
Motivation: Nonlinear Equations

So far we have mostly focused on linear phenomena

▶ Interpolation leads to a linear system Vb = y (monomials) or
Ib = y (Lagrange polynomials)

▶ Linear least-squares leads to the normal equations
ATAb = AT y

▶ We saw examples of linear physical models (Ohm’s Law,
Hooke’s Law, Leontief equations) =⇒ Ax = b

▶ F.D. discretization of a linear PDE leads to a linear algebraic
system AU = F



Motivation: Nonlinear Equations
Of course, nonlinear models also arise all the time

▶ Nonlinear least-squares, Gauss–Newton/Levenberg–Marquardt

▶ Countless nonlinear physical models in nature, e.g.
non-Hookean material models1

▶ F.D. discretization of a non-linear PDE leads to a nonlinear
algebraic system

1Important in modeling large deformations of solids



Motivation: Nonlinear Equations

Another example is computation of Gauss quadrature
points/weights

We know this is possible via roots of Legendre polynomials

But we could also try to solve the nonlinear system of equations
for {(x1,w1), (x2,w2), . . . , (xn,wn)}



Motivation: Nonlinear Equations

e.g. for n = 2, we need to find points/weights such that all
polynomials of degree 3 are integrated exactly, hence

w1 + w2 =

∫ 1

−1
1dx = 2

w1x1 + w2x2 =

∫ 1

−1
xdx = 0

w1x
2
1 + w2x

2
2 =

∫ 1

−1
x2dx = 2/3

w1x
3
1 + w2x

3
2 =

∫ 1

−1
x3dx = 0



Motivation: Nonlinear Equations

We usually write a nonlinear system of equations as

F (x) = 0,

where F : Rn → Rm

We implicity absorb the “right-hand side” into F and seek a root
of F

In this Unit we focus on the case m = n, m > n gives nonlinear
least-squares



Motivation: Nonlinear Equations

We are very familiar with scalar (m = 1) nonlinear equations

Simplest case is a quadratic equation

ax2 + bx + c = 0

We can write down a closed form solution, the quadratic formula

x =
−b ±

√
b2 − 4ac

2a



Motivation: Nonlinear Equations

In fact, there are also closed-form solutions for arbitrary cubic and
quartic polynomials, due to Ferrari and Cardano (∼ 1540)

Important mathematical result is that there is no general formula
for solving fifth or higher order polynomial equations

Hence, even for the simplest possible case (polynomials), the only
hope is to employ an iterative algorithm

An iterative method should converge in the limit n → ∞, and
ideally yields an accurate approximation after few iterations



Motivation: Nonlinear Equations

There are many well-known iterative methods for nonlinear
equations

Probably the simplest is the bisection method for a scalar equation
f (x) = 0, where f ∈ C [a, b]

Look for a root in the interval [a, b] by bisecting based on sign of f

Python example: [bisection.py ]

https://github.com/chr1shr/am205_examples/blob/master/4_optimization/bisection.py


Motivation: Nonlinear Equations

#!/usr/bin/python3

from math import sin

# Function to consider

def f(x):

return x*x-4*sin(x)

# Initial interval: assume f(a)<0 and f(b)>0

a=1

b=3

# Bisection search

while b-a>1e-8:

print(a,b)

c=0.5*(b+a)

if f(c)<0: a=c

else: b=c

print("# Root at",0.5*(a+b))



Motivation: Nonlinear Equations
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Motivation: Nonlinear Equations

Bisection is a robust root-finding method in 1D, but it does not
generalize easily to Rn for n > 1

Also, bisection is a crude method in the sense that it makes no use
of magnitude of f , only sign(f )

We will look at mathematical basis of alternative methods which
generalize to Rn:

▶ Fixed-point iteration

▶ Newton’s method



Optimization



Motivation: Optimization

Another major topic in Scientific Computing is optimization

Very important in science, engineering, industry, finance,
economics, logistics, . . .

Many engineering challenges can be formulated as optimization
problems, e.g.:

▶ Design car body that maximizes downforce2

▶ Design a bridge with minimum weight

2A major goal in racing car design



Motivation: Optimization

Of course, in practice, it is more realistic to consider optimization
problems with constraints, e.g.:

▶ Design car body that maximizes downforce, subject to a
constraint on drag

▶ Design a bridge with minimum weight, subject to a constraint
on strength



Motivation: Optimization

Also, (constrained and unconstrained) optimization problems arise
naturally in science

Physics:

▶ many physical systems will naturally occupy a minimum
energy state

▶ if we can describe the energy of the system mathematically,
then we can find minimum energy state via optimization



Motivation: Optimization

Biology:

▶ recent efforts in Scientific Computing have sought to
understand biological phenomena quantitively via optimization

▶ computational optimization of, e.g. fish swimming or insect
flight, can reproduce behavior observed in nature

▶ this jells with the idea that evolution has been “optimizing”
aspects organisms for millions of year



Motivation: Optimization

All these problems can be formulated as: Optimize (max. or min.)
an objective function over a set of feasible choices, i.e.

Given an objective function f : Rn → R and a set S ⊂ Rn,
we seek x∗ ∈ S such that f (x∗) ≤ f (x), ∀x ∈ S

(It suffices to consider only minimization, maximization is
equivalent to minimizing −f )

S is the feasible set, usually defined by a set of equations and/or
inequalities, which are the constraints

If S = Rn, then the problem is unconstrained



Motivation: Optimization

The standard way to write an optimization problem is

min
x∈S

f (x) subject to g(x) = 0 and h(x) ≤ 0,

where f : Rn → R, g : Rn → Rm, h : Rn → Rp



Motivation: Optimization

For example, let x1 and x2 denote radius and height of a cylinder,
respectively

Minimize the surface area of a cylinder subject to a constraint on
its volume3 (we will return to this example later)

min
x

f (x1, x2) = 2πx1(x1 + x2)

subject to g(x1, x2) = πx21x2 − V = 0

3Heath Example 6.2



Motivation: Optimization

If f , g and h are all affine, then the optimization problem is called
a linear program

(Here the term “program” has nothing to do with computer
programming; instead it refers to logistics/planning)

Affine if f (x) = Ax + b for a matrix A, i.e. linear plus a constant4

Linear programming may
already be familiar

Just need to check f (x) on
vertices of the feasible region

4Recall that “affine” is not the same as ”linear”, i.e.
f (x + y) = Ax + Ay + b and f (x) + f (y) = Ax + Ay + 2b



Motivation: Optimization

If the objective function or any of the constraints are nonlinear then
we have a nonlinear optimization problem or nonlinear program

We will consider several different approaches to nonlinear
optimization in this Unit

Optimization routines typically use local information about a
function to iteratively approach a local minimum



Motivation: Optimization

In some cases this easily gives a global minimum
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Motivation: Optimization

But in general, global optimization can be very difficult
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Motivation: Optimization

And can get much harder in higher spatial dimensions
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Motivation: Optimization

There are robust methods for finding local minima, and this is
what we focus on in AM205

