
Unit 3: Numerical Calculus (Part 2)

Integration of ODE Initial Value Problems

In this chapter we consider problems of the form

y ′(t) = f (t, y), y(0) = y0

Here y(t) ∈ Rn and f : R× Rn → Rn

Writing this system out in full, we have:

y ′(t) =

y ′1(t)
y ′2(t)

...
y ′n(t)

 =

f1(t, y)
f2(t, y)

...
fn(t, y)

 = f (t, y(t))

This is a system of n coupled ODEs for the variables y1, y2, . . . , yn

ODE IVPs

Initial Value Problem implies that we know y(0), i.e.
y(0) = y0 ∈ Rn is the initial condition

The order of an ODE is the highest-order derivative that appears

Hence y ′(t) = f (t, y) is a first order ODE system

ODE IVPs

We only consider first order ODEs since higher order problems can
be transformed to first order by introducing extra variables

For example, recall Newton’s Second Law:

y ′′(t) =
F (t, y , y ′)

m
, y(0) = y0, y

′(0) = v0

Let v = y ′, then

v ′(t) =
F (t, y , v)

m
y ′(t) = v(t)

and y(0) = y0, v(0) = v0

ODE IVPs: A Predator–Prey ODE Model
[l-v.py] For example, a two-variable nonlinear ODE, the
Lotka–Volterra equation, can be used to model populations of two
species:

y ′ =

[
y1(α1 − β1y2)
y2(−α2 + β2y1)

]
≡ f (y)

The α and β are modeling parameters, describe birth rates, death
rates, predator-prey interactions

0
2
4
6
8

10
12
14
16
18

0 10 20 30 40 50 60 70

P
o

p
u

la
ti

o
n

t

Prey
Predators

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/l-v.py

ODEs in Python and MATLAB

Both Python and MATLAB have very good ODE IVP solvers

They employ adaptive time-stepping (h is varied during the
calculation) to increase efficiency

Python has functions odeint (a general purpose routine) and ode

(a routine with more options)

Most popular MATLAB function is ode45, which uses the classical
fourth-order Runge–Kutta method

In the remainder of this chapter we will discuss the properties of
methods like the Runge–Kutta method

Approximating an ODE IVP

Given y ′ = f (t, y), y(0) = y0: suppose we want to approximate y
at tk = kh, k = 1, 2, . . .

Notation: Let yk be our approx. to y(tk)

Euler’s method: Use finite difference approx. for y ′ and sample
f (t, y) at tk :1

yk+1 − yk
h

= f (tk , yk)

Note that this, and all methods considered in this chapter, are
written the same regardless of whether y is a vector or a scalar

1Note that we replace y(tk) by yk

Euler’s Method

Quadrature-based interpretation: integrating the ODE y ′ = f (t, y)
from tk to tk+1 gives

y(tk+1) = y(tk) +

∫ tk+1

tk

f (s, y(s))ds

Apply n = 0 Newton–Cotes quadrature to
∫ tk+1

tk
f (s, y(s))ds, based

on interpolation point tk :∫ tk+1

tk

f (s, y(s))ds ≈ (tk+1 − tk)f (tk , yk) = hf (tk , yk)

Again, this gives Euler’s method:

yk+1 = yk + hf (tk , yk)

Python example: [euler.py] Euler’s method for y ′ = λy

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/euler.py

Backward Euler Method

We can derive other methods using the same quadrature-based
approach

Apply n = 0 Newton–Cotes quadrature based on interpolation
point tk+1 to

y(tk+1) = y(tk) +

∫ tk+1

tk

f (s, y(s))ds

to get the backward Euler method:

yk+1 = yk + hf (tk+1, yk+1)

Backward Euler Method

(Forward) Euler method is an explicit method: we have an explicit
formula for yk+1 in terms of yk

yk+1 = yk + hf (tk , yk)

Backward Euler is an implicit method, we have to solve for yk+1

which requires some extra work

yk+1 = yk + hf (tk+1, yk+1)

Backward Euler Method

For example, approximate y ′ = 2 sin(ty) using backward Euler:

At the first step (k = 1), we get

y1 = y0 + h sin(t1y1)

To compute y1, let F (y1) ≡ y1 − y0 − h sin(t1y1) and solve for
F (y1) = 0 via, say, Newton’s method

Hence implicit methods are more complicated and more
computationally expensive at each time step

Why bother with implicit methods? We’ll see why shortly . . .

Trapezoid Method

We can derive methods based on higher-order quadrature

Apply n = 1 Newton–Cotes quadrature (Trapezoid rule) at tk ,
tk+1 to

y(tk+1) = y(tk) +

∫ tk+1

tk

f (s, y(s))ds

to get the Trapezoid Method:

yk+1 = yk +
h

2
(f (tk , yk) + f (tk+1, yk+1))

One-Step Methods

The three methods we’ve considered so far have the form

yk+1 = yk + hΦ(tk , yk ; h) (explicit)

yk+1 = yk + hΦ(tk+1, yk+1; h) (implicit)

yk+1 = yk + hΦ(tk , yk , tk+1, yk+1; h) (implicit)

where the choice of the function Φ determines our method

These are called one-step methods: yk+1 depends on yk

(One can also consider multistep methods, where yk+1 depends on
earlier values yk−1, yk−2, . . .; we’ll discuss this briefly later)

Convergence

We now consider whether one-step methods converge to the exact
solution as h→ 0

Convergence is a crucial property, we want to be able to satisfy an
accuracy tolerance by taking h sufficiently small

In general a method that isn’t convergent will give misleading
results and is useless in practice!

Convergence

We define global error, ek , as the total accumulated error at t = tk

ek ≡ y(tk)− yk

We define truncation error, Tk , as the amount “left over” at step
k when we apply our method to the exact solution and divide by h

e.g. for an explicit one-step ODE approximation, we have

Tk ≡
y(tk+1)− y(tk)

h
− Φ(tk , y(tk); h)

Convergence

The truncation error defined above determines the local error
introduced by the ODE approximation

For example, suppose yk = y(tk), then for the case above we have

hTk ≡ y(tk+1)− yk − hΦ(tk , yk ; h) = y(tk+1)− yk+1

Hence hTk is the error introduced in one step of our ODE
approximation2

Therefore the global error ek is determined by the accumulation of
the Tj for j = 0, 1, . . . , k − 1

Now let’s consider the global error of the Euler method in detail

2Because of this fact, the truncation error is defined as hTk in some texts

Convergence

Theorem: Suppose we apply Euler’s method for steps 1, 2, . . . ,M,
to y ′ = f (t, y), where f satisfies a Lipschitz condition:

|f (t, u)− f (t, v)| ≤ Lf |u − v |,

where Lf ∈ R>0 is called a Lipschitz constant. Then

|ek | ≤
(
eLf tk − 1

)
Lf

[
max

0≤j≤k−1
|Tj |
]
, k = 0, 1, . . . ,M,

where Tj is the Euler method truncation error.3

3Notation used here supposes that y ∈ R, but the result generalizes
naturally to y ∈ Rn for n > 1

Convergence

Proof: From the definition of truncation error for Euler’s method
we have

y(tk+1) = y(tk) + hf (tk , y(tk); h) + hTk

Subtracting yk+1 = yk + hf (tk , yk ; h) gives

ek+1 = ek + h [f (tk , y(tk))− f (tk , yk)] + hTk ,

hence

|ek+1| ≤ |ek |+ hLf |ek |+ h|Tk | = (1 + hLf)|ek |+ h|Tk |

Convergence

Proof (continued . . .):

