c2


Recall that for a 3× 3 matrix, we have

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33

Companion Matrix

Substituting entries of C3 then gives

det(zI− C3) = c0 + c1z + c2z
2 + z3 = p3,monic(z)

This link between matrices and polynomials is used by Python’s
roots function

roots computes all roots of a polynomial by using algorithms
considered in this Unit to find eigenvalues of the companion matrix

Eigenvalue Decomposition

Let λ be an eigenvalue of A ∈ Cn×n; the set of all eigenvalues is
called the spectrum of A

The algebraic multiplicity of λ is the multiplicity of the
corresponding root of the characteristic polynomial

The geometric multiplicity of λ is the number of linearly
independent eigenvectors corresponding to λ

For example, for A = I, λ = 1 is an eigenvalue with algebraic and
geometric multiplicity of n

(Char. poly. for A = I is p(z) = (z − 1)n, and ei ∈ Cn,
i = 1, 2, . . . , n are eigenvectors)

Eigenvalue Decomposition

Theorem: The geometric multiplicity of an eigenvalue is less than
or equal to its algebraic multiplicity

If λ has geometric multiplicity < algebraic multiplicity, then λ is
said to be defective

We say a matrix is defective if it has at least one defective
eigenvalue

Eigenvalue Decomposition

For example,

A =

 2 1 0
0 2 1
0 0 2


has one eigenvalue with algebraic multiplicity of 3, geometric
multiplicity of 1

Python 2.7.6 (default, Sep 9 2014, 15:04:36)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.array([[2,1,0],[0,2,1],[0,0,2]])

>>> v,d=np.linalg.eig(a)

>>> v

array([2., 2., 2.])

>>> d

array([[1.00000000e+00, -1.00000000e+00, 1.00000000e+00],

[0.00000000e+00, 4.44089210e-16, -4.44089210e-16],

[0.00000000e+00, 0.00000000e+00, 1.97215226e-31]])

Eigenvalue Decomposition

Let A ∈ Cn×n be a nondefective matrix, then it has a full set of n
linearly independent eigenvectors v1, v2, . . . , vn ∈ Cn

Suppose V ∈ Cn×n contains the eigenvectors of A as columns, and
let D = diag(λ1, . . . , λn)

Then Avi = λivi , i = 1, 2, . . . , n is equivalent to AV = VD

Since we assumed A is nondefective, we can invert V to obtain

A = VDV−1

This is the eigendecomposition of A

This shows that for a non-defective matrix, A is diagonalized by V

Eigenvalue Decomposition

We introduce the conjugate transpose, A∗ ∈ Cn×m, of a matrix
A ∈ Cm×n

(A∗)ij = Aji , i = 1, 2, . . . ,m, j = 1, 2, . . . , n

A matrix is said to be hermitian if A = A∗ (this generalizes matrix
symmetry)

A matrix is said to be unitary if AA∗ = I (this generalizes the
concept of an orthogonal matrix)

Also, for v ∈ Cn, ∥v∥2 =
√
v∗v

Eigenvalue Decomposition

In Python the .T operator performs the transpose, while the .getH
operator performs the conjugate transpose

Python 2.7.6 (default, Sep 9 2014, 15:04:36)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.matrix([[1+1j,2+3j],[0,4]])

>>> a.T

matrix([[1.+1.j, 0.+0.j],

[2.+3.j, 4.+0.j]])

>>> a.getH()

matrix([[1.-1.j, 0.-0.j],

[2.-3.j, 4.-0.j]])

Eigenvalue Decomposition

In some cases, the eigenvectors of A can be chosen such that they
are orthonormal

v∗i vj =

{
1, i = j

0, i ̸= j

In such a case, the matrix of eigenvectors, Q, is unitary, and hence
A can be unitarily diagonalized

A = QDQ∗

Eigenvalue Decomposition

Theorem: A hermitian matrix is unitarily diagonalizable, and its
eigenvalues are real

But hermitian matrices are not the only matrices that can be
unitarily diagonalized... A ∈ Cn×n is normal if

A∗A = AA∗

Theorem: A matrix is unitarily diagonalizable if and only if it is
normal

Gershgorin’s Theorem

Due to the link between eigenvalues and polynomial roots, in
general one has to use iterative methods to compute eigenvalues

However, it is possible to gain some information about eigenvalue
locations more easily from Gershgorin’s Theorem

Let D(c , r) ≡ {x ∈ C : |x − c | ≤ r} denote a disk in the complex
plane centered at c with radius r

For a matrix A ∈ Cn×n, D(aii ,Ri) is called a Gershgorin disk, where

Ri =
n∑

j=1
j ̸=i

|aij |,

Gershgorin’s Theorem

Theorem: All eigenvalues of A ∈ Cn×n are contained within the
union of the n Gershgorin disks of A

Proof: See lecture

Gershgorin’s Theorem

Note that a matrix is diagonally dominant if

|aii | >
n∑

j=1
j ̸=i

|aij |, for i = 1, 2, . . . , n

It follows from Gershgorin’s Theorem that a diagonally dominant
matrix cannot have a zero eigenvalue, hence must be invertible

For example, the finite difference discretization matrix of the
differential operator −∆+ I is diagonally dominant

In 2-dimensions, (−∆+ I)u = −uxx − uyy + u

Each row of the corresponding discretization matrix contains
diagonal entry 4/h2 + 1, and four off-diagonal entries of −1/h2

Sensitivity of Eigenvalue Problems

We shall now consider the sensitivity of the eigenvalues to
perturbations in the matrix A