Global optimization is very important in practice, but in general
there is no way to guarantee that we will find a global minimum

Global optimization basically relies on heuristics:

▶ try several different starting guesses (“multistart” methods)

▶ simulated annealing

▶ genetic methods5

5Simulated annealing and genetic methods are covered in AM207



Root Finding: Scalar Case



Fixed-Point Iteration

Suppose we define an iteration

xk+1 = g(xk) (∗)

e.g. recall Heron’s Method from Assignment 0 for finding
√
a:

xk+1 =
1

2

(
xk +

a

xk

)
This uses gheron(x) =

1
2 (x + a/x)



Fixed-Point Iteration

Suppose α is such that g(α) = α, then we call α a fixed point of g

For example, we see that
√
a is a fixed point of gheron since

gheron(
√
a) =

1

2

(√
a+ a/

√
a
)
=

√
a

A fixed-point iteration terminates once a fixed point is reached,
since if g(xk) = xk then we get xk+1 = xk

Also, if xk+1 = g(xk) converges as k → ∞, it must converge to a
fixed point: Let α ≡ limk→∞ xk , then

6

α = lim
k→∞

xk+1 = lim
k→∞

g(xk) = g

(
lim
k→∞

xk

)
= g(α)

6Third equality requires g to be continuous



Fixed-Point Iteration

Hence, for example, we know if Heron’s method converges, it will
converge to

√
a

It would be very helpful to know when we can guarantee that a
fixed-point iteration will converge

Recall that g satisfies a Lipschitz condition in an interval [a, b] if
∃L ∈ R>0 such that

|g(x)− g(y)| ≤ L|x − y |, ∀x , y ∈ [a, b]

g is called a contraction if L < 1



Fixed-Point Iteration

Theorem: Suppose that g(α) = α and that g is a contraction
on [α−A, α+A]. Suppose also that |x0−α| ≤ A. Then the
fixed point iteration converges to α.

Proof:
|xk − α| = |g(xk−1)− g(α)| ≤ L|xk−1 − α|,

which implies
|xk − α| ≤ Lk |x0 − α|

and, since L < 1, |xk − α| → 0 as k → ∞. (Note that
|x0 − α| ≤ A implies that all iterates are in [α− A, α+ A].) □

(This proof also shows that error decreases by factor of L each
iteration)



Fixed-Point Iteration

Recall that if g ∈ C 1[a, b], we can obtain a Lipschitz constant
based on g ′:

L = max
θ∈(a,b)

|g ′(θ)|

We now use this result to show that if |g ′(α)| < 1, then there is a
neighborhood of α on which g is a contraction

This tells us that we can verify convergence of a fixed point
iteration by checking the gradient of g



Fixed-Point Iteration

By continuity of g ′ (and hence continuity of |g ′|), for any ϵ > 0
∃δ > 0 such that for x ∈ (α− δ, α+ δ):

| |g ′(x)| − |g ′(α)| | ≤ ϵ =⇒ max
x∈(α−δ,α+δ)

|g ′(x)| ≤ |g ′(α)|+ ϵ

Suppose |g ′(α)| < 1 and set ϵ = 1
2(1− |g ′(α)|), then there is a

neighborhood on which g is Lipschitz with L = 1
2(1 + |g ′(α)|)

Then L < 1 and hence g is a contraction in a neighborhood of α



Fixed-Point Iteration

Furthermore, as k → ∞,

|xk+1 − α|
|xk − α|

=
|g(xk)− g(α)|

|xk − α|
→ |g ′(α)|,

Hence, asymptotically, error decreases by a factor of |g ′(α)| each
iteration



Fixed-Point Iteration

We say that an iteration converges linearly if, for some µ ∈ (0, 1),

lim
k→∞

|xk+1 − α|
|xk − α|

= µ

An iteration converges superlinearly if

lim
k→∞

|xk+1 − α|
|xk − α|

= 0



Fixed-Point Iteration
We can use these ideas to construct practical fixed-point iterations
for solving f (x) = 0

e.g. suppose f (x) = ex − x − 2
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From the plot, it looks like there’s a root at x ≈ 1.15



Fixed-Point Iteration

f (x) = 0 is equivalent to x = log(x + 2), hence we seek a fixed
point of the iteration

xk+1 = log(xk + 2), k = 0, 1, 2, . . .

Here g(x) ≡ log(x + 2), and g ′(x) = 1/(x + 2) < 1 for all x > −1,
hence fixed point iteration will converge for x0 > −1

Hence we should get linear convergence with factor approx.
g ′(1.15) = 1/(1.15 + 2) ≈ 0.32



Fixed-Point Iteration

An alternative fixed-point iteration is to set

xk+1 = exk − 2, k = 0, 1, 2, . . .

Therefore g(x) ≡ ex − 2, and g ′(x) = ex

Hence |g ′(α)| > 1, so we can’t guarantee convergence

(And, in fact, the iteration diverges . . . )



Fixed-Point Iteration

Python demo: [iter.py ] Comparison of the two iterations
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https://github.com/chr1shr/am205_examples/blob/master/4_optimization/iter.py


Newton’s Method

Constructing fixed-point iterations can require some ingenuity

Need to rewrite f (x) = 0 in a form x = g(x), with appropriate
properties on g

To obtain a more generally applicable iterative method, let us
consider the following fixed-point iteration

xk+1 = xk − λ(xk)f (xk), k = 0, 1, 2, . . .

corresponding to g(x) = x − λ(x)f (x), for some function λ

A fixed point α of g yields a solution to f (α) = 0 (except possibly
when λ(α) = 0), which is what we’re trying to achieve!



Newton’s Method

Recall that the asymptotic convergence rate is dictated by |g ′(α)|,
so we’d like to have |g ′(α)| = 0 to get superlinear convergence

Suppose (as stated above) that f (α) = 0, then

g ′(α) = 1− λ′(α)f (α)− λ(α)f ′(α) = 1− λ(α)f ′(α)

Hence to satisfy g ′(α) = 0 we choose λ(x) ≡ 1/f ′(x) to get
Newton’s method:

xk+1 = xk −
f (xk)

f ′(xk)
, k = 0, 1, 2, . . .



Newton’s Method

Based on fixed-point iteration theory, Newton’s method is
convergent since |g ′(α)| = 0 < 1

However, we need a different argument to understand the
superlinear convergence rate properly

To do this, we use a Taylor expansion for f (α) about f (xk):

0 = f (α) = f (xk) + (α− xk)f
′(xk) +

(α− xk)
2

2
f ′′(θk)

for some θk ∈ (α, xk)



Newton’s Method

Dividing through by f ′(xk) gives(
xk −

f (xk)

f ′(xk)

)
− α =

f ′′(θk)

2f ′(xk)
(xk − α)2,

or

xk+1 − α =
f ′′(θk)

2f ′(xk)
(xk − α)2,

Hence, roughly speaking, the error at iteration k + 1 is the square
of the error at each iteration k

This is referred to as quadratic convergence, which is very rapid!

