
Unit 2: Numerical Linear Algebra

Motivation

Almost everything in Scientific Computing relies on Numerical
Linear Algebra!

We often reformulate problems as Ax = b, e.g. from Unit 1:

▶ Interpolation (Vandermonde matrix) and linear least-squares
(normal equations) are naturally expressed as linear systems

▶ Gauss–Newton/Levenberg–Marquardt involve approximating
nonlinear problem by a sequence of linear systems

Similar themes will arise in remaining units (Numerical Calculus,
Optimization, Eigenvalue problems)

Motivation

The goal of this unit is to cover:

▶ key linear algebra concepts that underpin Scientific Computing

▶ algorithms for solving Ax = b in a stable and efficient manner

▶ algorithms for computing factorizations of A that are useful in
many practical contexts (LU, QR)

First, we discuss some practical cases where Ax = b arises directly
in mathematical modeling of physical systems

Example: Electric Circuits

Ohm’s Law: Voltage drop due to a current i through a resistor R
is V = iR

Kirchoff’s Law: The net voltage drop in a closed loop is zero

Example: Electric Circuits

Let ij denote the current in “loop j”

Then, we obtain the linear system:

 (R1 + R3 + R4) R3 R4

R3 (R2 + R3 + R5) −R5

R4 −R5 (R4 + R5 + R6)

 i1
i2
i3


=

 V1

V2

0



Circuit simulators solve large linear systems of this type

Example: Structural Analysis

Common in structural analysis to use a linear relationship between
force and displacement, Hooke’s Law

Simplest case is the Hookean spring law

F = kx ,

▶ k : spring constant (stiffness)

▶ F : applied load

▶ x : spring extension

Example: Structural Analysis

This relationship can be generalized to structural systems in 2D
and 3D, which yields a linear system of the form

Kx = F

▶ K ∈ Rn×n: “stiffness matrix”

▶ F ∈ Rn: “load vector”

▶ x ∈ Rn: “displacement vector”

Example: Structural Analysis

Solving the linear system yields the displacement (x), hence we can
simulate structural deflection under applied loads (F)

Kx=F−−−−→

Unloaded structure Loaded structure

Example: Structural Analysis
It is common engineering practice to use Hooke’s Law to simulate
complex structures, which leads to large linear systems

(From SAP2000, structural analysis software)

Example: Economics

Leontief awarded Nobel Prize in Economics in 1973 for developing
linear input/output model for production/consumption of goods

Consider an economy in which n goods are produced and consumed

▶ A ∈ Rn×n: aij represents amount of good j required to
produce 1 unit of good i

▶ x ∈ Rn: xi is number of units of good i produced

▶ d ∈ Rn: di is consumer demand for good i

In general aii = 0, and A may or may not be sparse

Example: Economics

The total amount of xi produced is given by the sum of consumer
demand (di) and the amount of xi required to produce each xj

xi = ai1x1 + ai2x2 + · · ·+ ainxn︸ ︷︷ ︸
production of other goods

+di

Hence x = Ax + d or,
(I− A)x = d

Solve for x to determine the required amount of production of
each good

If we consider many goods (e.g. an entire economy), then we get a
large linear system

Summary

Matrix computations arise all over the place!

Numerical Linear Algebra algorithms provide us with a toolbox for
performing these computations in an efficient and stable manner

In most cases, can use these tools as black boxes, but it’s
important to understand what the linear algebra black boxes do:

▶ Pick the right algorithm for a given situation (e.g. exploit
structure in a problem: symmetry, bandedness, etc.)