Suppose A is nondefective, and hence A = VDV−1

Let δA denote a perturbation of A, and let E ≡ V−1δAV , then

V−1(A+ δA)V = V−1AV + V−1δAV = D + E

Sensitivity of Eigenvalue Problems

For a nonsingular matrix X , the map A → X−1AX is called a
similarity transformation of A

Theorem: A similarity transformation preserves eigenvalues

Proof: We can equate the characteristic polynomials of A and
X−1AX (denoted pA(z) and pX−1AX (z), respectively) as follows:

pX−1AX (z) = det(zI− X−1AX)

= det(X−1(zI− A)X)

= det(X−1) det(zI− A) det(X)

= det(zI− A)

= pA(z),

where we have used the identities det(AB) = det(A) det(B), and
det(X−1) = 1/ det(X) □

Sensitivity of Eigenvalue Problems

The identity V−1(A+ δA)V = D + E is a similarity transformation

Therefore A+ δA and D + E have the same eigenvalues

Let λk , k = 1, 2, . . . , n denote the eigenvalues of A, and λ̃ denote
an eigenvalue of A+ δA

Then for some w ∈ Cn, (λ̃,w) is an eigenpair of (D + E), i.e.

(D + E)w = λ̃w

Sensitivity of Eigenvalue Problems

This can be rewritten as

w = (λ̃I− D)−1Ew

This is a promising start because:

▶ we want to bound |λ̃− λk | for some k

▶ (λ̃I− D)−1 is a diagonal matrix with entries 1/(λ̃− λk) on
the diagonal

Sensitivity of Eigenvalue Problems
Taking norms yields

∥w∥2 ≤ ∥(λ̃I− D)−1∥2∥E∥2∥w∥2,

or
∥(λ̃I− D)−1∥−1

2 ≤ ∥E∥2

Note that the norm of a diagonal matrix is given by its largest
entry (in abs. val.)5

max
v ̸=0

∥Dv∥
∥v∥

= max
v ̸=0

∥(D11v1,D22v2, . . . ,Dnnvn)∥
∥v∥

≤
{

max
i=1,2,...,n

|Dii |
}
max
v ̸=0

∥v∥
∥v∥

= max
i=1,2,...,n

|Dii |

5This holds for any induced matrix norm, not just the 2-norm

Sensitivity of Eigenvalue Problems

Hence ∥(λ̃I− D)−1∥2 = 1/|λ̃− λk∗ |, where λk∗ is the eigenvalue
of A closest to λ̃

Therefore it follows from ∥(λ̃I− D)−1∥−1
2 ≤ ∥E∥2 that

|λ̃− λk∗ | = ∥(λ̃I− D)−1∥−1
2

≤ ∥E∥2
= ∥V−1δAV ∥2
≤ ∥V−1∥2∥δA∥2∥V ∥2
= cond(V)∥δA∥2

This result is known as the Bauer–Fike Theorem

Sensitivity of Eigenvalue Problems

Hence suppose we compute the eigenvalues, λ̃i , of the perturbed
matrix A+ δA

Then Bauer–Fike tells us that each λ̃i must reside in a disk of
radius cond(V)∥δA∥2 centered on some eigenvalue of A

If V is poorly conditioned, then even for small perturbations δA,
the disks can be large: sensitivity to perturbations

If A is normal then cond(V) = 1, in which case the Bauer–Fike
disk radius is just ∥δA∥2

Sensitivity of Eigenvalue Problems

Note that a limitation of Bauer–Fike is that it does not tell us
which disk λ̃i will reside in

Therefore, this doesn’t rule out the possibility of, say, all λ̃i

clustering in just one Bauer–Fike disk

In the case that A and A+ δA are hermitian, we have a stronger
result

Sensitivity of Eigenvalue Problems

Weyl’s Theorem: Let λ1 ≤ λ2 ≤ · · · ≤ λn and λ̃1 ≤ λ̃2 ≤
· · · ≤ λ̃n be the eigenvalues of hermitian matrices A and A+δA,
respectively. Then max

i=1,...,n
|λi − λ̃i | ≤ ∥δA∥2.

Hence in the hermitian case, each perturbed eigenvalue must be in
the disk6 of its corresponding unperturbed eigenvalue!

6In fact, eigenvalues of a hermitian matrix are real, so disk here is actually
an interval in R

Sensitivity of Eigenvalue Problems

The Bauer–Fike Theorem relates to perturbations of the whole
spectrum

We can also consider perturbations of individual eigenvalues

Suppose, for simplicity, that A ∈ Cn×n is symmetric, and consider
the perturbed eigenvalue problem

(A+ E)(v +∆v) = (λ+∆λ)(v +∆v)

Expanding this equation, dropping second order terms, and using
Av = λv gives

A∆v + Ev ≈ ∆λv + λ∆v

Sensitivity of Eigenvalue Problems

Premultiply A∆v + Ev ≈ ∆λv + λ∆v by v∗ to obtain

v∗A∆v + v∗Ev ≈ ∆λv∗v + λv∗∆v

Noting that

v∗A∆v = (v∗A∆v)∗ = ∆v∗Av = λ∆v∗v = λv∗∆v

leads to

v∗Ev ≈ ∆λv∗v , or ∆λ =
v∗Ev

v∗v

Sensitivity of Eigenvalue Problems

Finally, we obtain

|∆λ| ≈ |v∗Ev |
∥v∥22

≤ ∥v∥2∥Ev∥2
∥v∥22

= ∥E∥2,

so that |∆λ| ≲ ∥E∥2

We observe that

▶ perturbation bound does not depend on cond(V) when we
consider only an individual eigenvalue

▶ this individual eigenvalue perturbation bound is asymptotic; it
is rigorous only in the limit that the perturbations → 0

Algorithms for Eigenvalue Problems

Power Method

Power Method

The power method is perhaps the simplest eigenvalue algorithm

It finds the eigenvalue of A ∈ Cn×n with largest modulus

1: choose x0 ∈ Cn arbitrarily
2: for k = 1, 2, . . . do
3: xk = Axk−1

4: end for

Question: How does this algorithm work?

