
Unit 3: Numerical Calculus (Part 1)



Motivation

Since the time of Newton, calculus has been ubiquitous in science

Many (most?) calculus problems that arise in applications do not
have closed-form solutions

Numerical approximation is essential!

Epitomizes idea of Scientific Computing as developing and applying
numerical algorithms to problems of continuous mathematics

In this Unit we will consider:

I Numerical integration

I Numerical differentiation

I Numerical methods for ordinary differential equations

I Numerical methods for partial differential equations



Integration
Approximating a definite integral using a numerical method is
called quadrature

The familiar Riemann sum idea suggests how to perform
quadrature

We will examine more accurate/efficient quadrature methods



Integration

Question: Why is quadrature important?

We know how to evaluate many integrals analytically, e.g.∫ 1

0
exdx or

∫ π

0
cos xdx

But how about
∫ 2000
1 exp(sin(cos(sinh(cosh(tan−1(log(x)))))))dx?



Integration

We can numerically approximate this integral in Python using
quadrature

Python 3.8.6 (default, Sep 28 2020, 04:41:02)

[Clang 11.0.3 (clang-1103.0.32.62)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import scipy.integrate as spi

>>> from math import *

>>> def f(x):

>>> def f(x):

... return exp(sin(cos(sinh(cosh(atan(log(x)))))))

>>> spi.quad(f,1,2000)

(1514.7806778270258, 4.231109728875231e-06)



Integration

Quadrature also generalizes naturally to higher dimensions, and
allows us to compute integrals on irregular domains

For example, we can approximate an integral on a triangle based
on a finite sum of samples at quadrature points

Three different quadrature rules on a triangle



Integration

Can then evaluate integrals on complicated regions by
“triangulating” (AKA “meshing”)



Differentiation

Numerical differentiation is another fundamental tool in Scientific
Computing

We have already discussed the most common, intuitive approach
to numerical differentiation: finite differences

f ′(x) =
f (x + h)− f (x)

h
+ O(h) (forward difference)

f ′(x) =
f (x)− f (x − h)

h
+ O(h) (backward difference)

f ′(x) =
f (x + h)− f (x − h)

2h
+ O(h2) (centered difference)

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2
+ O(h2) (centered, 2nd deriv.)

...



Differentiation

We will see how to derive these and other finite difference formulas
and quantify their accuracy

Wide range of choices, with trade-offs in terms of

I accuracy

I stability

I complexity



Differentiation

We saw at the start of the course that finite differences can be
sensitive to rounding error when h is “too small”

But in most applications we obtain sufficient accuracy with h large
enough that rounding error is still negligible1

Hence finite differences generally work very well, and provide a very
popular approach to solving problems involving derivatives

1That is, h is large enough so that rounding error is dominated by
discretization error



ODEs

The most common situation in which we need to approximate
derivatives is in order to solve differential equations

Ordinary Differential Equations (ODEs): Differential equations
involving functions of one variable

Some example ODEs:

I y ′(t) = y2(t) + t4 − 6t, y(0) = y0 is a first order Initial Value
Problem (IVP) ODE

I y ′′(x) + 2xy(x) = 1, y(0) = y(1) = 0 is a second order
Boundary Value Problem (BVP) ODE



ODEs: IVP

A familiar IVP ODE is Newton’s Second Law of Motion: suppose
position of a particle at time t ≥ 0 is y(t) ∈ R

y ′′(t) =
F (t, y , y ′)

m
, y(0) = y0, y

′(0) = v0

This is a scalar ODE (y(t) ∈ R), but it’s common to simulate a
system of N interacting particles

e.g. F could be gravitational force due to other particles, then
force on particle i depends on positions of the other particles



ODEs: IVP

N-body problems are the basis of many cosmological simulations:
Recall galaxy formation simulations from Unit 0

Computationally expensive when N is large!