Key point: Once again we need to be sufficiently close to α to get
quadratic convergence (result relied on Taylor expansion near α)



Secant Method

An alternative to Newton’s method is to approximate f ′(xk) using
the finite difference

f ′(xk) ≈
f (xk)− f (xk−1)

xk − xk−1

Substituting this into the iteration leads to the secant method

xk+1 = xk − f (xk)

(
xk − xk−1

f (xk)− f (xk−1)

)
, k = 1, 2, 3, . . .

The main advantages of secant are:

▶ does not require us to determine f ′(x) analytically

▶ requires only one extra evaluation of f (x) per solution
(Newton’s method also requires f ′(xk) each iteration)



Secant Method

As one may expect, secant converges faster than a fixed-point
iteration, but slower than Newton’s method

In fact, it can be shown that for the secant method, we have

lim
k→∞

|xk+1 − α|
|xk − α|q

= µ

where µ is a positive constant and q ≈ 1.6

Python demo: [n secant.py ] Newton’s method versus secant
method for f (x) = ex − x − 2 = 0

https://github.com/chr1shr/am205_examples/blob/master/4_optimization/n_secant.py


Multivariate Case



Systems of Nonlinear Equations

We now consider fixed-point iterations and Newton’s method for
systems of nonlinear equations

We suppose that F : Rn → Rn, n > 1, and we seek a root α ∈ Rn

such that F (α) = 0

In component form, this is equivalent to

F1(α) = 0

F2(α) = 0
...

Fn(α) = 0



Fixed-Point Iteration

For a fixed-point iteration, we again seek to rewrite F (x) = 0 as
x = G (x) to obtain:

xk+1 = G (xk)

The convergence proof is the same as in the scalar case, if we
replace | · | with ∥ · ∥

i.e. if ∥G (x)− G (y)∥ ≤ L∥x − y∥, then ∥xk − α∥ ≤ Lk∥x0 − α∥

Hence, as before, if G is a contraction it will converge to a fixed
point α



Fixed-Point Iteration

Recall that we define the Jacobian matrix, JG ∈ Rn×n, to be

(JG )ij =
∂Gi

∂xj
, i , j = 1, . . . , n

If ∥JG (α)∥∞ < 1, then there is some neighborhood of α for which
the fixed-point iteration converges to α

The proof of this is a natural extension of the corresponding scalar
result



Fixed-Point Iteration

Once again, we can employ a fixed point iteration to solve
F (x) = 0

e.g. consider

x21 + x22 − 1 = 0

5x21 + 21x22 − 9 = 0

This can be rearranged to x1 =
√

1− x22 , x2 =
√

(9− 5x21 )/21



Fixed-Point Iteration

Hence, we define

G1(x1, x2) ≡
√

1− x22 , G2(x1, x2) ≡
√

(9− 5x21 )/21

Python Example: [iter 2d.py ] This yields a convergent iterative
method

https://github.com/chr1shr/am205_examples/blob/master/4_optimization/iter_2d.py


Newton’s Method

As in the one-dimensional case, Newton’s method is generally more
useful than a standard fixed-point iteration

The natural generalization of Newton’s method is

xk+1 = xk − JF (xk)
−1F (xk), k = 0, 1, 2, . . .

Note that to put Newton’s method in the standard form for a
linear system, we write

JF (xk)∆xk = −F (xk), k = 0, 1, 2, . . . ,

where ∆xk ≡ xk+1 − xk



Newton’s Method

Once again, if x0 is sufficiently close to α, then Newton’s method
converges quadratically — we sketch the proof below

This result again relies on Taylor’s Theorem

Hence we first consider how to generalize the familiar
one-dimensional Taylor’s Theorem to Rn

First, we consider the case for F : Rn → R



Multivariate Taylor Theorem

Let ϕ(s) ≡ F (x + sδ), then one-dimensional Taylor Theorem yields

ϕ(1) = ϕ(0) +
k∑

ℓ=1

ϕ(ℓ)(0)

ℓ!
+ ϕ(k+1)(η), η ∈ (0, 1),

Also, we have

ϕ(0) = F (x)

ϕ(1) = F (x + δ)

ϕ′(s) =
∂F (x + sδ)

∂x1
δ1 +

∂F (x + sδ)

∂x2
δ2 + · · ·+ ∂F (x + sδ)

∂xn
δn

ϕ′′(s) =
∂2F (x + sδ)

∂x2
1

δ21 + · · ·+ ∂2F (x + sδ)

∂x1xn
δ1δn + · · ·+

∂2F (x + sδ)

∂x1∂xn
δ1δn + · · ·+ ∂2F (x + sδ)

∂x2
n

δ2n

...



Multivariate Taylor Theorem

Hence, we have

F (x + δ) = F (x) +
k∑

ℓ=1

Uℓ(x)

ℓ!
+ Ek ,

where

Uℓ(x) ≡

[(
∂

∂x1
δ1 + · · ·+ ∂

∂xn
δn

)ℓ

F

]
(x), ℓ = 1, 2, . . . , k ,

and

Ek ≡ Uk+1(x + ηδ)

(k + 1)!
, η ∈ (0, 1)



Multivariate Taylor Theorem

Let A be an upper bound on the absolute values of all derivatives
of order k + 1, then

|Ek | ≤ 1

(k + 1)!

∣∣∣∣∣
[(

∥δ∥∞
∂

∂x1
+ . . .+ ∥δ∥∞

∂

∂xn

)k+1

F

]
(x + ηδ)

∣∣∣∣∣
=

1

(k + 1)!
∥δ∥k+1

∞

∣∣∣∣∣
[(

∂

∂x1
+ . . .+

∂

∂xn

)k+1

F

]
(x + ηδ)

∣∣∣∣∣
=

nk+1

(k + 1)!
A∥δ∥k+1

∞

where the last line follows from the fact that there are nk+1 terms
in the product (i.e. there are nk+1 derivatives of order k + 1)



Multivariate Taylor Theorem

We shall only need an expansion up to first order terms for analysis
of Newton’s method

From our expression above, we can write first order Taylor
expansion succinctly as:

F (x + δ) = F (x) +∇F (x)T δ + E1



Multivariate Taylor Theorem

For F : Rn → Rn, Taylor expansion follows by developing a Taylor
expansion for each Fi , hence

Fi (x + δ) = Fi (x) +∇Fi (x)
T δ + Ei ,1

so that for F : Rn → Rn we have

F (x + δ) = F (x) + JF (x)δ + EF

where ∥EF∥∞ ≤ max
1≤i≤n

|Ei ,1| ≤ 1
2n

2

(
max

1≤i ,j ,ℓ≤n

∣∣∣ ∂2Fi
∂xj∂xℓ

∣∣∣) ∥δ∥2∞



Newton’s Method

We now return to Newton’s method

We have

0 = F (α) = F (xk) + JF (xk) [α− xk ] + EF

so that
xk − α = [JF (xk)]

−1F (xk) + [JF (xk)]
−1EF



Newton’s Method

Also, the Newton iteration itself can be rewritten as

JF (xk) [xk+1 − α] = JF (xk) [xk − α]− F (xk)

Hence, we obtain:

xk+1 − α = [JF (xk)]
−1EF ,

so that ∥xk+1 − α∥∞ ≤ const.∥xk − α∥2∞, i.e. quadratic
convergence!