Power Method
Assuming A is nondefective, then the eigenvectors v1, v2, . . . , vn
provide a basis for Cn

Therefore there exist coefficients αi such that x0 =
∑n

j=1 αjvj

Then, we have

xk = Axk−1 = A2xk−2 = · · · = Akx0

= Ak

 n∑
j=1

αjvj

 =
n∑

j=1

αjA
kvj

=
n∑

j=1

αjλ
k
j vj

= λk
n

αnvn +
n−1∑
j=1

αj

[
λj

λn

]k
vj



Power Method

Then if |λn| > |λj |, 1 ≤ j < n, we see that xk → λk
nαnvn as k → ∞

This algorithm converges linearly: the error terms are scaled by a
factor at most |λn−1|/|λn| at each iteration

Also, we see that the method converges faster if λn is
well-separated from the rest of the spectrum

Power Method

However, in practice the exponential factor λk
n could cause

overflow or underflow after relatively few iterations

Therefore the standard form of the power method is actually the
normalized power method

1: choose x0 ∈ Cn arbitrarily
2: for k = 1, 2, . . . do
3: yk = Axk−1

4: xk = yk/∥yk∥
5: end for

Power Method

Convergence analysis of the normalized power method is essentially
the same as the un-normalized case

Only difference is we now get an extra scaling factor, ck ∈ R, due
to the normalization at each step

xk = ckλ
k
n

αnvn +
n−1∑
j=1

αj

[
λj

λn

]k
vj



Power Method

This algorithm directly produces the eigenvector vn

One way to recover λn is to note that

yk = Axk−1 ≈ λnxk−1

Hence we can compare an entry of yk and xk−1 to approximate λn

We also note two potential issues:

1. We require x0 to have a nonzero component of vn

2. There may be more than one eigenvalue with maximum
modulus

Power Method

Issue 1:

▶ In practice, very unlikely that x0 will be orthogonal to vn
▶ Even if x∗0vn = 0, rounding error will introduce a component

of vn during the power iterations

Issue 2:

▶ We cannot ignore the possibility that there is more than one
“max. eigenvalue”

▶ In this case xk would converge to a member of the
corresponding eigenspace

Power Method

An important idea in eigenvalue computations is to consider the
“shifted” matrix A− σI, for σ ∈ R

We see that
(A− σI)vi = (λi − σ)vi

and hence the spectrum of A− σI is shifted by −σ, and the
eigenvectors are the same

For example, if all the eigenvalues are real, a shift can be used with
the power method to converge to λ1 instead of λn

Power Method

Python example: Consider power method and shifted power
method for

A =

[
4 1
1 −2

]
,

which has eigenvalues λ1 = −2.1623, λ2 = 4.1623

Inverse Iteration

Inverse Iteration

The eigenvalues of A−1 are the reciprocals of the eigenvalues of A,
since

Av = λv ⇐⇒ A−1v =
1

λ
v

Question: What happens if we apply the power method to A−1?

Inverse Iteration

Answer: We converge to the largest (in modulus) eigenvalue of
A−1, which is 1/λ1 (recall that λ1 is the smallest eigenvalue of A)

This is called inverse iteration

1: choose x0 ∈ Cn arbitrarily
2: for k = 1, 2, . . . do
3: solve Ayk = xk−1 for yk
4: xk = yk/∥yk∥
5: end for

Inverse Iteration

Hence inverse iteration gives λ1 without requiring a shift

This is helpful since it may be difficult to determine what shift is
required to get λ1 in the power method

Question: What happens if we apply inverse iteration to the
shifted matrix A− σI?

Inverse Iteration

The smallest eigenvalue of A− σI is (λi∗ − σ), where

i∗ = arg min
i=1,2,...,n

|λi − σ|,

and hence...

Answer: We converge to λ̃ = 1/(λi∗ − σ), then recover λi∗ via

λi∗ =
1

λ̃
+ σ

Inverse iteration with shift allows us to find the eigenvalue closest
to σ

Rayleigh Quotient Iteration

Rayleigh Quotient

For the remainder of this section (Rayleigh Quotient Iteration, QR
Algorithm) we will assume that A ∈ Rn×n is real and symmetric7

The Rayleigh quotient is defined as

r(x) ≡ xTAx

xT x

If (λ, v) ∈ R× Rn is an eigenpair, then

r(v) =
vTAv

vT v
=

λvT v

vT v
= λ

7Much of the material generalizes to complex non-hermitian matrices, but
symmetric case is simpler

Rayleigh Quotient

Theorem: Suppose A ∈ Rn×n is a symmetric matrix, then for any
x ∈ Rn we have

λ1 ≤ r(x) ≤ λn

Proof: We write x as a linear combination of (orthogonal)
eigenvectors x =

∑n
j=1 αjvj , and the lower bound follows from

r(x) =
xTAx

xT x
=

∑n
j=1 λjα

2
j∑n

j=1 α
2
j

≥ λ1

∑n
j=1 α

2
j∑n

j=1 α
2
j

= λ1

The proof of the upper bound r(x) ≤ λn is analogous □

Rayleigh Quotient

Corollary: A symmetric matrix A ∈ Rn×n is positive definite if and
only if all of its eigenvalues are positive