ODEs: BVP

ODE boundary value problems are also important in many
circumstances

For example, steady state heat distribution in a “1D rod”

Apply heat source f (x) = x2, impose “zero” temperature at x = 0,
insulate at x = 1:

−u′′(x) = x2, u(0) = 0, u′(1) = 0



ODEs: BVP

We can approximate via finite differences: use F.D. formula for
u′′(x)



PDEs

It is also natural to introduce time-dependence for the temperature
in the “1D rod” from above

Hence now u is a function of x and t, so derivatives of u are partial
derivatives, and we obtain a partial differential equation (PDE)

For example, the time-dependent heat equation for the 1D rod is
given by:

∂u

∂t
− ∂2u

∂x2
= x2, u(x , 0) = 0, u(0, t) = 0,

∂u

∂x
(1, t) = 0

This is an Initial-Boundary Value Problem (IBVP)



PDEs

Also, when we are modeling continua2 we generally also need to be
able to handle 2D and 3D domains

e.g. 3D analogue of time-dependent heat equation on a domain
Ω ⊂ R3 is

∂u

∂t
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= f (x , y , z), u = 0 on ∂Ω

2e.g. temperature distribution, fluid velocity, electromagnetic fields, . . .



PDEs

This equation is typically written as

∂u

∂t
−∆u = f (x , y , z), u = 0 on ∂Ω

where ∆u ≡ ∇ · ∇u = ∂2u
∂x2

+ ∂2u
∂y2 + ∂2u

∂z2

Here we have:

I The Laplacian, ∆ ≡ ∂2

∂x2
+ ∂2

∂y2 + ∂2

∂z2

I The gradient, ∇ ≡ ( ∂
∂x ,

∂
∂y ,

∂
∂z )



PDEs

Can add a “transport” term to the heat equation to obtain the
convection-diffusion equation, e.g. in 2D we have

∂u

∂t
+ (w1(x , y),w2(x , y)) · ∇u −∆u = f (x , y), u = 0 on ∂Ω

u(x , t) models concentration of some substance, e.g. pollution in a
river with current (w1,w2)

t = 0 t = 3 t = 5



PDEs

Numerical methods for PDEs are a major topic in scientific
computing

Recall examples from Unit 0:

CFD Geophysics

The finite difference method is an effective approach for a wide
range of problems, hence we focus on F.D. in AM2053

3There are many important alternatives, e.g. finite element method, finite
volume method, spectral methods, boundary element methods . . .



Summary

Numerical calculus encompasses a wide range of important topics
in scientific computing!

As always, we will pay attention to stability, accuracy and
efficiency of the algorithms that we consider



Quadrature

Suppose we want to evaluate the integral I (f ) ≡
∫ b
a f (x)dx

We can proceed as follows:

1. Approximate f using a polynomial interpolant pn

2. Evaluate Qn(f ) ≡
∫ b
a pn(x)dx , since we know how to

integrate polynomials

Qn(f ) provides a quadrature formula, and we should have
Qn(f ) ≈ I (f )

A quadrature rule based on an interpolant pn at n + 1 equally
spaced points in [a, b] is known as Newton–Cotes formula of
order n



Newton–Cotes Quadrature

Let xk = a + kh, k = 0, 1, . . . , n, where h = (b − a)/n

We write the interpolant of f in Lagrange form as

pn(x) =
n∑

k=0

f (xk)Lk(x), where Lk(x) ≡
n∏

i=0,i 6=k

x − xi
xk − xi

Then

Qn(f ) =

∫ b

a
pn(x)dx =

n∑
k=0

f (xk)

∫ b

a
Lk(x)dx =

n∑
k=0

wk f (xk)

where wk ≡
∫ b
a Lk(x)dx ∈ R is the kth quadrature weight



Newton–Cotes Quadrature

Note that quadrature weights do not depend on f , hence can be
precomputed and stored

n = 1 =⇒ Trapezoid rule (See lecture)

n = 2 =⇒ Q2(f ) = b−a
6

[
f (a) + 4f

(
a+b
2

)
+ f (b)

]
Simpson rule

We can also develop higher-order Newton–Cotes formulae in the
same way



Error Estimates

Let En(f ) ≡ I (f )− Qn(f )

Then

En(f ) =

∫ b

a

f (x)dx −
n∑

k=0

wk f (xk)