This gives a geometric progression, e.g. for k = 2 we have

|e3| ≤ (1 + hLf)|e2|+ h|T2|
≤ (1 + hLf)((1 + hLf)|e1|+ h|T1|) + h|T2|
≤ (1 + hLf)2h|T0|+ (1 + hLf)h|T1|+ h|T2|

≤ h

[
max

0≤j≤2
|Tj |
] 2∑

j=0

(1 + hLf)j

Or, in general

|ek | ≤ h

[
max

0≤j≤k−1
|Tj |
] k−1∑

j=0

(1 + hLf)j

Convergence

Proof (continued . . .):

Hence use the formula

k−1∑
j=0

r j =
1− rk

1− r

with r ≡ (1 + hLf), to get

|ek | ≤
1

Lf

[
max

0≤j≤k−1
|Tj |
]

((1 + hLf)k − 1)

Finally, we use the bound4 1 + hLf ≤ exp(hLf) to get the desired
result. �

4For x ≥ 0, 1 + x ≤ exp(x) by power series expansion 1 + x + x2/2 + · · ·

Convergence: Lipschitz Condition

A simple case where we can calculate a Lipschitz constant is if
y ∈ R and f is continuously differentiable

Then from the mean value theorem we have:

|f (t, u)− f (t, v)| = |fy (t, θ)||u − v |,

for θ ∈ (u, v)

Hence we can set:
Lf = max

t∈[0,tM]
θ∈(u,v)

|fy (t, θ)|

Convergence: Lipschitz Condition

However, f doesn’t have to be continuously differentiable to satisfy
Lipschitz condition!

e.g. let f (x) = |x |, then |f (x)− f (y)| = ||x | − |y || ≤ |x − y |,5
hence Lf = 1 in this case

5This is the reverse triangle inequality

Convergence

For a fixed t (i.e. t = kh, as h→ 0 and k →∞), the factor
(eLf t − 1)/Lf in the bound is a constant

Hence the global convergence rate for each fixed t is given by the
dependence of Tk on h

Our proof was for Euler’s method, but the same dependence of
global error on local error holds in general

We say that a method has order of accuracy p if |Tk | = O(hp)
(where p is an integer)

Hence ODE methods with order ≥ 1 are convergent

Order of Accuracy

Forward Euler is first order accurate:

Tk ≡ y(tk+1)− y(tk)

h
− f (tk , y(tk))

=
y(tk+1)− y(tk)

h
− y ′(tk)

=
y(tk) + hy ′(tk) + h2y ′′(θ)/2− y(tk)

h
− y ′(tk)

=
h

2
y ′′(θ)

Order of Accuracy

Backward Euler is first order accurate:

Tk ≡ y(tk+1)− y(tk)

h
− f (tk+1, y(tk+1))

=
y(tk+1)− y(tk)

h
− y ′(tk+1)

=
y(tk+1)− y(tk+1) + hy ′(tk+1)− h2y ′′(θ)/2

h
− y ′(tk+1)

= −h

2
y ′′(θ)

Order of Accuracy

Trapezoid method is second order accurate:

Let’s prove this using a quadrature error bound, recall that:

y(tk+1) = y(tk) +

∫ tk+1

tk

f (s, y(s))ds

and hence

y(tk+1)− y(tk)

h
=

1

h

∫ tk+1

tk

f (s, y(s))ds

So

Tk =
1

h

∫ tk+1

tk

f (s, y(s))ds − 1

2
[f (tk , y(tk)) + f (tk+1, y(tk+1))]

Order of Accuracy

Hence

Tk =
1

h

[∫ tk+1

tk

f (s, y(s))ds − h

2
(f (tk , y(tk)) + f (tk+1, y(tk+1)))

]
=

1

h

[∫ tk+1

tk

y ′(s)ds − h

2

(
y ′(tk) + y ′(tk+1)

)]

Therefore Tk is determined by the trapezoid rule error for the
integrand y ′ on t ∈ [tk , tk+1]

Recall that trapezoid quadrature rule error bound depended on
(b − a)3 = (tk+1 − tk)3 = h3 and hence

Tk = O(h2)

Order of Accuracy

The table below shows global error at t = 1 for y ′ = y , y(0) = 1
for (forward) Euler and trapezoid

h EEuler ETrap

2.0e-2 2.67e-2 9.06e-05
1.0e-2 1.35e-2 2.26e-05
5.0e-3 6.76e-3 5.66e-06
2.5e-3 3.39e-3 1.41e-06

h→ h/2 =⇒ EEuler → EEuler/2

h→ h/2 =⇒ ETrap → ETrap/4

Stability

So far we have discussed convergence of numerical methods for
ODE IVPs, i.e. asymptotic behavior as h→ 0

It is also crucial to consider stability of numerical methods: for
what (finite and practical) values of h is our method stable?

We want our method to be well-behaved for as large a step size as
possible

All else being equal, larger step sizes =⇒ fewer time steps =⇒
more efficient!

Stability

In this context, the key idea is that we want our methods to inherit
the stability properties of the ODE

If an ODE is unstable, then we can’t expect our discretization to
be stable

But if an ODE is stable, we want our discretization to be stable as
well

Hence we first discuss ODE stability, independent of numerical
discretization

ODE Stability

Consider an ODE y ′ = f (t, y), and

I Let y(t) be the solution for initial condition y(0) = y0

I Let ŷ(t) be the solution for initial condition ŷ(0) = ŷ0

The ODE is stable if:

For every ε > 0, ∃δ > 0 such that

‖ŷ0 − y0‖ ≤ δ =⇒ ‖ŷ(t)− y(t)‖ ≤ ε

for all t ≥ 0

“Small input perturbation leads to small perturbation in the
solution”

ODE Stability

Stronger form of stability, asymptotic stability: ‖ŷ(t)− y(t)‖ → 0
as t →∞, perturbations decay over time

These two definitions of stability are properties of the ODE,
independent of any numerical algorithm

This nomenclature is a bit confusing compared to previous Units:

I We previously referred to this type of property as the
conditioning of the problem

I Stability previously referred only to properties of a numerical
approximation

In ODEs (and PDEs), it is standard to use stability to refer to
sensitivity of both the mathematical problem and numerical approx.

ODE Stability

Consider stability of y ′ = λy (assuming y(t) ∈ R) for different
values of λ

y(t)− ŷ(t) = (y0 − ŷ0)eλt

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y0 = 1
ŷ0 = 2

λ = −1, asymptotically stable

ODE Stability

y(t)− ŷ(t) = (y0 − ŷ0)eλt

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

y0 = 1
ŷ0 = 2

λ = 0, stable

ODE Stability

y(t)− ŷ(t) = (y0 − ŷ0)eλt

0 1 2 3 4 5
0

50

100

150

200

250

300

y0 = 1

ŷ0 = 2

λ = 1, unstable

ODE Stability

More generally, we can allow λ to be a complex number: λ = a+ ib

Then y(t) = y0e
(a+ib)t = y0e

ate ibt = y0e
at(cos(bt) + i sin(bt))

The key issue for stability is now the sign of a = Re(λ):

I Re(λ) < 0 =⇒ asymptotically stable

I Re(λ) = 0 =⇒ stable

I Re(λ) > 0 =⇒ unstable

ODE Stability

Our understanding of the stability of y ′ = λy extends directly to
the case y ′ = Ay , where y ∈ Rn,A ∈ Rn×n