Proof: (⇒) Suppose A is symmetric positive definite (SPD), then
for any nonzero x ∈ Rn, we have xTAx > 0 and hence

λ1 = r(v1) =
vT1 Av1

vT1 v1
> 0

(⇐) Suppose A has positive eigenvalues, then for any nonzero
x ∈ Rn

xTAx = r(x)(xT x) ≥ λ1∥x∥22 > 0

□

Rayleigh Quotient

But also, if x is an approximate eigenvector, then r(x) gives us a
good approximation to the eigenvalue

This is because estimation of an eigenvalue from an approximate
eigenvector is an n × 1 linear least squares problem: xλ ≈ Ax

x ∈ Rn is our “tall thin matrix” and Ax ∈ Rn is our right-hand side

Hence the normal equation for xλ ≈ Ax yields the Rayleigh
quotient, i.e.

xT xλ = xTAx

Rayleigh Quotient

Question: How accurate is the Rayleigh quotient approximation to
an eigenvalue?

Let’s consider r as a function of x , so r : Rn → R

∂r(x)

∂xj
=

∂
∂xj

(xTAx)

xT x
−

(xTAx) ∂
∂xj

(xT x)

(xT x)2

=
2(Ax)j
xT x

−
(xTAx)2xj
(xT x)2

=
2

xT x
(Ax − r(x)x)j

(Note that the second equation relies on the symmetry of A)

Rayleigh Quotient

Therefore

∇r(x) =
2

xT x
(Ax − r(x)x)

For an eigenpair (λ, v) we have r(v) = λ and hence

∇r(v) =
2

vT v
(Av − λv) = 0

This shows that eigenvectors of A are stationary points of r

Rayleigh Quotient

Suppose (λ, v) is an eigenpair of A, and let us consider a Taylor
expansion of r(x) about v :

r(x) = r(v) +∇r(v)T (x − v)

+
1

2
(x − v)THr (v)(x − v) + H.O.T.

= r(v) +
1

2
(x − v)THr (v)(x − v) + H.O.T.

Hence as x → v the error in a Rayleigh quotient approximation is

|r(x)− λ| = O(∥x − v∥22)

That is, the Rayleigh quotient approx. to an eigenvalue squares the
error in a corresponding eigenvector approx.

The QR Algorithm

The QR algorithm for computing eigenvalues is one of the best
known algorithms in Numerical Analysis8

It was developed independently in the late 1950s by John G.F.
Francis (England) and Vera N. Kublanovskaya (USSR)

The QR algorithm efficiently provides approximations for all
eigenvalues/eigenvectors of a matrix

We will consider what happens when we apply the power method
to a set of vectors — this will then motivate the QR algorithm

8Recall that here we focus on the case in which A ∈ Rn×n is symmetric

The QR Algorithm

Let x
(0)
1 , . . . , x

(0)
p denote p linearly independent starting vectors,

and suppose we store these vectors in the columns of X0

We can apply the power method to these vectors to obtain the
following algorithm:

1: choose an n × p matrix X0 arbitrarily
2: for k = 1, 2, . . . do
3: Xk = AXk−1

4: end for

The QR Algorithm

From our analysis of the power method, we see that for each
i = 1, 2, . . . , p:

x
(k)
i =

(
λk
nαi ,nvn + λk

n−1αi ,n−1vn−1 + · · ·+ λk
1αi ,1v1

)
= λk

n−p

 n∑
j=n−p+1

(
λj

λn−p

)k

αi ,jvj +

n−p∑
j=1

(
λj

λn−p

)k

αi ,jvj



Then, if |λn−p+1| > |λn−p|, the sum in green will decay compared
to the sum in blue as k → ∞

Hence the columns of Xk will converge to a basis for
span{vn−p+1, . . . , vn}

The QR Algorithm

However, this method doesn’t provide a good basis: each column
of Xk will be very close to vn

Therefore the columns of Xk become very close to being linearly
dependent

We can resolve this issue by enforcing linear independence at each
step

The QR Algorithm

We orthonormalize the vectors after each iteration via a (reduced)
QR factorization, to obtain the simultaneous iteration:

1: choose n×p matrix Q0 with orthonormal columns
2: for k = 1, 2, . . . do
3: Xk = AQ̂k−1

4: Q̂k R̂k = Xk

5: end for

The column spaces of Q̂k and Xk in line 4 are the same

Hence columns of Q̂k converge to orthonormal basis for
span{vn−p+1, . . . , vn}

The QR Algorithm

In fact, we don’t just get a basis for span{vn−p+1, . . . , vn}, we get
the eigenvectors themselves!

Theorem: The columns of Q̂k converge to the p dominant
eigenvectors of A

We will not discuss the full proof, but we note that this result is
not surprising since:

▶ the eigenvectors of a symmetric matrix are orthogonal

▶ columns of Q̂k converge to an orthogonal basis for
span{vn−p+1, . . . , vn}

Simultaneous iteration approximates eigenvectors, we obtain
eigenvalues from the Rayleigh quotient Q̂TAQ̂ ≈ diag(λ1, . . . , λn)

The QR Algorithm

With p = n, the simultaneous iteration will approximate all
eigenpairs of A

We now show a more convenient reorganization of the
simultaneous iteration algorithm

We shall require some extra notation: the Q and R matrices
arising in the simultaneous iteration will be underlined Q

k
, Rk

(As we will see shortly, this is to distinguish between the matrices
arising in the two different formulations...)