Newton’s Method

Example: Newton’s method for the two-point Gauss quadrature
rule

Recall the system of equations

F1(x1, x2,w1,w2) = w1 + w2 − 2 = 0

F2(x1, x2,w1,w2) = w1x1 + w2x2 = 0

F3(x1, x2,w1,w2) = w1x
2
1 + w2x

2
2 − 2/3 = 0

F4(x1, x2,w1,w2) = w1x
3
1 + w2x

3
2 = 0



Newton’s Method

We can solve this in Python using our own implementation of
Newton’s method

To do this, we require the Jacobian of this system:

JF (x1, x2,w1,w2) =


0 0 1 1
w1 w2 x1 x2

2w1x1 2w2x2 x21 x22
3w1x

2
1 3w2x

2
2 x31 x32





Newton’s Method

Alternatively, we can use Python’s built-in fsolve function

Note that fsolve computes a finite-difference approximation to
the Jacobian by default

(Or we can pass in an analytical Jacobian if we want)

Matlab has an equivalent fsolve function.



Newton’s Method

Python example: [fsolve.py ] With either approach and with
starting guess x0 = [−1, 1, 1, 1], we get

x k =

-0.577350269189626

0.577350269189626

1.000000000000000

1.000000000000000

https://github.com/chr1shr/am205_examples/blob/master/4_optimization/fsolve.py


Conditions for Optimality



Existence of Global Minimum

In order to guarantee existence and uniqueness of a global min. we
need to make assumptions about the objective function

e.g. if f is continuous on a closed7 and bounded set S ⊂ Rn then
it has global minimum in S

In one dimension, this says f achieves a minimum on the interval
[a, b] ⊂ R

In general f does not achieve a minimum on (a, b), e.g. consider
f (x) = x

(Though inf
x∈(a,b)

f (x), the largest lower bound of f on (a, b), is

well-defined)

7A set is closed if it contains its own boundary



Existence of Global Minimum

Another helpful concept for existence of global min. is coercivity

A continuous function f on an unbounded set S ⊂ Rn is coercive if

lim
∥x∥→∞

f (x) = +∞

That is, f (x) must be large whenever ∥x∥ is large



Existence of Global Minimum

If f is coercive on a closed, unbounded8 set S , then f has a global
minimum in S

Proof: From the definition of coercivity, for any M ∈ R, ∃r > 0
such that f (x) ≥ M for all x ∈ S where ∥x∥ ≥ r

Suppose that 0 ∈ S , and set M = f (0)

Let Y ≡ {x ∈ S : ∥x∥ ≥ r}, so that f (x) ≥ f (0) for all x ∈ Y

And we already know that f achieves a minimum (which is at most
f (0)) on the closed, bounded set {x ∈ S : ∥x∥ ≤ r}

Hence f achieves a minimum on S □

8e.g. S could be all of Rn, or a “closed strip” in Rn



Existence of Global Minimum

For example:

▶ f (x , y) = x2 + y2 is coercive on R2 (global min. at (0, 0))

▶ f (x) = x3 is not coercive on R (f → −∞ for x → −∞)

▶ f (x) = ex is not coercive on R (f → 0 for x → −∞)



Convexity

An important concept for uniqueness is convexity

A set S ⊂ Rn is convex if it contains the line segment between any
two of its points

That is, S is convex if for any x , y ∈ S , we have

{θx + (1− θ)y : θ ∈ [0, 1]} ⊂ S



Convexity

Similarly, we define convexity of a function f : S ⊂ Rn → R

f is convex if its graph along any line segment in S is on or below
the chord connecting the function values

i.e. f is convex if for any x , y ∈ S and any θ ∈ (0, 1), we have

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

Also, if
f (θx + (1− θ)y) < θf (x) + (1− θ)f (y)

then f is strictly convex



Convexity
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Convexity
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Convexity
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Convexity

If f is a convex function on a convex set S , then any local
minimum of f must be a global minimum9

Proof: Suppose x is a local minimum, i.e. f (x) ≤ f (y) for
y ∈ B(x , ϵ) (where B(x , ϵ) ≡ {y ∈ S : ∥y − x∥ ≤ ϵ})

Suppose that x is not a global minimum, i.e. that there exists
w ∈ S such that f (w) < f (x)

(Then we will show that this gives a contradiction)

9A global minimum is defined as a point z such that f (z) ≤ f (x) for all
x ∈ S . Note that a global minimum may not be unique, e.g. if f (x) = − cos x
then 0 and 2π are both global minima.



Convexity

Proof (continued . . . ):

For θ ∈ [0, 1] we have f (θw + (1− θ)x) ≤ θf (w) + (1− θ)f (x)

Let σ ∈ (0, 1] be sufficiently small so that

z ≡ σw + (1− σ) x ∈ B(x , ϵ)

Then

f (z) ≤ σf (w) + (1− σ) f (x) < σf (x) + (1− σ) f (x) = f (x),

i.e. f (z) < f (x), which contradicts that f (x) is a local minimum!

Hence we cannot have w ∈ S such that f (w) < f (x) □



Convexity

Note that convexity does not guarantee uniqueness of global
minimum

e.g. a convex function can clearly have a “horizontal” section (see
earlier plot)

If f is a strictly convex function on a convex set S , then a local
minimum of f is the unique global minimum

Optimization of convex functions over convex sets is called convex
optimization, which is an important subfield of optimization



Optimality Conditions

We have discussed existence and uniqueness of minima, but
haven’t considered how to find a minimum

The familiar optimization idea from calculus in one dimension is:
set derivative to zero, check the sign of the second derivative

This can be generalized to Rn



Optimality Conditions

If f : Rn → R is differentiable, then the gradient vector
∇f : Rn → Rn is

∇f (x) ≡


∂f (x)
∂x1

∂f (x)
∂x2
...

∂f (x)
∂xn


The importance of the gradient is that ∇f points “uphill,” i.e.
towards points with larger values than f (x)

And similarly −∇f points “downhill”



Optimality Conditions

This follows from Taylor’s theorem for f : Rn → R

Recall that

f (x + δ) = f (x) +∇f (x)T δ +H.O.T.