Suppose that A is diagonalizable, so that we have the eigenvalue
decomposition A = VΛV−1, where

I Λ = diag(λ1, λ2, . . . , λn), where the λj are eigenvalues

I V is matrix with eigenvectors as columns, v1, v2, . . . , vn

Then,

y ′ = Ay = VΛV−1y =⇒ V−1y ′ = ΛV−1y =⇒ z ′ = Λz

where z ≡ V−1y and z0 ≡ V−1y0

ODE Stability

Hence we have n decoupled ODEs for z , and stability of zi is
determined by λi for each i

Since z and y are related by the matrix V , then (roughly speaking)
if all zi are stable then all yi will also be stable6

Hence assuming that V is well-conditioned, then we have:
Re(λi) ≤ 0 for i = 1, . . . , n =⇒ y ′ = Ay is a stable ODE

Next we consider stability of numerical approximations to ODEs

6“Roughly speaking” here because V can be ill-conditioned — a more
precise statement is based on “pseudospectra”, outside the scope of AM205

ODE Stability

Numerical approximation to an ODE is stable if:

For every ε > 0, ∃δ > 0 such that

‖ŷ0 − y0‖ ≤ δ =⇒ ‖ŷk − yk‖ ≤ ε

for all k ≥ 0

Key idea: We want to develop numerical methods that mimic the
stability properties of the exact solution

That is, if the ODE we’re approximating is unstable, we can’t
expect the numerical approximation to be stable!

Stability

Since ODE stability is problem dependent, we need a standard
“test problem” to consider

The standard test problem is the simple scalar ODE y ′ = λy

Experience shows that the behavior of a discretization on this test
problem gives a lot of insight into behavior in general

Ideally, to reproduce stability of the ODE y ′ = λy , we want our
discretization to be stable for all Re(λ) ≤ 0

Stability: Forward Euler

Consider forward Euler discretization of y ′ = λy :

yk+1 = yk + hλyk = (1 + hλ)yk =⇒ yk = (1 + hλ)ky0

Here 1 + hλ is called the amplification factor

Hence for stability, we require |1 + h̄| ≤ 1, where h̄ ≡ hλ

Let h̄ = a + ib, then |1 + a + ib|2 ≤ 12 =⇒ (1 + a)2 + b2 ≤ 1

Stability: Forward Euler
Hence forward Euler is stable if h̄ ∈ C is inside the disc with radius
1, center (−1, 0): This is a subset of “left-half plane,” Re(h̄) ≤ 0

Mathematical instability

Numerical
stability

Re

Im

(–1,0)

Mathematical stability

As a result we say that the forward Euler method is conditionally
stable: when Re(λ) ≤ 0 we have to restrict h to ensure stability

Stability: Forward Euler

For example, given λ ∈ R<0, we require

−2 ≤ hλ ≤ 0 =⇒ h ≤ −2/λ

Hence “larger negative λ” implies tighter restriction on h:

λ = −10 =⇒ h ≤ 0.2

λ = −200 =⇒ h ≤ 0.01

Python example: [e stab.py] Stability of the forward Euler method

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/e_stab.py

Stability: Backward Euler

In comparison, consider backward Euler discretization for y ′ = λy :

yk+1 = yk + hλyk+1 =⇒ yk =

(
1

1− hλ

)k

y0

Here the amplification factor is 1
1−hλ

Hence for stability, we require 1
|1−hλ| ≤ 1

Stability: Backward Euler
Again, let h̄ ≡ hλ = a + ib, we need 12 ≤ |1− (a + ib)|2, i.e.
(1− a)2 + b2 ≥ 1

(1,0)

Mathematical instability

Numerical
stability

Re

Im
Mathematical stability

Hence, for Re(λ) ≤ 0, this is satisfied for any h > 0

As a result we say that the backward Euler method is
unconditionally stable: no restriction on h for stability

Stability

Implicit methods generally have larger stability regions than explicit
methods! Hence we can take larger timesteps with implicit

But explicit methods require less work per time-step since they
don’t need to solve for yk+1

Therefore there is a tradeoff: The choice of method should depend
on the details of the problem at hand

Runge–Kutta Methods

Runge–Kutta (RK) methods are another type of one-step
discretization, a very popular choice

Aim to achieve higher order accuracy by combining evaluations of
f (i.e. estimates of y ′) at several points in [tk , tk+1]

RK methods all fit within a general framework, which can be
described in terms of Butcher tableaus

We will first consider two RK examples: two evaluations of f and
four evaluations of f

Runge–Kutta Methods

The family of Runge–Kutta methods with two intermediate
evaluations is defined by

yk+1 = yk + h(ak1 + bk2),

where k1 = f (tk , yk), k2 = f (tk + αh, yk + βhk1)

The Euler method is a member of this family, with a = 1 and b = 0
By careful analysis of the truncation error, it can be shown that we
can choose a, b, α, β to obtain a second-order method

Runge–Kutta Methods

[order2.py] Three such examples are:

I The modified Euler method (a = 0, b = 1, α = β = 1/2):

yk+1 = yk + hf

(
tk +

1

2
h, yk +

1

2
hf (tk , yk)

)
I The improved Euler method (or Heun’s method)

(a = b = 1/2, α = β = 1):

yk+1 = yk +
1

2
h[f (tk , yk) + f (tk + h, yk + hf (tk , yk))]

I Ralston’s method (a = 1/4, b = 3/4, α = 2/3, β = 2/3)

yk+1 = yk +
1

4
h[f (tk , yk) + 3f (tk + 2h

3 , yk + 2h
3 f (tk , yk))]

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/order2.py

Runge–Kutta Methods

The most famous Runge–Kutta method is the “classical
fourth-order method”, RK4 (used by MATLAB’s ode45):

yk+1 = yk +
1

6
h(k1 + 2k2 + 2k3 + k4)

where

k1 = f (tk , yk)

k2 = f (tk + h/2, yk + hk1/2)

k3 = f (tk + h/2, yk + hk2/2)

k4 = f (tk + h, yk + hk3)

Analysis of the truncation error in this case (which gets quite
messy!) gives Tk = O(h4)

Runge–Kutta Methods: Stability

We can also examine stability of RK4 methods for y ′ = λy

Figure shows stability regions for four different RK methods
(higher order RK methods have larger stability regions here)

Butcher tableau
Can summarize an s + 1 stage Runge–Kutta method using a
triangular grid of coefficients

α0

α1 β1,0
...

...
αs βs,0 βs,1 . . . βs,s−1

γ0 γ1 . . . γs−1 γs

The ith intermediate step is

f (tk + αih, yk + h
i−1∑
j=0

βi ,jkj).

The (k + 1)th answer for y is

yk+1 = yk + h
s∑

j=0

γjkj .

Estimation of error

First approach: Richardson extrapolation
[r extrap.py/r extrap2.py]

Suppose that yk+2 is the numerical result of two steps with size h
of a Runge–Kutta method of order p, and w is the result of one
big step with step size 2h. Then the error of yk+2 can be
approximated as

y(tk + 2h)− yk+2 =
yk+2 − w

2p − 1
+ O(hp+2)

and

ŷk+2 = yk+2 +
yk+2 − w

2p − 1

is an approximation of order p + 1 to y(t0 + 2h).