=

∫ b

a

f (x)dx −
n∑

k=0

(∫ b

a

Lk(x)dx

)
f (xk)

=

∫ b

a

f (x)dx −
∫ b

a

(
n∑

k=0

Lk(x)f (xk)

)
dx

=

∫ b

a

f (x)dx −
∫ b

a

pn(x)dx

=

∫ b

a

(f (x)− pn(x)) dx

And we have an expression for f (x)− pn(x)



Error Estimates

Recall from Unit I

f (x)− pn(x) =
f n+1(θ)

(n + 1)!
(x − x0) . . . (x − xn)

Hence

|En(f )| ≤ Mn+1

(n + 1)!

∫ b

a
|(x − x0)(x − x1) · · · (x − xn)|dx

where Mn+1 = max
θ∈[a,b]

|f n+1(θ)|



Error Estimates

See lecture: Trapezoid rule error bound

|E1(f )| ≤ (b − a)3

12
M2

The bound for En depends directly on the integrand f (via Mn+1)

Just like with the Lebesgue constant, it is informative to be able to
compare quadrature rules independently of the integrand



Error Estimates: Another Perspective

Theorem: If Qn integrates polynomials of degree n exactly, then
∃Cn > 0 such that |En(f )| ≤ Cn min

p∈Pn

‖f − p‖∞

Proof: For p ∈ Pn, we have

|I (f )− Qn(f )| ≤ |I (f )− I (p)|+ |I (p)− Qn(f )|
= |I (f − p)|+ |Qn(f − p)|

≤
∫ b

a
dx‖f − p‖∞ +

(
n∑

k=0

|wk |

)
‖f − p‖∞

≡ Cn‖f − p‖∞

where

Cn ≡ b − a +
n∑

k=0

|wk |



Error Estimates

Hence a convenient way to compare accuracy of quadrature rules is
to compare the polynomial degree they integrate exactly

Newton–Cotes of order n is based on polynomial interpolation,
hence in general integrates polynomials of degree n exactly4

4Also follows from the Mn+1 term in the error bound



Runge’s Phenomenon Again . . .

But Newton–Cotes formulae are based on interpolation at equally
spaced points

Hence they’re susceptible to Runge’s phenomenon, and we expect
them to be inaccurate for large n

Question: How does this show up in our bound

|En(f )| ≤ Cn min
p∈Pn

‖f − p‖∞ ?



Runge Phenomenon Again . . .

Answer: In the constant Cn

Recall that Cn ≡ b − a +
∑n

k=0 |wk |, and that wk ≡
∫ b
a Lk(x)dx

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

 

 

L
10

L
15

If the Lk “blow up” due to equally spaced points, then Cn can also
“blow up”



Runge Phenomenon Again . . .

In fact, we know that
∑n

k=0 wk = b − a, why?

This tells us that if all the wk are positive, then

Cn = b − a +
n∑

k=0

|wk | = b − a +
n∑

k=0

wk = 2(b − a)

Hence positive weights =⇒ Cn is a constant, independent of n
and hence Qn(f )→ I (f ) as n→∞



Runge Phenomenon Again...

But with Newton–Cotes, quadrature weights become negative for
n > 8 (e.g. in example above L15(x) would clearly yield w15 < 0)

Key point: Newton–Cotes is not useful for large n

However, there are two natural ways to get quadrature rules that
converge as n→∞:

I Integrate piecewise polynomial interpolant

I Don’t use equally spaced interpolation points

We consider piecewise polynomial-based quadrature rules first



Composite Quadrature Rules

Integrating piecewise polynomial interpolant =⇒ composite
quadrature rule

Suppose we divide [a, b] into m subintervals, each of width
h = (b − a)/m, and xi = a + ih, i = 0, 1, . . . ,m

Then we have:

I (f ) =

∫ b

a
f (x)dx =

m∑
i=1

∫ xi

xi−1

f (x)dx



Composite Trapezoid Rule

Composite trapezoid rule: Apply trapezoid rule to each interval,
i.e.