Let δ ≡ −ϵ∇f (x) for ϵ > 0 and suppose that ∇f (x) ̸= 0, then:

f (x − ϵ∇f (x)) ≈ f (x)− ϵ∇f (x)T∇f (x) < f (x)

Also, we see from Cauchy–Schwarz that −∇f (x) is the steepest
descent direction



Optimality Conditions

Similarly, we see that a necessary condition for a local minimum at
x∗ ∈ S is that ∇f (x∗) = 0

In this case there is no “downhill direction” at x∗

The condition ∇f (x∗) = 0 is called a first-order necessary
condition for optimality, since it only involves first derivatives



Optimality Conditions

x∗ ∈ S that satisfies the first-order optimality condition is called a
critical point of f

But of course a critical point can be a local min., local max., or
saddle point

(Recall that a saddle point is where some directions are “downhill”
and others are “uphill”, e.g. (x , y) = (0, 0) for f (x , y) = x2 − y2)



Optimality Conditions

As in the one-dimensional case, we can look to second derivatives
to classify critical points

If f : Rn → R is twice differentiable, then the Hessian is the
matrix-valued function Hf : Rn → Rn×n

Hf (x) ≡


∂2f (x)
∂x21

∂2f (x)
∂x1x2

· · · ∂2f (x)
∂x1xn

∂2f (x)
∂x2x1

∂2f (x)
∂x22

· · · ∂2f (x)
∂x2xn

...
...

. . .
...

∂2f (x)
∂xnx1

∂2f (x)
∂xnx2

· · · ∂2f (x)
∂x2n



The Hessian is the Jacobian matrix of the gradient ∇f : Rn → Rn

If the second partial derivatives of f are continuous, then
∂2f /∂xi∂xj = ∂2f /∂xj∂xi , and Hf is symmetric



Optimality Conditions

Suppose we have found a critical point x∗, so that ∇f (x∗) = 0

From Taylor’s Theorem, for δ ∈ Rn, we have

f (x∗ + δ) = f (x∗) +∇f (x∗)T δ +
1

2
δTHf (x

∗ + ηδ)δ

= f (x∗) +
1

2
δTHf (x

∗ + ηδ)δ

for some η ∈ (0, 1)



Optimality Conditions

Recall positive definiteness: A is positive definite if xTAx > 0

Suppose Hf (x
∗) is positive definite

Then (by continuity) Hf (x
∗ + ηδ) is also positive definite for ∥δ∥

sufficiently small, so that: δTHf (x
∗ + ηδ)δ > 0

Hence, we have f (x∗ + δ) > f (x∗) for ∥δ∥ sufficiently small, i.e.
f (x∗) is a local minimum

Hence, in general, positive definiteness of Hf at a critical point x∗

is a second-order sufficient condition for a local minimum



Optimality Conditions

A matrix can also be negative definite: xTAx < 0 for all x ̸= 0

Or indefinite: There exists x , y such that xTAx < 0 < yTAy

Then we can classify critical points as follows:

▶ Hf (x
∗) positive definite =⇒ x∗ is a local minimum

▶ Hf (x
∗) negative definite =⇒ x∗ is a local maximum

▶ Hf (x
∗) indefinite =⇒ x∗ is a saddle point



Optimality Conditions

Also, positive definiteness of the Hessian is closely related to
convexity of f

If Hf (x) is positive definite, then f is convex on some convex
neighborhood of x

If Hf (x) is positive definite for all x ∈ S , where S is a convex set,
then f is convex on S

Question: How do we test for positive definiteness?



Optimality Conditions

Answer: A is positive (resp. negative) definite if and only if all
eigenvalues of A are positive (resp. negative)10

Also, a matrix with positive and negative eigenvalues is indefinite

Hence we can compute all the eigenvalues of A and check their
signs

10This is related to the Rayleigh quotient, see Unit 5



Heath Example 6.5

Consider

f (x) = 2x31 + 3x21 + 12x1x2 + 3x22 − 6x2 + 6

Then

∇f (x) =

[
6x21 + 6x1 + 12x2
12x1 + 6x2 − 6

]

We set ∇f (x) = 0 to find critical points11 [1,−1]T and [2,−3]T

11In general solving ∇f (x) = 0 requires an iterative method



Heath Example 6.5, continued . . .

The Hessian is

Hf (x) =

[
12x1 + 6 12

12 6

]
and hence

Hf (1,−1) =

[
18 12
12 6

]
, which has eigenvalues 25.4,−1.4

Hf (2,−3) =

[
30 12
12 6

]
, which has eigenvalues 35.0, 1.0

Hence [2,−3]T is a local min. whereas [1,−1]T is a saddle point



Optimality Conditions: Equality Constrained Case

So far we have ignored constraints

Let us now consider equality constrained optimization

min
x∈Rn

f (x) subject to g(x) = 0,

where f : Rn → R and g : Rn → Rm, with m ≤ n

Since g maps to Rm, we have m constraints

This situation is treated with Lagrange mutlipliers



Optimality Conditions: Equality Constrained Case

We illustrate the concept of Lagrange multipliers for f , g : R2 → R

Let f (x , y) = x + y and g(x , y) = 2x2 + y2 − 5
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∇g is normal to S :12 at any x ∈ S we must move in direction
(∇g(x))⊥ (tangent direction) to remain in S

12This follows from Taylor’s Theorem: g(x + δ) ≈ g(x) +∇g(x)T δ



Optimality Conditions: Equality Constrained Case

Also, change in f due to infinitesimal step in direction (∇g(x))⊥ is

f (x ± ϵ(∇g(x))⊥) = f (x)± ϵ∇f (x)T (∇g(x))⊥ +H.O.T.

Hence stationary point x∗ ∈ S if ∇f (x∗)T (∇g(x∗))⊥ = 0, or

∇f (x∗) = λ∗∇g(x∗), for some λ∗ ∈ R
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Optimality Conditions: Equality Constrained Case

This shows that for a stationary point with m = 1 constraints, ∇f
cannot have any component in the “tangent direction” to S

Now, consider the case with m > 1 equality constraints

Then g : Rn → Rm and we now have a set of constraint gradient
vectors, ∇gi , i = 1, . . . ,m

Then we have S = {x ∈ Rn : gi (x) = 0, i = 1, . . . ,m}

Any “tangent direction” at x ∈ S must be orthogonal to all
gradient vectors {∇gi (x), i = 1, . . . ,m} to remain in S



Optimality Conditions: Equality Constrained Case

Let T (x) ≡ {v ∈ Rn : ∇gi (x)
T v = 0, i = 1, 2, . . . ,m} denote the

orthogonal complement of {∇gi (x), i = 1, . . . ,m}

Then, for δ ∈ T (x) and ϵ ∈ R>0, ϵδ is a step in a “tangent
direction” of S at x

Since we have

f (x∗ + ϵδ) = f (x∗) + ϵ∇f (x∗)T δ +H.O.T.

it follows that for a stationary point we need ∇f (x∗)T δ = 0 for all
δ ∈ T (x∗)



Optimality Conditions: Equality Constrained Case

Hence, we require that at a stationary point x∗ ∈ S we have

∇f (x∗) ∈ span{∇gi (x
∗), i = 1, . . . ,m}

This can be written succinctly as a linear system

∇f (x∗) = (Jg (x
∗))Tλ∗

for some λ∗ ∈ Rm, where (Jg (x
∗))T ∈ Rn×m

This follows because the columns of (Jg (x
∗))T are the vectors

{∇gi (x
∗), i = 1, . . . ,m}



Optimality Conditions: Equality Constrained Case

We can write equality constrained optimization problems more
succinctly by introducing the Lagrangian function, L : Rn+m → R,