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/r_extrap.py
https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/r_extrap2.py

Estimation of error

Second approach: can derive Butcher tableaus that contain an
additional higher-order formula for estimating error. e.g.
Fehlberg’s order 4(5) method, RKF45

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2

−8
27 2 −3544

2565
1859
4104

−11
40

yk+1
25

216 0 1408
2565

2197
4104 −1

5 0

ŷk+1
16

135 0 6656
12825

28561
56430 − 9

50
2

55

yk+1 is order 4 and ŷk+1 is order 5. Use yk+1 − ŷk+1 as an error
estimate.

Higher-order methods

Fehlberg’s 7(8) method7

0

2
27

2
27

1
9

1
36

1
12

1
6

1
24

0 1
8

5
12

5
12

0 − 25
16

25
16

1
2

1
20

0 0 1
4

1
5

5
6

− 25
108

0 0 125
108

− 65
27

125
54

1
6

31
300

0 0 0 61
225

− 2
9

13
900

2
3

2 0 0 − 53
6

704
45

− 107
9

67
90

3

1
3

− 91
108

0 0 23
108

− 976
135

311
54

− 19
60

17
6

− 1
12

1 2383
4100

0 0 − 341
164

4496
1025

− 301
82

2133
4100

45
82

45
164

18
41

0 3
205

0 0 0 0 − 6
41

− 3
205

− 3
41

3
41

6
41

0

1 − 1777
4100

0 0 − 341
164

4496
1025

− 289
82

2193
4100

51
82

33
164

12
41

0 1

yk+1
41

840
0 0 0 0 34

105
9

35
9

35
9

280
9

280
41

840
0 0

ŷk+1 0 0 0 0 0 34
105

9
35

9
35

9
280

9
280

41
840

41
840

7From Solving Ordinary Differential Equations by Hairer, Nørsett, and
Wanner.

Stiff systems

You may have heard of “stiffness” in the context of ODEs: an
important, though somewhat fuzzy, concept

Common definition of stiffness for a linear ODE system y ′ = Ay is
that A has eigenvalues that differ greatly in magnitude8

The eigenvalues determine the time scales, and hence large
differences in λ’s =⇒ resolve disparate timescales simultaneously!

8Nonlinear case: stiff if the Jacobian, Jf , has large differences in eigenvalues,
but this defn. isn’t always helpful since Jf changes at each time-step

Stiff systems

Suppose we’re primarily interested in the long timescale. Then:

I We’d like to take large time steps and resolve the long
timescale accurately

I But we may be forced to take extremely small timesteps to
avoid instabilities due to the fast timescale

In this context it can be highly beneficial to use an implicit method
since that enforces stability regardless of timestep size

Stiff systems

From a practical point of view, an ODE is stiff if there is a
significant benefit in using an implicit instead of explicit method

e.g. this occurs if the time-step size required for stability is much
smaller than size required for the accuracy level we want

Example [stiff.py/stiff2.py] : Consider y ′ = Ay , y0 = [1, 0]T where

A =

[
998 1998
−999 −1999

]
which has λ1 = −1, λ2 = −1000 and exact solution

y(t) =

[
2e−t − e−1000t

−e−t + e−1000t

]

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/stiff.py
https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/stiff2.py

Multistep Methods

So far we have looked at one-step methods, but to improve
efficiency why not try to reuse data from earlier time-steps?

This is exactly what multistep methods do:

yk+1 =
m∑
i=1

αiyk+1−i + h
m∑
i=0

βi f (tk+1−i , yk+1−i)

If β0 = 0 then the method is explicit

We can derive the parameters by interpolating and then integrating
the interpolant

Multistep Methods

Python example: [ad-bash.py] Second-order Adams–Bashforth
scheme

10−10

10−8

10−6

10−4

10−2

1

10−4 10−3 10−2 0.1 1

A
b

so
lu

te
er

ro
r

m
a

g
n

it
u

d
e

Integration step size h

Adams–Bashforth
h2

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/ad-bash.py

Multistep Methods

The stability of multistep methods, often called “zero stability,” is
an interesting topic, but not considered here

Question: Multistep methods require data from several earlier
time-steps, so how do we initialize?

Answer: The standard approach is to start with a one-step method
and move to multistep once there is enough data

Some key advantages of one-step methods:

I They are “self-starting”

I Easier to adapt time-step size

ODE Boundary Value Problems

Consider the ODE Boundary Value Problem (BVP):9 find
u ∈ C 2[a, b] such that

−αu′′(x) + βu′(x) + γu(x) = f (x), x ∈ [a, b]

for α, β, γ ∈ R and f : R→ R

The terms in this ODE have standard names:

−αu′′(x): diffusion term
βu′(x): convection (or transport) term
γu(x): reaction term
f (x): source term

9Often called a “Two-point boundary value problem”

ODE BVPs

Also, since this is a BVP u must satisfy some boundary conditions,
e.g. u(a) = c1, u(b) = c2

u(a) = c1, u(b) = c2 are called Dirichlet boundary conditions

Can also have:

I A Neumann boundary condition: u′(b) = c2

I A Robin (or “mixed”) boundary condition:10

u′(b) + c2u(b) = c3

10With c2 = 0, this is a Neumann condition

ODE BVPs

This is an ODE, so we could try to use the ODE IVP solvers to
solve it!

Question: How would we make sure the solution satisfies
u(b) = c2?

ODE BVPs

Answer: Solve the IVP with u(a) = c1 and u′(a) = s0, and then
update sk iteratively for k = 1, 2, . . . until u(b) = c2 is satisfied

This is called the “shooting method”, we picture it as shooting a
projectile to hit a target at x = b

However, the shooting method does not generalize to PDEs hence
it is not broadly useful

ODE BVPs

A more general approach is to formulate a coupled system of
equations for the BVP based on a finite difference approximation

Suppose we have a grid xi = a + ih, i = 0, 1, . . . , n − 1, where
h = (b − a)/(n − 1)

Then our approximation to u ∈ C 2[a, b] is represented by a vector
U ∈ Rn, where Ui ≈ u(xi)

ODE BVPs

Recall the ODE:

−αu′′(x) + βu′(x) + γu(x) = f (x), x ∈ [a, b]

Let’s develop an approximation for each term in the ODE

For the reaction term γu, we have the pointwise approximation
γUi ≈ γu(xi)

ODE BVPs

Similarly, for the derivative terms:

I Let D2 ∈ Rn×n denote diff. matrix for the second derivative

I Let D1 ∈ Rn×n denote diff. matrix for the first derivative

Then −α(D2U)i ≈ −αu′′(xi) and β(D1U)i ≈ βu′(xi)

Hence, we obtain (AU)i ≈ −αu′′(xi) + βu′(xi) + γu(xi), where
A ∈ Rn×n is

A ≡ −αD2 + βD1 + γI

Similarly, we represent the right hand side by sampling f at the
grid points, hence we introduce F ∈ Rn, where Fi = f (xi)

ODE BVPs

Therefore, we obtain the linear11 system for U ∈ Rn:

AU = F

Hence, we have converted a linear differential equation into a linear
algebraic equation

(Similarly we can convert a nonlinear differential equation into a
nonlinear algebraic system)

However, we are not finished yet, need to account for the boundary
conditions!