The QR Algorithm

Define9 the kth Rayleigh quotient matrix: Ak ≡ QT
k
AQ

k
, and the

QR factors Qk , Rk as: QkRk = Ak−1

Our goal is to show that Ak = RkQk , k = 1, 2, . . .

Initialize Q
0
= I ∈ Rn×n, then in the first simultaneous iteration

we obtain X1 = A and Q
1
R1 = A

It follows that A1 = QT
1
AQ

1
= QT

1
(Q

1
R1)Q1

= R1Q1

Also Q1R1 = A0 = QT
0
AQ

0
= A, so that Q1 = Q

1
, R1 = R1, and

A1 = R1Q1

9We now we use the full, rather than the reduced, QR factorization hence
we omit ˆ notation

The QR Algorithm

In the second simultaneous iteration, we have X2 = AQ
1
, and we

compute the QR factorization Q
2
R2 = X2

Also, using our QR factorization of A1 gives

X2 = AQ
1
= (Q

1
QT

1
)AQ

1
= Q

1
A1 = Q

1
(Q2R2),

which implies that Q
2
= Q

1
Q2 = Q1Q2 and R2 = R2

Hence

A2 = QT
2
AQ

2
= QT

2 QT
1
AQ

1
Q2 = QT

2 A1Q2 = QT
2 Q2R2Q2 = R2Q2

The QR Algorithm

The same pattern continues for k = 3, 4, . . .: we QR factorize Ak

to get Qk and Rk , then we compute Ak+1 = RkQk

The columns of the matrix Q
k
= Q1Q2 · · ·Qk approximates the

eigenvectors of A

The diagonal entries of the Rayleigh quotient matrix Ak = QT
k
AQ

k
approximate the eigenvalues of A

(Also, due to eigenvector orthogonality for symmetric A, Ak

converges to a diagonal matrix as k → ∞)

The QR Algorithm

This discussion motivates the famous QR algorithm:

1: A0 = A
2: for k = 1, 2, . . . do
3: QkRk = Ak−1

4: Ak = RkQk

5: end for

The QR Algorithm

Python demo: Compute eigenvalues and eigenvectors of10

A =


2.9766 0.3945 0.4198 1.1159
0.3945 2.7328 −0.3097 0.1129
0.4198 −0.3097 2.5675 0.6079
1.1159 0.1129 0.6079 1.7231


(This matrix has eigenvalues 1, 2, 3 and 4)

10Heath example 4.15

The QR Algorithm

We have presented the simplest version of the QR algorithm: the
“unshifted” QR algorithm

In order to obtain an “industrial strength” algorithm, there are a
number of other issues that need to be considered:

▶ convergence can be accelerated significantly by introducing
shifts, as we did in inverse iteration and Rayleigh iteration

▶ it is more efficient to reduce A to tridiagonal form (via
Householder reflectors) before applying QR algorithm

▶ reliable convergence criteria for the eigenvalues/eigenvectors
are required

High-quality implementations, e.g. LAPACK or Python/MATLAB
eig, handle all of these subtleties for us

Krylov Subspace Methods

We now give an overview of the role of Krylov11 subspace methods
in Scientific Computing

Given a matrix A and vector b, a Krylov sequence is the set of
vectors

{b,Ab,A2b,A3b, . . .}

The corresponding Krylov subspaces are the spaces spanned by
successive groups of these vectors

Km(A, b) ≡ span{b,Ab,A2b, . . . ,Am−1b}

11Aleksey Krylov, 1863–1945, wrote a paper on this idea in 1931

Krylov Subspace Methods

Krylov subspaces are the basis for iterative methods for eigenvalue
problems (and also for solving linear systems)

An important advantage: Krylov methods do not deal directly with
A, but rather with matrix–vector products involving A

This is particularly helpful when A is large and sparse, since
matrix–vector multiplications are relatively cheap

Also, the Krylov sequence is closely related to the power iteration,
so it is not surprising that it is useful for solving eigenproblems

Arnoldi Iteration

Arnoldi Iteration

We define a matrix as being in Hessenberg form in the following
way:

▶ A is called upper-Hessenberg if aij = 0 for all i > j + 1

▶ A is called lower-Hessenberg if aij = 0 for all j > i + 1

The Arnoldi iteration is a Krylov subspace iterative method that
reduces A to upper-Hessenberg form

As we’ll see, we can then use this simpler form to approximate
some eigenvalues of A

Arnoldi Iteration

For A ∈ Cn×n, we want to compute A = QHQ∗, where H is upper
Hessenberg and Q is unitary (i.e. QQ∗ = I)

However, we suppose that n is huge! Hence we do not try to
compute the full factorization

Instead, let us consider just the first m ≪ n columns of the
factorization AQ = QH

Therefore, on the left-hand side, we only need the matrix
Qm ∈ Cn×m:

Qm =

 q1 q2 . . . qm



Arnoldi Iteration

On the right-hand side, we only need the first m columns of H

More specifically, due to upper-Hessenberg structure, we only need
H̃m, which is the (m + 1)×m upper-left section of H:

H̃m =


h11 · · · h1m
h21 h22

. . .
. . .

...
hm,m−1 hmm

hm+1,m



H̃m only interacts with the first m+1 columns of Q, hence we have

AQm = Qm+1H̃m

Arnoldi Iteration

 A


 q1 . . . qm

 =

 q1 . . . qm+1




h11 · · · h1m
h21 · · · h2m

. . .
...

hm+1,m


The mth column can be written as

Aqm = h1mq1 + · · ·+ hmmqm + hm+1,mqm+1

Or, equivalently

qm+1 = (Aqm − h1mq1 − · · · − hmmqm)/hm+1,m

Arnoldi iteration is just the Gram–Schmidt method that constructs
the hij and the (orthonormal) vectors qj , j = 1, 2, . . .