L(x , λ) ≡ f (x) + λTg(x)

= f (x) + λ1g1(x) + · · ·+ λmgm(x)

Then we have,

∂L(x ,λ)
∂xi

= ∂f (x)
∂xi

+ λ1
∂g1(x)
∂xi

+ · · ·+ λn
∂gn(x)
∂xi

, i = 1, . . . , n

∂L(x ,λ)
∂λi

= gi (x), i = 1, . . . ,m



Optimality Conditions: Equality Constrained Case

Hence

∇L(x , λ) =
[
∇xL(x , λ)
∇λL(x , λ)

]
=

[
∇f (x) + Jg (x)

Tλ
g(x)

]
,

so that the first order necessary condition for optimality for the
constrained problem can be written as a nonlinear system:13

∇L(x , λ) =
[
∇f (x) + Jg (x)

Tλ
g(x)

]
= 0

(As before, stationary points can be classified by considering the
Hessian, though we will not consider this here . . . )

13n +m variables, n +m equations



Optimality Conditions: Equality Constrained Case

See Lecture: Constrained optimization of cylinder surface area



Optimality Conditions: Equality Constrained Case

As another example of equality constrained optimization, recall our
underdetermined linear least squares problem from Unit 1

min
b∈Rn

f (b) subject to g(b) = 0,

where f (b) ≡ bTb, g(b) ≡ Ab − y and A ∈ Rm×n with m < n



Optimality Conditions: Equality Constrained Case

Introducing Lagrange multipliers gives

L(b, λ) ≡ bTb + λT (Ab − y)

where b ∈ Rn and λ ∈ Rm

Hence ∇L(b, λ) = 0 implies[
∇f (b) + Jg (b)

Tλ
g(b)

]
=

[
2b + ATλ
Ab − y

]
= 0 ∈ Rn+m



Optimality Conditions: Equality Constrained Case

Hence, we obtain the (n +m)× (n +m) square linear system[
2I AT

A 0

] [
b
λ

]
=

[
0
y

]

which we can solve for

[
b
λ

]
∈ Rn+m



Optimality Conditions: Equality Constrained Case

We have b = −1
2A

Tλ from the first “block row”

Subsituting into Ab = y (the second “block row”) yields
λ = −2(AAT )−1y

And hence

b = −1

2
ATλ = AT (AAT )−1y

which was the solution we introduced (but didn’t derive) in Unit 1



Optimality Conditions: Inequality Constrained Case

Similar Lagrange multiplier methods can be developed for the more
difficult case of inequality constrained optimization



Steepest Descent

We first consider the simpler case of unconstrained optimization
(as opposed to constrained optimization)

Perhaps the simplest method for unconstrained optimization is
steepest descent

Key idea: The negative gradient −∇f (x) points in the “steepest
downhill” direction for f at x

Hence an iterative method for minimizing f is obtained by
following −∇f (xk) at each step

Question: How far should we go in the direction of −∇f (xk)?



Steepest Descent

We can try to find the best step size via a subsidiary (and easier!)
optimization problem

For a direction s ∈ Rn, let ϕ : R → R be given by

ϕ(η) = f (x + ηs)

Then minimizing f along s corresponds to minimizing the
one-dimensional function ϕ

This process of minimizing f along a line is called a line search14

14The line search can itself be performed via Newton’s method, as described
for f : Rn → R shortly, or via a built-in function



Steepest Descent

Putting these pieces together leads to the steepest descent method:

1: choose initial guess x0
2: for k = 0, 1, 2, . . . do
3: sk = −∇f (xk)
4: choose ηk to minimize f (xk + ηksk)
5: xk+1 = xk + ηksk
6: end for

However, steepest descent often converges very slowly

Convergence rate is linear, and scaling factor can be arbitrarily
close to 1

(Steepest descent will be covered on Assignment 5)



Newton’s Method

We can get faster convergence by using more information about f

Note that ∇f (x∗) = 0 is a system of nonlinear equations, hence we
can solve it with quadratic convergence via Newton’s method15

The Jacobian matrix of ∇f (x) is Hf (x) and hence Newton’s
method for unconstrained optimization is:

1: choose initial guess x0
2: for k = 0, 1, 2, . . . do
3: solve Hf (xk)sk = −∇f (xk)
4: xk+1 = xk + sk
5: end for

15Note that in its simplest form this algorithm searches for stationary points,
not necessarily minima



Newton’s Method

We can also interpret Newton’s method as seeking stationary point
based on a sequence of local quadratic approximations

Recall that for small δ

f (x + δ) ≈ f (x) +∇f (x)T δ +
1

2
δTHf (x)δ ≡ q(δ)

where q(δ) is quadratic in δ (for a fixed x)

We find stationary point of q in the usual way:16

∇q(δ) = ∇f (x) + Hf (x)δ = 0

This leads to Hf (x)δ = −∇f (x), as in the previous slide

16Recall Unit 1 for differentiation of δTHf (x)δ



Newton’s Method

Python example: Newton’s method for minimization of
Himmelblau’s function

f (x , y) = (x2 + y − 11)2 + (x + y2 − 7)2

Local maximum of 181.617 at (−0.270845,−0.923039)

Four local minima, each of 0, at

(3, 2), (−2.805, 3.131), (−3.779,−3.283), (3.584,−1.841)



Newton’s Method

Python example: [h newton.py ] Newton’s method for
minimization of Himmelblau’s function
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https://github.com/chr1shr/am205_examples/blob/master/4_optimization/h_newton.py


Newton’s Method: Robustness

Newton’s method generally converges much faster than steepest
descent

However, Newton’s method can be unreliable far away from a
solution

To improve robustness during early iterations it is common to
perform a line search in the Newton-step-direction

Also line search can ensure we don’t approach a local max. as can
happen with raw Newton method

The line search modifies the Newton step size, hence often referred
to as a damped Newton method



Newton’s Method: Robustness

Another way to improve robustness is with trust region methods

At each iteration k , a “trust radius” Rk is computed

This determines a region surrounding xk on which we “trust” our
quadratic approx.