▶ Understand how and when the black box can fail

Preliminaries

In this chapter we will focus on linear systems Ax = b for
A ∈ Rn×n and b, x ∈ Rn

Recall that it is often helpful to think of matrix multiplication as a
linear combination of the columns of A, where xj are the weights

That is, we have b = Ax =
∑n

j=1 xja(:,j) where a(:,j) ∈ Rn is the

j th column of A and xj are scalars

Preliminaries

This can be displayed schematically as b

 =

 a(:,1) a(:,2) · · · a(:,n)




x1
x2
...
xn



= x1

 a(:,1)

 + · · ·+ xn

 a(:,n)



Preliminaries

We therefore interpret Ax = b as: “x is the vector of coefficients
of the linear expansion of b in the basis of columns of A”

Often this is a more helpful point of view than conventional
interpretation of “dot-product of matrix row with vector”

e.g. from “linear combination of columns” view we immediately
see that Ax = b has a solution if

b ∈ span{a(:,1), a(:,2), · · · , a(:,n)}

(this holds even if A isn’t square)

Let us write image(A) ≡ span{a(:,1), a(:,2), · · · , a(:,n)}

Preliminaries

Existence and Uniqueness:

Solution x ∈ Rn exists if b ∈ image(A)

If solution x exists and the set {a(:,1), a(:,2), · · · , a(:,n)} is linearly
independent, then x is unique1

If solution x exists and ∃z ̸= 0 such that Az = 0, then also
A(x + γz) = b for any γ ∈ R, hence infinitely many solutions

If b ̸∈ image(A) then Ax = b has no solution

1Linear independence of columns of A is equivalent to Az = 0 =⇒ z = 0

Preliminaries

The inverse map A−1 : Rn → Rn is well-defined if and only if
Ax = b has unique solution for all b ∈ Rn

Unique matrix A−1 ∈ Rn×n such that AA−1 = A−1A = I exists if
any of the following equivalent conditions are satisfied:

▶ det(A) ̸= 0

▶ rank(A) = n

▶ For any z ̸= 0, Az ̸= 0 (null space of A is {0})

A is non-singular if A−1 exists, and then x = A−1b ∈ Rn

A is singular if A−1 does not exist

Norms

A norm ∥ · ∥ : V → R is a function on a vector space V that
satisfies

▶ ∥x∥ ≥ 0 and ∥x∥ = 0 =⇒ x = 0

▶ ∥γx∥ = |γ|∥x∥, for γ ∈ R
▶ ∥x + y∥ ≤ ∥x∥+ ∥y∥

Norms

Also, the triangle inequality implies another helpful inequality: the
“reverse triangle inequality”, |∥x∥ − ∥y∥| ≤ ∥x − y∥

Proof: Let a = y , b = x − y , then

∥x∥ = ∥a+b∥ ≤ ∥a∥+∥b∥ = ∥y∥+∥x−y∥ =⇒ ∥x∥−∥y∥ ≤ ∥x−y∥

Repeat with a = x , b = y − x to show |∥x∥ − ∥y∥| ≤ ∥x − y∥

Vector Norms

Let’s now introduce some common norms on Rn

Most common norm is the Euclidean norm (or 2-norm):

∥x∥2 ≡

√√√√ n∑
j=1

x2
j

2-norm is special case of the p-norm for any p ≥ 1:

∥x∥p ≡

(
n∑

j=1

|xj |p
)1/p

Also, limiting case as p → ∞ is the ∞-norm:

∥x∥∞ ≡ max
1≤i≤n

|xi |

Vector Norms

[norm.py] ∥x∥∞ = 2.35, we see that p-norm approaches ∞-norm:
picks out the largest entry in x

0 20 40 60 80 100
2

3

4

5

6

7

8

1 ≤ p ≤ 100

p norm

infty norm

https://github.com/chr1shr/am205_examples/blob/master/2_num_lin_alg/norm.py

Vector Norms

We generally use whichever norm is most convenient/appropriate
for a given problem, e.g. 2-norm for least-squares analysis

Different norms give different (but related) measures of size

In particular, an important mathematical fact is:

All norms on a finite dimensional space (such as Rn) are
equivalent

Vector Norms

That is, let ∥ · ∥a and ∥ · ∥b be two norms on a finite dimensional
space V , then ∃c1, c2 ∈ R>0 such that for any x ∈ V

c1∥x∥a ≤ ∥x∥b ≤ c2∥x∥a

(Also, from above we have 1
c2
∥x∥b ≤ ∥x∥a ≤ 1

c1
∥x∥b)

Hence if we can derive an inequality in an arbitrary norm on V , it
applies (after appropriate scaling) in any other norm too

Vector Norms

In some cases we can explicitly calculate values for c1, c2:

e.g. ∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2, since

∥x∥22 =

 n∑
j=1

|xj |2
 ≤

 n∑
j=1

|xj |

2

= ∥x∥21 =⇒ ∥x∥2 ≤ ∥x∥1

[e.g. consider |a|2 + |b|2 ≤ |a|2 + |b|2 + 2|a||b| = (|a|+ |b|)2]

∥x∥1 =
n∑

j=1

1× |xj | ≤

 n∑
j=1

12

1/2∑
j=1

|xj |2
1/2

=
√
n ∥x∥2

[We used Cauchy-Schwarz inequality in Rn:∑n
j=1 ajbj ≤ (

∑n
j=1 a

2
j)

1/2(
∑n

j=1 b
2
j)

1/2]

Vector Norms

Different norms give different
measurements of size

The “unit circle” in three different
norms: {x ∈ R2 : ∥x∥p = 1} for
p = 1, 2,∞

Matrix Norms

There are many ways to define norms on matrices

For example, the Frobenius norm is defined as:

∥A∥F ≡

 n∑
i=1

n∑
j=1

|aij |2
1/2

(If we think of A as a vector in Rn2 , then Frobenius is equivalent to
the vector 2-norm of A)

Matrix Norms

Usually the matrix norms induced by vector norms are most useful,
e.g.:

∥A∥p ≡ max
x ̸=0

∥Ax∥p
∥x∥p

= max
∥x∥p=1

∥Ax∥p

This definition implies the useful property ∥Ax∥p ≤ ∥A∥p∥x∥p,
since

∥Ax∥p =
∥Ax∥p
∥x∥p

∥x∥p ≤
(
max
v ̸=0

∥Av∥p
∥v∥p

)
∥x∥p = ∥A∥p∥x∥p

Matrix Norms

The 1-norm and ∞-norm can be calculated straightforwardly:

∥A∥1 = max
1≤j≤n

∥a(:,j)∥1 (max column sum)

∥A∥∞ = max
1≤i≤n

∥a(i ,:)∥1 (max row sum)

We will see how to compute the matrix 2-norm next chapter

Condition Number

Recall from Unit 0 that the condition number of A ∈ Rn×n is
defined as

κ(A) ≡ ∥A∥∥A−1∥
The value of κ(A) depends on which norm we use

Both Python and Matlab can calculate the condition number for
different norms

If A is square then by convention A singular =⇒ κ(A) = ∞

The Residual

Recall that the residual r(x) = b − Ax was crucial in least-squares
problems

It is also crucial in assessing the accuracy of a proposed solution
(x̂) to a square linear system Ax = b

Key point: The residual r(x̂) is always computable, whereas in
general the error ∆x ≡ x − x̂ isn’t

The Residual

We have that ∥∆x∥ = ∥x − x̂∥ = 0 if and only if ∥r(x̂)∥ = 0

However, small residual doesn’t necessarily imply small ∥∆x∥

Observe that

∥∆x∥ = ∥x − x̂∥ = ∥A−1(b − Ax̂)∥ = ∥A−1r(x̂)∥ ≤ ∥A−1∥∥r(x̂)∥

Hence

∥∆x∥
∥x̂∥ ≤ ∥A−1∥∥r(x̂)∥

∥x̂∥ =
∥A∥∥A−1∥∥r(x̂)∥

∥A∥∥x̂∥ = κ(A)
∥r(x̂)∥
∥A∥∥x̂∥ (∗)

The Residual

Define the relative residual as ∥r(x̂)∥/(∥A∥∥x̂∥)

Then our inequality states that “relative error is bounded by
condition number times relative residual”

This is just like our condition number relationship from Unit 0:

κ(A) ≥ ∥∆x∥/∥x∥
∥∆b∥/∥b∥ , i.e.