11It is linear here since the ODE BVP is linear

ODE BVPs

Dirichlet boundary conditions: we need to impose U0 = c1,
Un−1 = c2

Since we fix U0 and Un−1, they are no longer variables: we should
eliminate them from our linear system

However, instead of removing rows and columns from A, it is
slightly simpler from the implementational point of view to:

I “zero out” first row of A, then set A(0, 0) = 1 and F0 = c1

I “zero out” last row of A, then set A(n − 1, n − 1) = 1 and
Fn−1 = c2

ODE BVPs

We can implement the above strategy for AU = F in Python

Useful trick12 for checking your code:

1. choose a solution u that satisfies the BCs

2. substitute into the ODE to get a right-hand side f

3. compute the ODE approximation with f from step 2

4. verify that you get the expected convergence rate for the
approximation to u

e.g. consider x ∈ [0, 1] and set u(x) = ex sin(2πx):

f (x) ≡ −αu′′(x) + βu′(x) + γu(x)

= −αex
[
4π cos(2πx) + (1− 4π2) sin(2πx)

]
+

βex [sin(2πx) + 2π cos(2πx)] + γex sin(2πx)

12Sometimes called the “method of manufactured solutions”

ODE BVPs

Python example: [ode bvp.py] ODE BVP via finite differences

Convergence results:

h error

2.0× 10−2 5.07× 10−3

1.0× 10−2 1.26× 10−3

5.0× 10−3 3.17× 10−4

2.5× 10−3 7.92× 10−5

O(h2), as expected due to second order differentiation matrices

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/ode_bvp.py

ODE BVPs: BCs involving derivatives

Question: How would we impose the Robin boundary condition
u′(b) + c2u(b) = c3, and preserve the O(h2) convergence rate?

Option 1: Introduce a “ghost node” at xn = b + h, this node is
involved in both the B.C. and the (n − 1)th matrix row

Employ central difference approx. to u′(b) to get approx. B.C.:

Un − Un−2

2h
+ c2Un−1 = c3,

or equivalently

Un = Un−2 − 2hc2Un−1 + 2hc3

ODE BVPs: BCs involving derivatives

The (n − 1)th equation is

−αUn−2 − 2Un−1 + Un

h2
+ β

Un − Un−2

2h
+ γUn−1 = Fn−1

We can substitute our expression for Un into the above equation,
and hence eliminate Un:(
−2αc3

h
+ βc3

)
−2α

h2
Un−2+

(
2α

h2
(1 + hc2)− βc2 + γ

)
Un−1 = Fn−1

Set Fn−1 ← Fn−1 −
(
−2αc3

h + βc3

)
, we get n × n system AU = F

Option 2: Use a one-sided finite-difference formula for u′(b) in the
Robin BC

PDEs

As discussed in the introduction, it is a natural extension to
consider Partial Differential Equations (PDEs)

There are three main classes of PDEs:13

equation type prototypical example equation

hyperbolic wave equation utt − uxx = 0
parabolic heat equation ut − uxx = f
elliptic Poisson equation uxx + uyy = f

Question: Where do these names come from?

13Notation: ux ≡ ∂u
∂x

, uxy ≡ ∂
∂y

(
∂u
∂x

)

PDEs

Answer: The names are related to conic sections

General second-order PDEs have the form

auxx + buxy + cuyy + dux + euy + fu + g = 0

This “looks like” the quadratic function

q(x , y) = ax2 + bxy + cy2 + dx + ey

PDEs: Hyperbolic

Wave equation: utt − uxx = 0

Corresponding quadratic function is q(x , t) = t2 − x2

q(x , t) = c gives a hyperbola, e.g. for c = 0 : 2 : 6, we have

−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

PDEs: Parabolic

Heat equation: ut − uxx = 0

Corresponding quadratic function is q(x , t) = t − x2

q(x , t) = c gives a parabola, e.g. for c = 0 : 2 : 6, we have

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

25

30

35

PDEs: Elliptic

Poisson equation: uxx + uyy = f

Corresponding quadratic function is q(x , y) = x2 + y2

q(x , y) = c gives an ellipse, e.g. for c = 0 : 2 : 6, we have

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

PDEs

In general, it is not so easy to classify PDEs using conic section
naming

Many problems don’t strictly fit into the classification scheme
(e.g. nonlinear, or higher order, or variable coefficient equations)

Nevertheless, the names hyperbolic, parabolic, elliptic are the
standard ways of describing PDEs, based on the criteria:

I Hyperbolic: time-dependent, conservative physical process, no
steady state

I Parabolic: time-dependent, dissipative physical process,
evolves towards steady state

I Elliptic: describes systems at equilibrium/steady-state

Hyperbolic PDEs

We introduced the wave equation utt − uxx = 0 above

Note that the system of first order PDEs

ut + vx = 0

vt + ux = 0

is equivalent to the wave equation, since

utt = (ut)t = (−vx)t = −(vt)x = −(−ux)x = uxx

(This assumes that u, v are smooth enough for us to switch the
order of the partial derivatives)

Hyperbolic PDEs

Hence we shall focus on the so-called linear advection equation

ut + cux = 0

with initial condition u(x , 0) = u0(x), and c ∈ R

This equation is representative of hyperbolic PDEs in general

It’s a first order PDE, hence doesn’t fit our conic section
description, but it is:

I time-dependent

I conservative

I not evolving toward steady state

=⇒ hyperbolic!

Hyperbolic PDEs

We can see that u(x , t) = u0(x − ct) satisfies the PDE

Let z(x , t) ≡ x − ct, then from the chain rule we have

∂

∂t
u0(x − ct) + c

∂

∂x
u0(x − ct) =

∂

∂t
u0(z(x , t)) + c

∂

∂x
u0(z(x , t))

= u′0(z)
∂z

∂t
+ cu′0(z)

∂z

∂x
= −cu′0(z) + cu′0(z)

= 0

Hyperbolic PDEs
This tells us that the solution transports (or advects) the initial
condition with “speed” c

e.g. with c = 1 and an initial condition u0(x) = e−(1−x)2
we have:

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

u
(x
,t

)

x

t = 0
t = 2

t = 4
t = 6

Hyperbolic PDEs

We can understand the behavior of hyperbolic PDEs in more detail
by considering characteristics

Characteristics are paths in the xt-plane — denoted by (X (t), t)
— on which the solution is constant

For ut + cux = 0 we have X (t) = X0 + ct,14 since

d

dt
u(X (t), t) = ut(X (t), t) + ux(X (t), t)

dX (t)

dt
= ut(X (t), t) + cux(X (t), t)

= 0

14Each different choice of X0 gives a distinct characteristic curve

Hyperbolic PDEs

Hence u(X (t), t) = u(X (0), 0) = u0(X0), i.e. the initial condition
is transported along characteristics

Characteristics have important implications for the direction of
flow of information, and for boundary conditions

Must impose BC at x = a, cannot impose BC at x = b

Hyperbolic PDEs

Hence u(X (t), t) = u(0,X (0)) = u0(X0), i.e. the initial condition
is transported along characteristics

Characteristics have important implications for the direction of
flow of information, and for boundary conditions

Must impose BC at x = b, cannot impose BC at x = a

Hyperbolic PDEs: More Complicated Characteristics

More generally, if we have a non-zero right-hand side in the PDE,
then the situation is a bit more complicated on each characteristic

Consider ut + cux = f (t, x , u(t, x)), and X (t) = X0 + ct

d

dt
u(X (t), t) = ut(X (t), t) + ux(X (t), t)

dX (t)

dt
= ut(X (t), t) + cux(X (t), t)

= f (t,X (t), u(X (t), t))

In this case, the solution is no longer constant on (X (t), t), but we
have reduced a PDE to a set of ODEs, so that:

u(X (t), t) = u0(X0) +

∫ t

0
f (t,X (t), u(X (t), t)dt

Hyperbolic PDEs: More Complicated Characteristics

We can also find characteristics for variable coefficient advection

Exercise: Verify that the characteristic curve for ut + c(t, x)ux = 0
is given by

dX (t)

dt
= c(X (t), t)

In this case, we have to solve an ODE to obtain the curve (X (t), t)
in the xt-plane

Hyperbolic PDEs: More Complicated Characteristics

e.g. for c(t, x) = x − 1/2, we get X (t) = 1/2 + (X0 − 1/2)et

In this case, the characteristics “bend away” from x = 1/2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Characteristics also apply to nonlinear hyperbolic PDEs (e.g.
Burger’s equation), but this is outside the scope of AM205

Hyperbolic PDEs: Numerical Approximation

We now consider how to solve ut + cux = 0 equation using a finite
difference method

Question: Why finite differences? Why not just use characteristics?