We require ∥xk+1 − xk∥ ≤ Rk , hence constrained optimization
problem (with quadratic objective function) at each step



Newton’s Method: Robustness

Size of Rk+1 is based on comparing actual change,
f (xk+1)− f (xk), to change predicted by the quadratic model

If quadratic model is accurate, we expand the trust radius,
otherwise we contract it

When close to a minimum, Rk should be large enough to allow full
Newton steps =⇒ eventual quadratic convergence



Quasi-Newton Methods

Newton’s method is effective for optimization, but it can be
unreliable, expensive, and complicated

▶ Unreliable: Only converges when sufficiently close to a
minimum

▶ Expensive: The Hessian Hf is dense in general, hence very
expensive if n is large

▶ Complicated: Can be impractical or laborious to derive the
Hessian

Hence there has been much interest in so-called quasi-Newton
methods, which do not require the Hessian



Quasi-Newton Methods

General form of quasi-Newton methods:

xk+1 = xk − αkB
−1
k ∇f (xk)

where αk is a line search parameter and Bk is some approximation
to the Hessian

Quasi-Newton methods generally lose quadratic convergence of
Newton’s method, but often superlinear convergence is achieved

We now consider some specific quasi-Newton methods



BFGS

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is one of
the most popular quasi-Newton methods:

1: choose initial guess x0
2: choose B0, initial Hessian guess, e.g. B0 = I
3: for k = 0, 1, 2, . . . do
4: solve Bksk = −∇f (xk)
5: xk+1 = xk + sk
6: yk = ∇f (xk+1)−∇f (xk)
7: Bk+1 = Bk +∆Bk

8: end for

where

∆Bk ≡
yky

T
k

yTk sk
−

Bksks
T
k Bk

sTk Bksk



BFGS

See lecture: derivation of the Broyden root-finding algorithm

See lecture: derivation of the BFGS algorithm

Basic idea is that Bk accumulates second derivative information on
successive iterations, eventually approximates Hf well



BFGS

Actual implementation of BFGS: store and update inverse Hessian
to avoid solving linear system:

1: choose initial guess x0
2: choose H0, initial inverse Hessian guess, e.g. H0 = I
3: for k = 0, 1, 2, . . . do
4: calculate sk = −Hk∇f (xk)
5: xk+1 = xk + sk
6: yk = ∇f (xk+1)−∇f (xk)
7: Hk+1 = ∆Hk

8: end for

where

∆Hk ≡ (I − skρky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k , ρk =

1

yTk sk



BFGS

[h bfgs.py ] BFGS is implemented as the fmin bfgs function in
scipy.optimize

Also, BFGS (+ trust region) is implemented in MATLAB’s
fminunc function, e.g.

x0 = [5;5];

options = optimset(’GradObj’,’on’);

[x,fval,exitflag,output] = ...

fminunc(@himmelblau_function,x0,options);

https://github.com/chr1shr/am205_examples/blob/master/4_optimization/h_bfgs.py


Conjugate Gradient Method

The conjugate gradient (CG) method is another alternative to
Newton’s method that does not require the Hessian:17

1: choose initial guess x0
2: g0 = ∇f (x0)
3: x0 = −g0
4: for k = 0, 1, 2, . . . do
5: choose ηk to minimize f (xk + ηksk)
6: xk+1 = xk + ηksk
7: gk+1 = ∇f (xk+1)
8: βk+1 = (gT

k+1gk+1)/(g
T
k gk)

9: sk+1 = −gk+1 + βk+1sk
10: end for

17We will look at this method in more detail in Unit 5.



Constrained Optimization



Equality Constrained Optimization

We now consider equality constrained minimization:

min
x∈Rn

f (x) subject to g(x) = 0,

where f : Rn → R and g : Rn → Rm

With the Lagrangian L(x , λ) = f (x) + λTg(x), we recall from that
necessary condition for optimality is

∇L(x , λ) =
[
∇f (x) + JTg (x)λ

g(x)

]
= 0

Once again, this is a nonlinear system of equations that can be
solved via Newton’s method



Sequential Quadratic Programming

To derive the Jacobian of this system, we write

∇L(x , λ) =
[
∇f (x) +

∑m
k=1 λk∇gk(x)

g(x)

]
∈ Rn+m

Then we need to differentiate wrt to x ∈ Rn and λ ∈ Rm

For i = 1, . . . , n, we have

(∇L(x , λ))i =
∂f (x)

∂xi
+

m∑
k=1

λk
∂gk(x)

∂xi

Differentiating wrt xj , for i , j = 1, . . . , n, gives

∂

∂xj
(∇L(x , λ))i =

∂2f (x)

∂xi∂xj
+

m∑
k=1

λk
∂2gk(x)

∂xi∂xj



Sequential Quadratic Programming

Hence the top-left n × n block of the Jacobian of ∇L(x , λ) is

B(x , λ) ≡ Hf (x) +
m∑

k=1

λkHgk (x) ∈ Rn×n

Differentiating (∇L(x , λ))i wrt λj , for i = 1, . . . , n, j = 1, . . . ,m,
gives

∂

∂λj
(∇L(x , λ))i =

∂gj(x)

∂xi

Hence the top-right n ×m block of the Jacobian of ∇L(x , λ) is

Jg (x)
T ∈ Rn×m



Sequential Quadratic Programming

For i = n + 1, . . . , n +m, we have

(∇L(x , λ))i = gi (x)

Differentiating (∇L(x , λ))i wrt xj , for i = n + 1, . . . , n +m,
j = 1, . . . , n, gives

∂

∂xj
(∇L(x , λ))i =

∂gi (x)

∂xj

Hence the bottom-left m × n block of the Jacobian of ∇L(x , λ) is

Jg (x) ∈ Rm×n

. . . and the final m ×m bottom right block is just zero
(differentiation of gi (x) w.r.t. λj)



Sequential Quadratic Programming

Hence, we have derived the following Jacobian matrix for
∇L(x , λ): [

B(x , λ) JTg (x)
Jg (x) 0

]
∈ R(m+n)×(m+n)

Note the 2× 2 block structure of this matrix (matrices with this
structure are often called KKT matrices18)

18Karush, Kuhn, Tucker: did seminal work on nonlinear optimization



Sequential Quadratic Programming

Therefore, Newton’s method for ∇L(x , λ) = 0 is:[
B(xk , λk) JTg (xk)
Jg (xk) 0

] [
sk
δk

]
= −

[
∇f (xk) + JTg (xk)λk

g(xk)

]
for k = 0, 1, 2, . . .

Here (sk , δk) ∈ Rn+m is the kth Newton step



Sequential Quadratic Programming

Now, consider the constrained minimization problem, where
(xk , λk) is our Newton iterate at step k :

min
s

{
1

2
sTB(xk , λk)s + sT (∇f (xk) + JTg (xk)λk)

}
subject to Jg (xk)s + g(xk) = 0

The objective function is quadratic in s (here xk , λk are constants)

This minimization problem has Lagrangian

Lk(s, δ) ≡ 1

2
sTB(xk , λk)s + sT (∇f (xk) + JTg (xk)λk)

+ δT (Jg (xk)s + g(xk))



Sequential Quadratic Programming

Then solving ∇Lk(s, δ) = 0 (i.e. first-order necessary conditions)
gives a linear system, which is the same as the kth Newton step

Hence at each step of Newton’s method, we exactly solve a
minimization problem (quadratic objective fn., linear constraints)

An optimization problem of this type is called a quadratic program

This motivates the name for applying Newton’s method to
L(x , λ) = 0: Sequential Quadratic Programming (SQP)



Sequential Quadratic Programming

SQP is an important method, and there are many issues to be
considered to obtain an efficient and reliable implementation:

▶ Efficient solution of the linear systems at each Newton
iteration — matrix block structure can be exploited

▶ Quasi-Newton approximations to the Hessian (as in the
unconstrained case)

▶ Trust region, line search etc to improve robustness

▶ Treatment of constraints (equality and inequality) during the
iterative process

▶ Selection of good starting guess for λ



Penalty Methods

Another computational strategy for constrained optimization is to
employ penalty methods

This converts a constrained problem into an unconstrained problem

Key idea: Introduce a new objective function which is a weighted
sum of objective function and constraint



Penalty Methods

Given the minimization problem

min
x

f (x) subject to g(x) = 0

we can consider the related unconstrained problem

min
x

ϕρ(x) = f (x) +
1

2
ρg(x)Tg(x) (∗∗)

Let x∗ and x∗ρ denote the solution of (∗) and (∗∗), respectively

Under appropriate conditions, it can be shown that

lim
ρ→∞

x∗ρ = x∗



Penalty Methods

In practice, we can solve the unconstrained problem for a large
value of ρ to get a good approximation of x∗

Another strategy is to solve for a sequence of penalty parameters,
ρk , where x∗ρk serves as a starting guess for x∗ρk+1

Note that the major drawback of penalty methods is that a large
factor ρ will increase the condition number of the Hessian Hϕρ

On the other hand, penalty methods can be convenient, primarily
due to their simplicity



Linear Programming



Linear Programming

As we mentioned earlier, the optimization problem

min
x∈Rn

f (x) subject to g(x) = 0 and h(x) ≤ 0, (∗)

with f , g , h affine, is called a linear program

The feasible region is a convex polyhedron19

Since the objective function maps out a hyperplane, its global
minimum must occur at a vertex of the feasible region

19Polyhedron: a solid with flat sides, straight edges



Linear Programming

This can be seen most easily with a picture (in R2)



Linear Programming

The standard approach for solving linear programs is conceptually
simple: examine a sequence of the vertices to find the minimum

This is called the simplex method

Despite its conceptual simplicity, it is non-trivial to develop an
efficient implementation of this algorithm

We will not discuss the implementation details of the simplex
method . . .



Linear Programming

In the worst case, the computational work required for the simplex
method grows exponentially with the size of the problem

But this worst-case behavior is extremely rare; in practice simplex
is very efficient (computational work typically grows linearly)

Newer methods, called interior point methods, have been
developed that are polynomial in the worst case

Nevertheless, simplex is still the standard approach since it is more
efficient than interior point for most problems



Linear Programming

Python example: [linprog.py ] Using cvxopt,20 solve the linear
program

min
x

f (x) = −5x1 − 4x2 − 6x3

subject to

x1 − x2 + x3 ≤ 20

3x1 + 2x2 + 4x3 ≤ 42

3x1 + 2x2 ≤ 30

and 0 ≤ x1, 0 ≤ x2, 0 ≤ x3

(LP solvers are efficient, main challenge is to formulate an
optimization problem as a linear program in the first place!)

20[linprog alt.py ] An alternative version using SciPy is also provided

https://github.com/chr1shr/am205_examples/blob/master/4_optimization/linprog.py
https://github.com/chr1shr/am205_examples/blob/master/4_optimization/linprog_alt.py


PDE Constrained Optimization

Here we will focus on the form we introduced first:

min
p∈Rn

G(p)

Optimization methods usually need some derivative information,
such as using finite differences to approximate ∇G(p)



PDE Constrained Optimization

But using finite differences can be expensive, especially if we have
many parameters:

∂G(p)
∂pi

≈ G(p + hei )− G(p)
h

,

hence we need n + 1 evaluations of G to approximate ∇G(p)!

We saw from the Himmelblau example that supplying the gradient
∇G(p) cuts down on the number of function evaluations required

The extra function calls due to F.D. isn’t a big deal for
Himmelblau’s function, each evaluation is very cheap

But in PDE constrained optimization, each p → G(p) requires a
full PDE solve!



PDE Constrained Optimization

Hence for PDE constrained optimization with many parameters, it
is important to be able to compute the gradient more efficiently

There are two main approaches:

▶ the direct method

▶ the adjoint method

The direct method is simpler, but the adjoint method is much
more efficient if we have many parameters



PDE Output Derivatives

Consider the ODE BVP

−u′′(x ; p) + r(x ; p)u(x ; p) = f (x), u(a) = u(b) = 0

which we will refer to as the primal equation

Here p ∈ Rn is the parameter vector, and r : R× Rn → R

We define an output functional based on an integral

g(u) ≡
∫ b

a
σ(x)u(x)dx ,

for some function σ; then G(p) ≡ g(u(p)) ∈ R



The Direct Method

We observe that

∂G(p)
∂pi

=

∫ b

a
σ(x)

∂u

∂pi
dx

hence if we can compute ∂u
∂pi

, i = 1, 2, . . . , n, then we can obtain
the gradient

Assuming sufficient smoothness, we can “differentiate the ODE
BVP” wrt pi to obtain,

− ∂u

∂pi

′′
(x ; p) + r(x ; p)

∂u

∂pi
(x ; p) = − ∂r

∂pi
u(x ; p)

for i = 1, 2, . . . , n



The Direct Method

Once we compute each ∂u
∂pi

we can then evaluate ∇G(p) by
evaluating a sequence of n integrals

However, this is not much better than using finite differences: We
still need to solve n separate ODE BVPs

(Though only the right-hand side changes, so could LU factorize
the system matrix once and back/forward sub. for each i)



Adjoint-Based Method

However, a more efficient approach when n is large is the adjoint
method

We introduce the adjoint equation:

−z ′′(x ; p) + r(x ; p)z(x ; p) = σ(x), z(a) = z(b) = 0



Adjoint-Based Method

Now,

∂G(p)
∂pi

=

∫ b

a
σ(x)

∂u

∂pi
dx

=

∫ b

a

[
−z ′′(x ; p) + r(x ; p)z(x ; p)

] ∂u

∂pi
dx

=

∫ b

a
z(x ; p)

[
− ∂u

∂pi

′′
(x ; p) + r(x ; p)

∂u

∂pi
(x ; p)

]
dx ,

where the last line follows by integrating by parts twice (boundary
terms vanish because ∂u

∂pi
and z are zero at a and b)

(The adjoint equation is defined based on this “integration by
parts” relationship to the primal equation)



Adjoint-Based Method

Also, recalling the derivative of the primal problem with respect to
pi :

− ∂u

∂pi

′′
(x ; p) + r(x ; p)

∂u

∂pi
(x ; p) = − ∂r

∂pi
u(x ; p),

we get
∂G(p)
∂pi

= −
∫ b

a

∂r

∂pi
z(x ; p)u(x ; p)dx

Therefore, we only need to solve two differential equations (primal
and adjoint) to obtain ∇G(p)! Each component of the gradient
requires a single integration.

For more complicated PDEs the adjoint formulation is more
complicated but the basic ideas stay the same