Arnoldi Iteration

1: choose b arbitrarily, then q1 = b/∥b∥2
2: for m = 1, 2, 3, . . . do
3: v = Aqm
4: for j = 1, 2, . . . ,m do
5: hjm = q∗j v
6: v = v − hjmqj
7: end for
8: hm+1,m = ∥v∥2
9: qm+1 = v/hm+1,m

10: end for

This is akin to the modified Gram–Schmidt method because the
updated vector v is used in line 5 (vs. the “raw vector” Aqm)

Also, we only need to evaluate Aqm and perform some vector
operations in each iteration

Arnoldi Iteration

The Arnoldi iteration is useful because the qj form orthonormal
bases of the successive Krylov spaces

Km(A, b) = span{b,Ab, . . . ,Am−1b} = span{q1, q2, . . . , qm}

We expect Km(A, b) to provide good information about the
dominant eigenvalues/eigenvectors of A

Note that this looks similar to the QR algorithm, but the QR
algorithm was based on QR factorization of Ake1 Ake2 . . . Aken



Arnoldi Iteration

Question: How do we find eigenvalues from the Arnoldi iteration?

Let Hm = Q∗
mAQm be the m ×m matrix obtained by removing the

last row from H̃m

Answer: At each step m, we compute the eigenvalues of the
Hessenberg matrix Hm (via, say, the QR algorithm)12

This provides estimates for m eigenvalues/eigenvectors (m ≪ n)
called Ritz values, Ritz vectors, respectively

Just as with the power method, the Ritz values will typically
converge to extreme eigenvalues of the spectrum

12This is how eigs in Python/Matlab works

Arnoldi Iteration

We now examine why eigenvalues of Hm approximate extreme
eigenvalues of A

Let13 Pm
monic denote the monic polynomials of degree m

Theorem: The characteristic polynomial of Hm is the unique
solution of the approximation problem: find p ∈ Pm

monic such that

∥p(A)b∥2 = minimum

Proof: See Trefethen & Bau

13Recall that a monic polynomial has coefficient of highest order term of 1

Arnoldi Iteration

This theorem implies that Ritz values (i.e. eigenvalues of Hm) are
the roots of the optimal polynomial

p∗ = arg min
p∈Pm

monic

∥p(A)b∥2

Now, let’s consider what p∗ should look like in order to minimize
∥p(A)b∥2

We can illustrate the important ideas with a simple case, suppose:

▶ A has only m (≪ n) distinct eigenvalues

▶ b =
∑m

j=1 αjvj , where vj is an eigenvector corresponding to λj

Arnoldi Iteration
Then, for p ∈ Pm

monic, we have

p(x) = c0 + c1x + c2x
2 + · · ·+ xm

for some coefficients c0, c1, . . . , cm−1

Applying this polynomial to a matrix A gives

p(A)b =
(
c0I+ c1A+ c2A

2 + · · ·+ Am
)
b

=
m∑
j=1

αj

(
c0I+ c1A+ c2A

2 + · · ·+ Am
)
vj

=
m∑
j=1

αj

(
c0 + c1λj + c2λ

2
j + · · ·+ λm

j

)
vj

=
m∑
j=1

αjp(λj)vj

Arnoldi Iteration

Then the polynomial p∗ ∈ Pm
monic with roots at λ1, λ2, . . . , λm

minimizes ∥p(A)b∥2, since ∥p∗(A)b∥2 = 0

Hence, in this simple case the Arnoldi method finds p∗ after m
iterations

The Ritz values after m iterations are then exactly the m distinct
eigenvalues of A

Arnoldi Iteration

Suppose now that there are more than m distinct eigenvalues (as is
generally the case in practice)

It is intuitive that in order to minimize ∥p(A)b∥2, p∗ should have
roots close to the dominant eigenvalues of A

Also, we expect Ritz values to converge more rapidly for extreme
eigenvalues that are well-separated from the rest of the spectrum

(We’ll see a concrete example of this for a symmetric matrix A
shortly)

Lanczos Iteration

Lanczos Iteration

Lanczos iteration is the Arnoldi iteration in the special case that A
is hermitian

However, we obtain some significant computational savings in this
special case

Let us suppose for simplicity that A is symmetric with real entries,
and hence has real eigenvalues

Then Hm = QT
mAQm is also symmetric =⇒ Ritz values (i.e.

eigenvalue estimates) are also real

Lanczos Iteration

Also, we can show that Hm is tridiagonal: Consider the ij entry of
Hm, hij = qTi Aqj

Recall first that {q1, q2, . . . , qj} is an orthonormal basis for
Kj(A, b)

Then we have Aqj ∈ Kj+1(A, b) = span{q1, q2, . . . , qj+1}, and
hence hij = qTi (Aqj) = 0 for i > j + 1 since

qi ⊥ span{q1, q2, . . . , qj+1}, for i > j + 1

Also, since Hm is symmetric, we have hij = hji = qTj (Aqi), which
implies hij = 0 for j > i + 1, by the same reasoning as above

Lanczos Iteration

Since Hm is now tridiagonal, we shall write it as

Tm =


α1 β1
β1 α2 β2

β2 α3
. . .

. . .
. . . βm−1

βm−1 αm


The consequence of tridiagonality: Lanczos iteration is much
cheaper than Arnoldi iteration!