Answer: Characteristics actually are a viable option for
computational methods, and are used in practice

However, characteristic methods can become very complicated in
2D or 3D, or for nonlinear problems

Finite differences are a much more practical choice in most
circumstances

Hyperbolic PDEs: Numerical Approximation

Advection equation is an Initial Boundary Value Problem (IBVP)

We impose an initial condition, and a boundary condition (only
one BC since first order PDE)

A finite difference approximation leads to a grid in the xt-plane

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

x

t

Hyperbolic PDEs: Numerical Approximation

The first step in developing a finite difference approximation for
the advection equation is to consider the CFL condition15

The CFL condition is a necessary condition for the convergence of
a finite difference approximation of a hyperbolic problem

Suppose we discretize ut + cux = 0 in space and time using the
explicit (in time) scheme

Un+1
j − Un

j

∆t
+ c

Un
j − Un

j−1

∆x
= 0

Here Un
j ≈ u(tn, xj), where tn = n∆t, xj = j∆x

15Courant–Friedrichs–Lewy condition, published in 1928

Hyperbolic PDEs: Numerical Approximation

This can be rewritten as

Un+1
j = Un

j −
c∆t

∆x
(Un

j − Un
j−1)

= (1− ν)Un
j + νUn

j−1

where

ν ≡ c∆t

∆x

We can see that Un+1
j depends only on Un

j and Un
j−1

Hyperbolic PDEs: Numerical Approximation

Definition: Domain of dependence of Un+1
j is the set of values that

Un+1
j depends on

0 1 2 3 4 5 6 7
0

1

2

3

4

Un+1
j

Hyperbolic PDEs: Numerical Approximation

The domain of dependence of the exact solution u(tn+1, xj) is
determined by the characteristic curve passing through (tn+1, xj)

CFL Condition:

For a convergent scheme, the domain of depen-
dence of the PDE must lie within the domain of
dependence of the numerical method

Hyperbolic PDEs: Numerical Approximation

Suppose the dashed line indicates characteristic passing through
(tn+1, xj), then the scheme below satisfies the CFL condition

0 1 2 3 4 5 6 7
0

1

2

3

4

Hyperbolic PDEs: Numerical Approximation

The scheme below does not satisfy the CFL condition

0 1 2 3 4 5 6 7
0

1

2

3

4

Hyperbolic PDEs: Numerical Approximation

The scheme below does not satisfy the CFL condition (here c < 0)

0 1 2 3 4 5 6 7
0

1

2

3

4

Hyperbolic PDEs: Numerical Approximation

Question: What goes wrong if the CFL condition is violated?

Hyperbolic PDEs: Numerical Approximation

Answer: The exact solution u(x , t) depends on initial value u0(x0),
which is outside the numerical method’s domain of dependence

Therefore, the numerical approx. to u(x , t) is “insensitive” to the
value u0(x0), which means that the method cannot be convergent

Hyperbolic PDEs: Numerical Approximation

If c > 0, then we require ν ≡ c∆t
∆x ≤ 1 in (∗) for CFL to be satisfied

0 1 2 3 4 5 6 7
0

1

2

3

4

c∆t

∆x

Hyperbolic PDEs: Numerical Approximation

Note that CFL is only a necessary condition for convergence

Its great value is its simplicity: CFL allows us to easily reject F.D.
schemes for hyperbolic problems with very little investigation

For example, for ut + cux = 0, the scheme

Un+1
j − Un

j

∆t
+ c

Un
j − Un

j−1

∆x
= 0 (∗)

cannot be convergent if c < 0

Question: What small change to (∗) would give a better method
when c < 0?

Hyperbolic PDEs: Upwind method

As foreshadowed earlier, we should pick our method to reflect the
direction of propagation of information

This motivates the upwind scheme for ut + cux = 0

Un+1
j =

{
Un
j − c ∆t

∆x (Un
j − Un

j−1), if c > 0

Un
j − c ∆t

∆x (Un
j+1 − Un

j), if c < 0

The upwind scheme satisfies CFL condition if |ν| ≡ |c∆t/∆x | ≤ 1

ν is often called the CFL number

Hyperbolic PDEs: Central difference method
Another method that seems appealing is the central difference
method:

Un+1
j − Un

j

∆t
+ c

Un
j+1 − Un

j−1

2∆x
= 0

This satisfies CFL for |ν| ≡ |c∆t/∆x | ≤ 1, regardless of sign(c)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

We shall see shortly, however, that this is a bad method!

Hyperbolic PDEs: Accuracy

Recall that truncation error is “what is left over when we
substitute exact solution into the numerical approximation”

Truncation error is analogous for PDEs, e.g. for the (c > 0)
upwind method, truncation error is:

T n
j ≡

u(tn+1, xj)− u(tn, xj)

∆t
+ c

u(tn, xj)− u(tn, xj−1)

∆x

The order of accuracy is then the largest p such that

T n
j = O((∆x)p + (∆t)p)

Hyperbolic PDEs: Accuracy

See Lecture: For the upwind method, we have

T n
j =

1

2
[∆tutt(t

n, xj)− c∆xuxx(tn, xj)] + H.O.T.

Hence the upwind scheme is first order accurate

Hyperbolic PDEs: Accuracy

Just like with ODEs, truncation error is related to convergence in
the limit ∆t,∆x → 0

Note that to let ∆t,∆x → 0, we generally need to decide on a
relationship between ∆t and ∆x

e.g. to let ∆t,∆x → 0 for the upwind scheme, we would set
c∆t
∆x = ν ∈ (0, 1]; this ensures CFL is satisfied for all ∆x ,∆t

Hyperbolic PDEs: Accuracy

In general, convergence of a finite difference method for a PDE is
related to both its truncation error and its stability

We’ll discuss this in more detail shortly, but first we consider how
to analyze stability via Fourier stability analysis

Hyperbolic PDEs: Stability

Let’s suppose that Un
j is periodic on the grid x1, x2, . . . , xn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

xj

Un
j

Hyperbolic PDEs: Stability

Then we can represent Un
j as a linear combination of sin and cos

functions, i.e. Fourier modes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xj

0.5sin(2πx)

−0.9cos(4πx)
−0.3sin(6πx)

Or, equivalently, as a linear combination of complex exponentials,
since e ikx = cos(kx) + i sin(kx) so that

sin(x) =
1

2i
(e ix − e−ix), cos(x) =

1

2
(e ix + e−ix)

Hyperbolic PDEs: Stability

For simplicity, let’s just focus on only one of the Fourier modes

In particular, we consider the ansatz Un
j (k) ≡ λ(k)ne ikxj , where k

is the wave number and λ(k) ∈ C

Key idea: Suppose that Un
j (k) satisfies our finite difference

equation, then this will allow us to solve16 for λ(k)

The value of |λ(k)| indicates whether the Fourier mode e ikxj is
amplified or damped

If |λ(k)| ≤ 1 for all k then the scheme does not amplify any
Fourier modes =⇒ stable!