∥∆x∥
∥x∥ ≤ κ(A)

∥∆b∥
∥b∥ (∗∗)

The reason (∗) and (∗∗) are related is that the residual measures
the “input pertubation” in Ax = b

To see this, let’s consider Ax = b to be a map b ∈ Rn → x ∈ Rn

The Residual

Then we can consider x̂ to be the exact solution for some
perturbed input b̂ = b +∆b, i.e. Ax̂ = b̂

The residual associated with x̂ is r(x̂) = b − Ax̂ = b − b̂ = −∆b,
i.e. ∥r(x̂)∥ = ∥∆b∥

In general, a numerically stable algorithm gives us the exact
solution to a slightly perturbed problem, i.e. a small residual2

This is a reasonable expectation for a stable algorithm: rounding
error doesn’t accumulate, so effective input perturbation is small

2More precisely, this is called a “backward stable algorithm”

The Residual (Heath, Example 2.8)

Consider a 2× 2 example to clearly demonstrate the difference
between residual and error

Ax =

[
0.913 0.659
0.457 0.330

] [
x1
x2

]
=

[
0.254
0.127

]
= b

The exact solution is given by x = [1,−1]T

Suppose we compute two different approximate solutions (e.g.
using two different algorithms)

x̂(i) =

[
−0.0827

0.5

]
, x̂(ii) =

[
0.999
−1.001

]

The Residual (Heath, Example 2.8)

Then,

∥r(x̂(i))∥1 = 2.1× 10−4, ∥r(x̂(ii))∥1 = 2.4× 10−2

but
∥x − x̂(i)∥1 = 2.58, ∥x − x̂(ii)∥1 = 0.002

In this case, x̂(ii) is better solution, but has larger residual!

This is possible here because κ(A) = 1.25× 104 is quite large
(i.e. rel. error ≤ 1.25× 104 × rel. residual)

Solving Ax = b

Familiar idea for solving Ax = b is to use Gaussian elimination to
transform Ax = b to a triangular system

What is a triangular system?

▶ Upper triangular matrix U ∈ Rn×n: if i > j then uij = 0

▶ Lower triangular matrix L ∈ Rn×n: if i < j then ℓij = 0

Question: Why is triangular good?

Answer: Because triangular systems are easy to solve!

Solving Ax = b

Suppose we have Ux = b, then we can use “back-substitution”

xn = bn/unn

xn−1 = (bn−1 − un−1,nxn)/un−1,n−1

...

xj =

bj −
n∑

k=j+1

ujkxk

 /ujj

...

Solving Ax = b

Similarly, we can use forward substitution for a lower triangular
system Lx = b

x1 = b1/ℓ11

x2 = (b2 − ℓ21x1)/ℓ22
...

xj =

(
bj −

j−1∑
k=1

ℓjkxk

)
/ℓjj

...

Solving Ax = b

Back and forward substitution can be implemented with doubly
nested for-loops

The computational work is dominated by evaluating the sum∑j−1
k=1 ℓjkxk , j = 1, . . . , n

We have j − 1 additions and multiplications in this loop for each
j = 1, . . . , n, i.e. 2(j − 1) operations for each j

Hence the total number of floating point operations in back or
forward substitution is asymptotic to:

2
n∑

j=1

j = 2n(n + 1)/2 ∼ n2

Solving Ax = b

Here “∼” refers to asymptotic behavior, e.g.

f (n) ∼ n2 ⇐⇒ lim
n→∞

f (n)

n2
= 1

We often also use “big-O” notation, e.g. for remainder terms in
Taylor expansion

f (x) = O(g(x)) if there exists M ∈ R>0, x0 ∈ R such that
|f (x)| ≤ M|g(x)| for all x ≥ x0

In the present context we prefer “∼” since it indicates the correct
scaling of the leading-order term

e.g. let f (n) ≡ n2/4 + n, then f (n) = O(n2), whereas f (n) ∼ n2/4

Solving Ax = b

So transforming Ax = b to a triangular system is a sensible goal,
but how do we achieve it?