Lanczos Iteration

The inner loop in Lanczos iteration only runs from m − 1 to m,
instead of 1 to m as in Arnoldi

This is due to the three-term recurrence at step m:

Aqm = βm−1qm−1 + αmqm + βmqm+1

(This follows from our discussion of the Arnoldi case, with T̃m

replacing H̃m)

As before, we rearrange this to give

qm+1 = (Aqm − βm−1qm−1 − αmqm)/βm

Lanczos Iteration

Which leads to the Lanczos iteration

1: β0 = 0, q0 = 0
2: choose b arbitrarily, then q1 = b/∥b∥2
3: for m = 1, 2, 3, . . . do
4: v = Aqm
5: αm = qTmv
6: v = v − βm−1qm−1 − αmqm
7: βm = ∥v∥2
8: qm+1 = v/βm
9: end for

Lanczos Iteration

Python demo: Lanczos iteration for a diagonal matrix

Lanczos Iteration

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−4

−3

−2

−1

0

1

2

3

4

m=10

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−4

−3

−2

−1

0

1

2

3

4

m=20

We can see that Lanczos minimizes ∥p(A)b∥2:
▶ p is uniformly small in the region of clustered eigenvalues

▶ roots of p match isolated eigenvalues very closely

Note that in general p will be very steep near isolated eigenvalues,
hence convergence for isolated eigenvalues is rapid!

Conjugate Gradient Method

Conjugate Gradient Method

We now turn to another Krylov subspace method: the conjugate
gradient method,14 or CG

(This is a detour in this Unit since CG is not an eigenvalue
algorithm)

CG is an iterative method for solving Ax = b in the case that A is
symmetric positive definite (SPD)

CG is the original (and perhaps most famous) Krylov subspace
method, and is a mainstay of Scientific Computing

14Due to Hestenes and Stiefel in 1952

Conjugate Gradient Method

Recall that we discussed CG in Unit 4 — the approach in Unit 4 is
also often called nonlinear conjugate gradients

Nonlinear conjugate gradients applies the approach of Hestenes
and Stiefel to nonlinear unconstrained optimization

Conjugate Gradient Method

Iterative solvers (e.g. CG) and direct solvers (e.g. Gaussian
elimination) for solving Ax = b are fundamentally different:

▶ Direct solvers: In exact arithmetic, gives exact answer after
finitely many steps

▶ Iterative solvers: In principle require infinitely many iterations,
but should give accurate approximation after few iterations

Conjugate Gradient Method

Direct methods are very successful, but iterative methods are
typically more efficient for very large, sparse systems

Krylov subspace methods only require matvecs and vector-vector
(e.g. dot product) operations

Hence Krylov methods require O(n) operations per iteration for
sparse A, no issues with “fill-in,” etc.

Also, iterative methods are generally better suited to
parallelization, hence an important topic in supercomputing

Conjugate Gradient Method

The CG algorithm is given by

1: x0 = 0, r0 = b, p0 = r0
2: for k = 1, 2, 3, . . . do
3: αk = (rTk−1rk−1)/(p

T
k−1Apk−1)

4: xk = xk−1 + αkpk−1

5: rk = rk−1 − αkApk−1

6: βk = (rTk rk)/(r
T
k−1rk−1)

7: pk = rk + βkpk−1

8: end for

Conjugate Gradient Method

We shall now discuss CG in more detail — it’s certainly not
obvious upfront why this is a useful algorithm!

Let x∗ = A−1b denote the exact solution, and let ek ≡ x∗ − xk
denote the error at step k

Also, let ∥ · ∥A denote the norm

∥x∥A ≡
√
xTAx

Conjugate Gradient Method

Theorem: The CG iterate xk is the unique member of Kk(A, b)
which minimizes ∥ek∥A. Also, xk = x∗ for some k ≤ n.

Proof: This result relies on a set of identities which can be derived
(by induction) from the CG algorithm:

(i) Kk(A, b) = span{x1, x2, . . . , xk} = span{p0, p1 . . . , pk−1}
= span{r0, r1, . . . , rk−1}

(ii) rTk rj = 0 for j < k

(iii) pTk Apj = 0 for j < k

Conjugate Gradient Method

From the first identity above, it follows that xk ∈ Kk(A, b)

We will now show that xk is the unique minimizer in Kk(A, b)

Let x̃ ∈ Kk(A, b) be another “candidate minimizer” and let
∆x ≡ xk − x̃ , then

∥x∗ − x̃∥2A = ∥(x∗ − xk) + (xk − x̃)∥2A
= ∥ek +∆x∥2A
= (ek +∆x)TA(ek +∆x)

= eTk Aek + 2eTk A∆x +∆xTA∆x

Conjugate Gradient Method

Next, let r(xk) = b − Axk denote the residual at step k , so that

r(xk) = b − Axk = b − A(xk−1 + αkpk−1) = r(xk−1)− αkApk−1

Since r(x0) = b = r0, by induction we see that for rk computed in
line 5 of CG,

rk = rk−1 − αkApk−1

we have rk = r(xk), k = 1, 2, . . .

Conjugate Gradient Method

Now, recall our expression for ∥x∗ − x̃∥2A:

∥x∗ − x̃∥2A = eTk Aek + 2eTk A∆x +∆xTA∆x

and note that

2eTk A∆x = 2∆xTA(x∗ − xk) = 2∆xT (b − Axk) = 2∆xT rk

Now,

▶ ∆x = xk − x̃ ∈ Kk(A, b)

▶ from (i), we have that Kk(A, b) = span{r0, r1, . . . , rk−1}
▶ from (ii), we have that rk ⊥ span{r0, r1, . . . , rk−1}

Therefore, we have 2eTk A∆x = 2∆xT rk = 0

Conjugate Gradient Method

This implies that,

∥x∗ − x̃∥2A = eTk Aek +∆xTA∆x ≥ ∥ek∥2A,

with equality only when ∆x = 0, hence xk ∈ Kk(A, b) is the
unique minimizer!