16In general a solution for λ(k) exists, which justifies our choice of ansatz

Hyperbolic PDEs: Stability

We now perform Fourier stability analysis for the (c > 0) upwind
scheme (recall that ν = c∆t

∆x):

Un+1
j = Un

j − ν(Un
j − Un

j−1)

Substituting in Un
j (k) = λ(k)ne ik(j∆x) gives

λ(k)e ik(j∆x) = e ik(j∆x) − ν(e ik(j∆x) − e ik((j−1)∆x))

= e ik(j∆x) − νe ik(j∆x)(1− e−ik∆x))

Hence

λ(k) = 1− ν(1− e−ik∆x) = 1− ν(1− cos(k∆x) + i sin(k∆x))

Hyperbolic PDEs: Stability

It follows that

|λ(k)|2 = [(1− ν) + ν cos(k∆x)]2 + [ν sin(k∆x)]2

= (1− ν)2 + ν2 + 2ν(1− ν) cos(k∆x)

= 1− 2ν(1− ν)(1− cos(k∆x))

and from the trig. identity (1− cos(θ)) = 2 sin2(θ2), we have

|λ(k)|2 = 1− 4ν(1− ν) sin2

(
1

2
k∆x

)
Due to the CFL condition, we first suppose that 0 ≤ ν ≤ 1

It then follows that 0 ≤ 4ν(1− ν) sin2
(

1
2k∆x

)
≤ 1, and hence

|λ(k)| ≤ 1

Hyperbolic PDEs: Stability

In contrast, consider stability of the central difference approx.:

Un+1
j − Un

j

∆t
+ c

Un
j+1 − Un

j−1

2∆x
= 0

Recall that this also satisfies the CFL condition as long as |ν| ≤ 1

But Fourier stability analysis yields

λ(k) = 1− νi sin(k∆x) =⇒ |λ(k)|2 = 1 + ν2 sin2(k∆x)

and hence |λ(k)| > 1 (unless sin(k∆x) = 0), i.e. unstable!

Consistency

We say that a numerical scheme is consistent with a PDE if its
truncation error tends to zero as ∆x ,∆t → 0

For example, any first (or higher) order scheme is consistent

Lax Equivalence Theorem

Then a fundamental theorem in Scientific Computing is the Lax17

Equivalence Theorem:

For a consistent finite difference approx. to a linear
evolutionary problem, the stability of the scheme is
necessary and sufficient for convergence

This theorem refers to linear evolutionary problems, e.g. linear
hyperbolic or parabolic PDEs

17Peter Lax, Courant Institute, NYU

Lax Equivalence Theorem

We know how to check consistency: Derive the truncation error

We know how to check stability: Fourier stability analysis

Hence, from Lax, we have a general approach for verifying
convergence

Also, as with ODEs, convergence rate is determined by truncation
error

Lax Equivalence Theorem

Note that strictly speaking Fourier stability analysis only applies for
periodic problems

However, it can be shown that conclusions of Fourier stability
analysis hold true more generally

Hence Fourier stability analysis is the standard tool for examining
stability of finite-difference methods for PDEs

Python example: [transp.py/transp2.py] One-sided and
centered-difference discretizations of the transport equation

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/transp.py
https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/transp2.py

Hyperbolic PDEs: Semi-discretization

So far, we have developed full discretizations (both space and time)
of the advection equation, and considered accuracy and stability

However, it can be helpful to consider semi-discretizations, where
we discretize only in space, or only in time

For example, discretizing ut + c(t, x)ux = 0 in space18 using a
backward difference formula gives

∂Uj(t)

∂t
+ cj(t)

Uj(t)− Uj−1(t)

∆x
= 0, j = 1, . . . , n

18Here we show an example where c is not constant

Hyperbolic PDEs: Semi-discretization

This gives a system of ODEs, Ut = f (t,U(t)), where U(t) ∈ Rn

and

fj(t,U(t)) ≡ −cj(t)
Uj(t)− Uj−1(t)

∆x

We could approximate this ODE using forward Euler (to get our
upwind scheme):

Un+1
j − Un

j

∆t
= f (tn,Un) = −cnj

Un
j − Un

j−1

∆x

Or backward Euler:

Un+1
j − Un

j

∆t
= f (tn+1,Un+1) = −cn+1

j

Un+1
j − Un+1

j−1

∆x

Hyperbolic PDEs: Method of Lines

Or we could use a “black box” ODE solver, such as ode45, to
solve the system of ODEs

This “black box” approach is called the method of lines
[m of lines.py]

The name “lines” is because we solve each Uj(t) for a fixed xj , i.e.
a line in the xt-plane

With method of lines we let the ODE solver to choose step sizes
∆t to obtain a stable and accurate scheme

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/m_of_lines.py

The Wave Equation

We now briefly return to the wave equation:

utt − c2uxx = 0

In one spatial dimension, this models, say, vibrations in a taut
string

The Wave Equation

Many schemes have been proposed for the wave equation

One good option is to use central difference approximations19 for
both utt and uxx :

Un+1
j − 2Un

j + Un−1
j

∆t2
− c2

Un
j+1 − 2Un

j + Un
j−1

∆x2
= 0

Key points:

I Truncation error analysis =⇒ second-order accurate

I Fourier stability analysis =⇒ stable for 0 ≤ c∆t/∆x ≤ 1

I Two-step method in time, need a one-step method to “get
started”

19Can arrive at the same result by discretizing the equivalent first order
system

The Heat Equation

The canonical parabolic equation is the heat equation

ut − αuxx = f (t, x),

where α models thermal diffusivity

In this section, we shall omit α for convenience

Note that this is an Initial-Boundary Value Problem:

I We impose an initial condition u(0, x) = u0(x)

I We impose boundary conditions on both sides of the domain

The Heat Equation

A natural idea would be to discretize uxx with a central difference,
and employ the Euler method in time:

Un+1
j − Un

j

∆t
−

Un
j−1 − 2Un

j + Un
j+1

∆x2
= 0

Or we could use backward Euler in time:

Un+1
j − Un

j

∆t
−

Un+1
j−1 − 2Un+1

j + Un+1
j+1

∆x2
= 0

The Heat Equation

Or we could do something “halfway in between”:

Un+1
j − Un

j

∆t
− 1

2

Un+1
j−1 − 2Un+1

j + Un+1
j+1

∆x2
− 1

2

Un
j−1 − 2Un

j + Un
j+1

∆x2
= 0

This is called the Crank–Nicolson method20

In fact, it is common to consider a 1-parameter “family” of
methods that include all of the above: the θ-method

Un+1
j − Un

j

∆t
− θ

Un+1
j−1 − 2Un+1

j + Un+1
j+1

∆x2
− (1− θ)

Un
j−1 − 2Un

j + Un
j+1

∆x2
= 0

where θ ∈ [0, 1]

20From a paper by Crank and Nicolson in 1947, note: “Nicolson” is not a
typo!