Observation: If we premultiply Ax = b by a nonsingular matrix M
then the new system MAx = Mb has the same solution

Hence, want to devise a sequence of matrices M1,M2, · · · ,Mn−1

such that MA ≡ Mn−1 · · ·M1A ≡ U is upper triangular

This process is Gaussian Elimination, and gives the transformed
system Ux = Mb

LU Factorization

We will show shortly that it turns out that if MA = U, then we
have that L ≡ M−1 is lower triangular

Therefore we obtain A = LU: product of lower and upper
triangular matrices

This is the LU factorization of A

LU Factorization

LU factorization is the most common way of solving linear systems!

Ax = b ⇐⇒ LUx = b

Let y ≡ Ux , then Ly = b: solve for y via forward substitution3

Then solve for Ux = y via back substitution

3y = L−1b is the transformed right-hand side vector (i.e. Mb from earlier)
that we are familiar with from Gaussian elimination

LU Factorization

Next question: How should we determine M1,M2, · · · ,Mn−1?

We need to be able to annihilate selected entries of A, below the
diagonal in order to obtain an upper-triangular matrix

To do this, we use “elementary elimination matrices”

Let Lj denote j th elimination matrix (we use “Lj” rather than “Mj”
from now on as elimination matrices are lower triangular)

LU Factorization

Let X (≡ Lj−1Lj−2 · · · L1A) denote matrix at the start of step j ,
and let x(:,j) ∈ Rn denote column j of X

Then we define Lj such that

Ljx(:,j) ≡



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −xj+1,j/xjj 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −xnj/xjj 0 · · · 1





x1j
...
xjj

xj+1,j

...
xnj


=



x1j
...
xjj
0
...
0



LU Factorization

To simplify notation, we let ℓij ≡ xij
xjj

in order to obtain

Lj ≡



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −ℓj+1,j 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −ℓnj 0 · · · 1



LU Factorization

Using elementary elimination matrices we can reduce A to upper
triangular form, one column at a time

Schematically, for a 4× 4 matrix, we have
× × × ×
× × × ×
× × × ×
× × × ×

 L1−→


× × × ×
0 × × ×
0 × × ×
0 × × ×

 L2−→


× × × ×
0 × × ×
0 0 × ×
0 0 × ×


A L1A L2L1A

Key point: Lk does not affect columns 1, 2, . . . , k − 1 of
Lk−1Lk−2 . . . L1A

LU Factorization

After n − 1 steps, we obtain the upper triangular matrix
U = Ln−1 · · · L2L1A

U =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×



LU Factorization

Finally, we wish to form the factorization A = LU, hence we need
L = (Ln−1 · · · L2L1)−1 = L−1

1 L−1
2 · · · L−1

n−1

This turns out to be surprisingly simple due to two strokes of luck!

First stroke of luck: L−1
j is obtained simply by negating the

subdiagonal entries of Lj

Lj ≡



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −ℓj+1,j 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −ℓnj 0 · · · 1


, L−1

j ≡



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · ℓj+1,j 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · ℓnj 0 · · · 1



LU Factorization

Explanation: Let ℓj ≡ [0, . . . , 0, ℓj+1,j , . . . , ℓnj]
T so that

Lj = I− ℓje
T
j

Now consider Lj(I+ ℓje
T
j):

Lj(I+ℓje
T
j) = (I−ℓje

T
j)(I+ℓje

T
j) = I−ℓje

T
j ℓje

T
j = I−ℓj(e

T
j ℓj)e

T
j

Also, (eTj ℓj) = 0 (why?) so that Lj(I+ ℓje
T
j) = I

By the same argument (I+ ℓje
T
j)Lj = I, and hence

L−1
j = (I+ ℓje

T
j)