∫ xi
xi−1

f (x)dx ≈ 1
2h[f (xi−1) + f (xi )]

Hence,

Q1,h(f ) ≡
m∑
i=1

1

2
h[f (xi−1) + f (xi )]

= h

[
1

2
f (x0) + f (x1) + · · ·+ f (xm−1) +

1

2
f (xm)

]



Composite Trapezoid Rule
Composite trapezoid rule error analysis:

E1,h(f ) ≡ I (f )− Q1,h(f )

=
m∑
i=1

[∫ xi

xi−1

f (x)dx − 1

2
h[f (xi−1) + f (xi )]

]

Hence,

|E1,h(f )| ≤
m∑
i=1

∣∣∣∣∣
∫ xi

xi−1

f (x)dx − 1

2
h[f (xi−1) + f (xi )]

∣∣∣∣∣
≤ h3

12

m∑
i=1

max
θ∈[xi−1,xi ]

|f ′′(θ)|

≤ h3

12
m‖f ′′‖∞

=
h2

12
(b − a)‖f ′′‖∞



Composite Simpson Rule

We can obtain the composite Simpson rule in the same way

Suppose that [a, b] is divided into 2m intervals by the points
xi = a + ih, i = 0, 1, . . . , 2m, h = (b − a)/2m

Applying Simpson rule on each interval5 [x2i−2, x2i ], i = 1, . . . ,m
yields

Q2,h(f ) ≡ h

3
[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + · · ·

+2f (x2m−2) + 4f (x2m−1) + f (x2m)]

[quadrat.py ] Demo of composite trapezoid rule and Simpson rule
convergence

5Interval of width 2h

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/quadrat.py


Adaptive Quadrature

Composite quadrature rules are very flexible, e.g. we need not
choose equally sized intervals

Intuitively, we should use smaller intervals where f varies rapidly,
and larger intervals where f varies slowly

This can be achieved by adaptive quadrature:

1. Initialize to m = 1 (one interval)

2. On each interval, evaluate quadrature rule and estimate
quadrature error

3. If error estimate > TOL on interval i , subdivide to get two
smaller intervals and return to step 2.

Question: How can we estimate the quadrature error on an
interval?



Adaptive Quadrature

One straightforward way to estimate quadrature error on interval i
is to compare to a more refined result for interval i

Let I i (f ) and Q i
h(f ) denote the exact integral and quadrature

approximation on interval i , respectively

Let Q̂ i
h(f ) denote a more refined quadrature approximation on

interval i , e.g. obtained by subdividing interval i

Then for the error on interval i , we have:

|I i (f )− Q i
h(f )| ≤ |I i (f )− Q̂ i

h(f )|+ |Q̂ i
h(f )− Q i

h(f )|

Then, we suppose we can neglect |I i (f )− Q̂ i
h(f )| so that we use

|Q̂ i
h(f )− Q i

h(f )| as a computable estimator for |I i (f )− Q i
h(f )|



Adaptive Quadrature

Python and MATLAB both have quad functions, although with
different implementations. MATLAB’s quad function implements
an adaptive Simpson rule:

>> help quad

QUAD Numerically evaluate integral, adaptive Simpson

quadrature. Q = QUAD(FUN,A,B) tries to approximate the

integral of scalar-valued function FUN from A to B to

within an error of 1.e-6 using recursive adaptive Simpson

quadrature.

Next we consider the second approach to developing more accurate
quadrature rules: unevenly spaced quadrature points



Gauss Quadrature

Recall that we can compare accuracy of quadrature rules based on
the polynomial degree that is integrated exactly

So far, we haven’t been very creative with our choice of quadrature
points: Newton–Cotes ⇐⇒ equally spaced

More accurate quadrature rules can be derived by choosing the xi
to maximize poly. degree that is integrated exactly

Resulting family of quadrature rules is called Gauss quadrature



Gauss Quadrature

Intuitively, with n + 1 quadrature points and n + 1 quadrature
weights we have 2n + 2 parameters to choose

Hence we might hope to integrate a poly. with 2n + 2 parameters,
i.e. of degree 2n + 1

It can be shown that this is possible =⇒ Gauss quadrature

Again the idea is to integrate a polynomial interpolant, but we
choose a specific set of interpolation points:

Gauss quad. points are roots of a Legendre polynomial6

6Adrien-Marie Legendre, 1752-1833, French mathematician



Gauss Quadrature

Briefly, Legendre polynomials {P0,P1, . . . ,Pn} form an orthogonal
basis for Pn in the “L2 inner-product”

∫ 1

−1
Pm(x)Pn(x)dx =

{
2

2n+1 , m = n

0, m 6= n



Gauss Quadrature

As with Chebyshev polys, Legendre polys satisfy a 3-term
recurrence relation

P0(x) = 1

P1(x) = x

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The first six Legendre polynomials



Gauss Quadrature

Hence, can find the roots of Pn(x) and derive the n-point Gauss
quad. rule in the same way as for Newton–Cotes:

Integrate the Lagrange interpolant!

Gauss quadrature rules have been extensively tabulated for
x ∈ [−1, 1]:

Number of points Quadrature points Quadrature weights

1 0 2

2 −1/
√

3, 1/
√

3 1, 1

3 −
√

3/5, 0,
√

3/5 5/9, 8/9, 5/9
...

...
...

Key point: Gauss quadrature weights are always positive, hence
Gauss quadrature converges as n→∞!



Gauss Quadrature Points
Points cluster toward ±1, prevents Runge’s phenomenon!

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

5 points 10 points

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

15 points 20 points



Generalization
Suppose we wish to evaluate exactly integrals of the form∫ 1

−1
w(x)f (x) dx .

Then we can calculate quadrature based on polynomials uk that
are orthogonal with respect to the inner product

〈uj , uk〉 =

∫ 1

−1
w(x)uj(x)uk(x)dx .

A typical example case is

w(x) =
1√

1− x2
.

Orthogonality relation is then

〈uj , uk〉 =

∫ 1

−1

1√
1− x2

uj(x)uk(x)dx .

Try the Chebyshev polynomials uj(x) = Tj(x) = cos(j cos−1 x).



Generalization

Using the substitution x = cos θ,

〈Tj ,Tk〉 =

∫ 1

−1

1√
1− x2

cos(j cos−1 x) cos(k cos−1 x)dx

=

∫ π

0

1√
1− cos2 θ

cos jθ cos kθ(sin θ dθ)

=

∫ π

0
cos jθ cos kθ dθ.

Using the Fourier orthogonality relations, 〈Tj ,Tk〉 = 0 for j 6= k ,
so the Chebyshev polynomials are orthogonal with respect to this
weight function.

Hence the roots of the Chebyshev polynomials can be used to
construct a quadrature formula for this w(x). This is just one
example of many possible generalizations to Gauss quadrature.



Legendre/Chebyshev comparison

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

x

T5(x) (Chebyshev)
P5(x) (Legendre)

Chebyshev roots are closer to the ends—better sampling of the
function near ±1, as expected based on w(x).



Gauss Quadrature

Python’s quad function makes use of Clenshaw–Curtis quadrature,
based on Chebyshev polynomials.

In MATLAB, quadl performs adaptive, composite Lobatto
quadrature. Lobatto quadrature is closely related to Gauss
quadrature, difference is that we ensure that −1 and 1 are
quadrature points.

From help quadl:
“ QUAD may be most efficient for low accuracies

with nonsmooth integrands.

QUADL may be more efficient than QUAD at higher

accuracies with smooth integrands. ”

Take-away message: Gauss–Lobatto quadrature is usually more
efficient for smooth integrands



Finite Difference Approximations

Given a function f : R→ R

We want to approximate derivatives of f via simple expressions
involving samples of f

As we saw in Unit 0, convenient starting point is Taylor’s theorem

f (x + h) = f (x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(x)

6
h3 + · · ·



Finite Difference Approximations

Solving for f ′(x) we get the forward difference formula

f ′(x) =
f (x + h)− f (x)

h
− f ′′(x)

2
h + · · ·

≈ f (x + h)− f (x)

h

Here we neglected an O(h) term



Finite Difference Approximations

Similarly, we have the Taylor series

f (x − h) = f (x)− f ′(x)h +
f ′′(x)