This also tells us that if x∗ ∈ Kk(A, b), then xk = x∗

Therefore15 CG will converge to x∗ in at most n iterations since
Kk(A, b) is a subspace of Rn of dimension k □

15Assuming exact arithmetic!

Conjugate Gradient Method

Note that the theoretical guarantee that CG will converge in n
steps is of no practical use

In floating point arithmetic we will not get exact convergence to x∗

More importantly, we assume n is huge, so we want to terminate
CG well before n iterations anyway

Nevertheless, the guarantee of convergence in at most n steps is of
historical interest

Hestenes and Stiefel originally viewed CG as a direct method that
will converge after a finite number of steps

Conjugate Gradient Method

Steps of CG are chosen to give the orthogonality properties (ii),
(iii), which lead to the remarkable CG optimality property:

CG minimizes the error over the Krylov subspace
Kk(A, b) at step k

Question: Where did the steps in the CG algorithm come from?

Answer: It turns out that CG can be derived by developing an
optimization algorithm for ϕ : Rn → R given by

ϕ(x) ≡ 1

2
xTAx − xTb

e.g. lines 3 and 4 in CG perform line search, line 7 gives a search
direction pk

Conjugate Gradient Method

[Aside: Note that −∇ϕ(x) = b − Ax = r(x)

The name “Conjugate Gradient” then comes from the property

(ii) ∇ϕ(xk)
T∇ϕ(xj) = rTk rj = 0 for j < k

That is, the gradient directions are orthogonal, or “conjugate”]

Question: Why is the quadratic objective function ϕ relevant to
solving Ax = b?

Conjugate Gradient Method

Answer: Minimizing ϕ is equivalent to minimizing ∥ek∥2A, since

∥ek∥2A = (x∗ − xk)
TA(x∗ − xk)

= xTk Axk − 2xTk Ax∗ + xT∗ Ax∗

= xTk Axk − 2xTk b + xT∗ b

= 2ϕ(xk) + const.

Hence, our argument from above shows that, at iteration k , CG
solves the optimization problem

min
x∈Kk (A,b)

ϕ(x)

Conjugate Gradient Method

An important topic (that we will not cover in detail) is
convergence analysis of CG: How fast does ∥ek∥A converge?

A famous result for CG is that if A has 2-norm condition number
κ, then

∥ek∥A
∥e0∥A

≤ 2

(√
κ− 1√
κ+ 1

)k

Hence smaller condition number implies faster convergence!

Conjugate Gradient Method

Suppose we want to terminate CG when

∥ek∥A
∥e0∥A

≤ ϵ

for some ϵ > 0, how many CG iterations will this require?

We have the identities

2

(√
κ− 1√
κ+ 1

)k

= 2

(√
κ+ (1− 1)− 1√

κ+ 1

)k

= 2

(
1− 2√

κ+ 1

)k

= 2

(
1− 2/

√
κ

1 + 1/
√
κ

)k

Conjugate Gradient Method

And for large κ it follows that

∥ek∥A
∥e0∥A

≤ 2

(√
κ− 1√
κ+ 1

)k

≈ 2

(
1− 2√

κ

)k

Hence we terminate CG when(
1− 2√

κ

)k

≈ ϵ

2

Conjugate Gradient Method

Taking logs gives

k ≈ log(ϵ/2)/ log

(
1− 2√

κ

)
≈ 1

2
| log(ϵ/2)|

√
κ

where the last expression follows from the Taylor expansion:

log

(
1− 2√

κ

)
≈ log(1)− 2√

κ
= − 2√

κ

This analysis shows that the number of CG iterations for a given
tolerance ϵ grows approximately as

√
κ

Conjugate Gradient Method

For the discrete Laplacian, we have κ = O(h−2),16 hence number
of CG iterations should grow as O(

√
κ) = O(h−1)

For ϵ = 10−4, we obtain the following convergence results

h κ CG iterations

4× 10−2 3.67× 102 32
2× 10−2 1.47× 103 65
1× 10−2 5.89× 103 133
5× 10−3 2.36× 104 272

16This is a standard result in finite element analysis

Conjugate Gradient Method

These results indicate that CG gets more expensive for Poisson
equation as h is reduced for two reasons:

▶ The matrix and vectors get larger, hence each CG iteration is
more expensive

▶ We require more iterations since the condition number gets
worse

Conjugate Gradient Method: Preconditioning

The final crucial idea that we will mention is preconditioning

The idea is that we premultiply Ax = b by the preconditioning
matrix M to obtain the system MAx = Mb

The CG convergence rate will then depend on the properties of
MA rather than A

We know (from Abel and Galois) that we can’t transform a matrix
to triangular form via finite sequence of similarity transformations

However, it is possible to “similarity transform” e.g. one intuitive
idea is to choose M ≈ A−1 so that MA ≈ I has a smaller condition
number than A

Conjugate Gradient Method: Preconditioning

Good preconditioners must be cheap to compute, and should
significantly accelerate convergence of an iterative method

Preconditioners can have a dramatic effect on convergence!

For example, preconditioning can ensure that number of CG
iterations required for Poisson equation is independent of h

Preconditioning for Krylov subspace methods is a major topic in
Scientific Computing: It is essential for large-scale problems!