The Heat Equation

With the θ-method:

I θ = 0 =⇒ Euler

I θ = 1
2 =⇒ Crank–Nicolson

I θ = 1 =⇒ backward Euler

For the θ-method, we can

1. perform Fourier stability analysis

2. calculate the truncation error

The θ-Method: Stability

Fourier stability analysis: Set Un
j (k) = λ(k)ne ik(j∆x) to get

λ(k) =
1− 4(1− θ)µ sin2

(
1
2k∆x

)
1 + 4θµ sin2

(
1
2k∆x

)
where µ ≡ ∆t/(∆x)2

Here we cannot get λ(k) > 1, hence only concern is λ(k) < −1

Let’s find conditions for stability, i.e. we want λ(k) ≥ −1:

1− 4(1− θ)µ sin2

(
1

2
k∆x

)
≥ −

[
1 + 4θµ sin2

(
1

2
k∆x

)]

The θ-Method: Stability

Or equivalently:

4µ(1− 2θ) sin2

(
1

2
k∆x

)
≤ 2

For θ ∈ [0.5, 1] this inequality is always satisfied, hence the
θ-method is unconditionally stable (i.e. stable independent of µ)

In the θ ∈ [0, 0.5) case, the “most unstable” Fourier mode is when
k = π/∆x , since this maximizes the factor sin2

(
1
2k∆x

)

The θ-Method: Stability

Note that this corresponds to the highest frequency mode that can
be represented on our grid, since with k = π/∆x we have

e ik(j∆x) = eπij = (eπi)j = (−1)j

The k = π/∆x mode:

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

j

eπ
ij

The θ-Method: Stability

This “sawtooth” mode is stable (and hence all modes are stable) if

4µ(1− 2θ) ≤ 2⇐⇒ µ ≤ 1

2(1− 2θ)
,

Hence for θ ∈ [0, 0.5), the θ-method is conditionally stable

The θ-Method: Stability

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40

45

θ

µ

For θ ∈ [0, 0.5), θ-method is stable if µ is in the “green region,”
i.e. approaches unconditional stability as θ → 0.5

The θ-Method: Stability

Note that if we set θ to a value in [0, 0.5), then stability time-step

restriction is quite severe: ∆t ≤ (∆x)2

2(1−2θ)

Contrast this to the hyperbolic case where we had ∆t ≤ ∆x
c

This is an indication that the system of ODEs that arise from
spatially discretizing the heat equation are stiff

The θ-Method: Accuracy

The truncation error analysis is fairly involved, hence we just give
the result:

T n
j ≡

un+1
j − un

j

∆t
− θ

un+1
j−1 − 2un+1

j + un+1
j+1

∆x2
− (1− θ)

un
j−1 − 2un

j + un
j+1

∆x2

= [ut − uxx] +

[(
1

2
− θ

)
∆tuxxt −

1

12
(∆x)2uxxxx

]
+

[
1

24
(∆t)2uttt −

1

8
(∆t)2uxxtt

]
+

[
1

12

(
1

2
− θ

)
∆t(∆x)2uxxxxt −

2

6!
(∆x)4uxxxxxx

]
+ · · ·

The term ut − uxx in T n
j vanishes since u solves the PDE

The θ-Method: Accuracy

Key point: This is a first order method, unless θ = 1/2, in which
case we get a second order method!

θ-method gives us consistency (at least first order) and stability
(assuming ∆t is chosen appropriately when θ ∈ [0, 1/2))

Hence, from Lax Equivalence Theorem, the method is convergent

The Heat Equation

Note that the heat equation models a diffusive process, hence it
tends to smooth out discontinuities

Python demo: [heat.py/c-n.py] Heat equation with discontinous
initial condition

0

2

4

6

8

10

0

1

2

3

0

0.2

0.4

0.6

0.8

1

x
t

This is very different to hyperbolic equations, e.g. the advection
equation will just transport a discontinuity in u0

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/heat.py
https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/c-n.py

Elliptic PDEs

Elliptic PDEs

The canonical elliptic PDE is the Poisson equation

In one-dimension, for x ∈ [a, b], this is −u′′(x) = f (x) with
boundary conditions at x = a and x = b

We have seen this problem already: Two-point boundary value
problem!

(Recall that Elliptic PDEs model steady-state behavior, there is no
time-derivative)

Elliptic PDEs

In order to make this into a PDE, we need to consider more than
one spatial dimension

Let Ω ⊂ R2 denote our domain, then the Poisson equation for
(x , y) ∈ Ω is

uxx + uyy = f (x , y)

This is generally written more succinctly as ∆u = f

We again need to impose boundary conditions (Dirichlet,
Neumann, or Robin) on ∂Ω (recall ∂Ω denotes boundary of Ω)

Elliptic PDEs

We will consider how to use a finite difference scheme to
approximate this 2D Poisson equation

First, we introduce a uniform grid to discretize Ω

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Elliptic PDEs

Let h = ∆x = ∆y denote the grid spacing

Then,

I xi = ih, i = 0, 1, 2 . . . , nx − 1,

I yj = jh, j = 0, 1, 2, . . . , ny − 1,

I Ui ,j ≈ u(xi , yj)

Then, we need to be able to approximate uxx and uyy on this grid

Natural idea: Use central difference approximation!

Elliptic PDEs

We have

uxx(xi , yj) =
u(xi−1, yj)− 2u(xi , yj) + u(xi+1, yj)

h2
+ O(h2),

and
uyy (xi , yj) =

u(xi , yj−1)− 2u(xi , yj) + u(xi , yj+1)

h2
+ O(h2),

so that

uxx(xi , yj) + uyy (xi , yj) =

u(xi , yj−1) + u(xi−1, yj)− 4u(xi , yj) + u(xi+1, yj) + u(xi , yj+1)

h2
+ O(h2)

Elliptic PDEs

Hence we define our approximation to the Laplacian as

Ui ,j−1 + Ui−1,j − 4Ui ,j + Ui+1,j + Ui ,j+1

h2

This corresponds to a “5-point stencil”

Elliptic PDEs

As usual, we represent the numerical solution as a vector U ∈ Rnxny

We want to construct a differentiation matrix D2 ∈ Rnxny×nxny

that approximates the Laplacian

Question: How many non-zero diagonals will D2 have?

To construct D2, we need to be able to relate the entries of the
vector U to the “2D grid-based values” Ui ,j

Elliptic PDEs
Hence we need to number the nodes from 0 to nxny − 1 — we
number nodes along the “bottom row” first, then second bottom
row, etc

Let G denote the mapping from the 2D indexing to the 1D
indexing. From the above figure we have:

G(i , j ; nx) = jnx + i , and hence UG(i ,j ;nx) = Ui ,j

Elliptic PDEs

Let us focus on node (i , j) in our F.D. grid, this corresponds to
entry G(i , j ; nx) of U

Due to the 5-point stencil, row G(i , j ; nx) of D2 will only have
non-zeros in columns

G(i , j − 1; nx) = G(i , j ; nx)− nx , (1)

G(i − 1, j ; nx) = G(i , j ; nx)− 1, (2)

G(i , j ; nx) = G(i , j ; nx), (3)

G(i + 1, j ; nx) = G(i , j ; nx) + 1, (4)

G(i , j + 1; nx) = G(i , j ; nx) + nx (5)

I (2), (3), (4), give the same tridiagonal structure that we’re
used to from differentiation matrices in 1D domains

I (1), (5) give diagonals shifted by ±nx

Elliptic PDEs

For example, sparsity pattern of D2 when nx = ny = 6

Elliptic PDEs

Python demo: [poisson.py] Solve the Poisson equation

∆u = − exp
{
−(x − 0.25)2 − (y − 0.5)2

}
,

for (x , y) ∈ Ω = [0, 1]2 with u = 0 on ∂Ω

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/poisson.py