2
h2 − f ′′′(x)

6
h3 + · · ·

which yields the backward difference formula

f ′(x) ≈ f (x)− f (x − h)

h

Again we neglected an O(h) term



Finite Difference Approximations

Subtracting Taylor expansion for f (x − h) from expansion for
f (x + h) gives the centered difference formula

f ′(x) =
f (x + h)− f (x − h)

2h
− f ′′′(x)

6
h2 + · · ·

≈ f (x + h)− f (x − h)

2h

In this case we neglected an O(h2) term



Finite Difference Approximations

Adding Taylor expansion for f (x − h) and expansion for f (x + h)
gives the centered difference formula for the second derivative

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2
− f (4)(x)

12
h2 + · · ·

≈ f (x + h)− 2f (x) + f (x − h)

h2

Again we neglected an O(h2) term



Finite Difference Stencils



Finite Difference Approximations

We can use Taylor expansion to derive approximations with higher
order accuracy, or for higher derivatives

This involves developing F.D. formulae with “wider stencils,” i.e.
based on samples at x ± 2h, x ± 3h, . . .

But there is an alternative that generalizes more easily to higher
order formulae:

Differentiate the interpolant!



Finite Difference Approximations

Linear interpolant at {(x0, f (x0)), (x0 + h, f (x0 + h))} is

p1(x) = f (x0)
x0 + h − x

h
+ f (x0 + h)

x − x0
h

Differentiating p1 gives

p′1(x) =
f (x0 + h)− f (x0)

h
,

which is the forward difference formula

Question: How would we derive the backward difference formula
based on interpolation?



Finite Difference Approximations

Similarly, quadratic interpolant, p2, from interpolation points
{x0, x1, x2} yields the centered difference formula for f ′ at x1:

I Differentiate p2(x) to get a linear polynomial, p′2(x)

I Evaluate p′2(x1) to get centered difference formula for f ′

Also, p′′2 (x) gives the centered difference formula for f ′′

Note: Can apply this approach to higher degree interpolants, and
interp. pts. need not be evenly spaced



Finite Difference Approximations

So far we have talked about finite difference formulae to
approximate f ′(xi ) at some specific point xi

Question: What if we want to approximate f ′(x) on an interval
x ∈ [a, b]?

Answer: We need to simultaneously approximate f ′(xi ) for xi ,
i = 1, . . . , n



Differentiation Matrices

We need a map from the vector F ≡ [f (x1), f (x2), . . . , f (xn)] ∈ Rn

to the vector of derivatives F ′ ≡ [f ′(x1), f ′(x2), . . . , f ′(xn)] ∈ Rn

Let F̃ ′ denote our finite difference approximation to the vector of
derivatives, i.e. F̃ ′ ≈ F ′

Differentiation is a linear operator7, hence we expect the map from
F to F̃ ′ to be an n × n matrix

This is indeed the case, and this map is a differentiation matrix, D

7Since (αf + βg)′ = αf ′ + βg ′



Differentiation Matrices

Row i of D corresponds to the finite difference formula for f ′(xi ),
since then D(i ,:)F ≈ f ′(xi )

e.g. for forward difference approx. of f ′, non-zero entries of row i
are

Dii = −1

h
, Di ,i+1 =

1

h

This is a sparse matrix with two non-zero diagonals



Differentiation Matrices

n=100

h=1/(n-1)

D=np.diag(-np.ones(n)/h)+np.diag(np.ones(n-1)/h,1)

plt.spy(D)

plt.show()

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 199



Differentiation Matrices

But what about the last row?

80 85 90 95 100

80

85

90

95

100

nz = 199

Dn,n+1 = 1
h is ignored!



Differentiation Matrices
We can use the backward difference formula (which has the same
order of accuracy) for row n instead

Dn,n−1 = −1

h
, Dnn =

1

h

80 85 90 95 100

80

85

90

95

100

nz = 200

Python demo: [diff.py ] Differentiation matrices

https://github.com/chr1shr/am205_examples/blob/master/3_num_calculus/diff.py