LU Factorization

Next we want to form the matrix L ≡ L−1
1 L−1

2 · · · L−1
n−1

Note that we have

L−1
j L−1

j+1 = (I+ ℓje
T
j)(I+ ℓj+1e

T
j+1)

= I+ ℓje
T
j + ℓj+1e

T
j+1 + ℓj(e

T
j ℓj+1)e

T
j+1

= I+ ℓje
T
j + ℓj+1e

T
j+1

Interestingly, this convenient result doesn’t hold for L−1
j+1L

−1
j , why?

LU Factorization

Similarly,

L−1
j L−1

j+1L
−1
j+2 = (I+ ℓje

T
j + ℓj+1e

T
j+1)(I+ ℓj+2e

T
j+2)

= I+ ℓje
T
j + ℓj+1e

T
j+1 + ℓj+2e

T
j+2

That is, to compute the product L−1
1 L−1

2 · · · L−1
n−1 we simply collect

the subdiagonals for j = 1, 2, . . . , n − 1

LU Factorization

Hence, second stroke of luck:

L ≡ L−1
1 L−1

2 · · · L−1
n−1 =


1
ℓ21 1
ℓ31 ℓ32 1
...

...
. . .

. . .

ℓn1 ℓn2 · · · ℓn,n−1 1



LU Factorization

Therefore, basic LU factorization algorithm is

1: U = A, L = I
2: for j = 1 : n − 1 do
3: for i = j + 1 : n do
4: ℓij = uij/ujj
5: for k = j : n do
6: uik = uik − ℓijujk
7: end for
8: end for
9: end for

Note that the entries of U are updated each iteration so at the
start of step j , U = Lj−1Lj−2 · · · L1A

Here line 4 comes straight from the definition ℓij ≡ uij
ujj

LU Factorization

Line 6 accounts for the effect of Lj on columns k = j , j + 1, . . . , n
of U

For k = j : n we have

Lju(:,k) ≡



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −ℓj+1,j 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −ℓnj 0 · · · 1





u1k
...
ujk

uj+1,k

...
unk


=



u1k
...
ujk

uj+1,k − ℓj+1,jujk
...

unk − ℓnjujk


The vector on the right is the updated kth column of U, which is
computed in line 6

LU Factorization

LU Factorization involves a triply-nested for-loop, hence O(n3)
calculations

Careful operation counting shows LU factorization requires ∼ 1
3n

3

additions and ∼ 1
3n

3 multiplications, ∼ 2
3n

3 operations in total

Solving a linear system using LU

Hence to solve Ax = b, we perform the following three steps:

Step 1: Factorize A into L and U: ∼ 2
3n

3

Step 2: Solve Ly = b by forward substitution: ∼ n2

Step 3: Solve Ux = y by back substitution: ∼ n2

Total work is dominated by Step 1, ∼ 2
3n

3

Solving a linear system using LU

An alternative approach would be to compute A−1 explicitly and
evaluate x = A−1b, but this is a bad idea!

Question: How would we compute A−1?

Solving a linear system using LU

Answer: Let ainv(:,k) denote the kth column of A−1, then ainv(:,k) must
satisfy

Aainv(:,k) = ek

Therefore to compute A−1, we first LU factorize A, then
back/forward substitute for rhs vector ek , k = 1, 2, . . . , n

The n back/forward substitutions alone require ∼ 2n3 operations,
inefficient!

A rule of thumb in Numerical Linear Algebra: It is almost always a
bad idea to compute A−1 explicitly

Solving a linear system using LU

Another case where LU factorization is very helpful is if we want to
solve Ax = bi for several different right-hand sides bi , i = 1, . . . , k

We incur the ∼ 2
3n

3 cost only once, and then each subequent
forward/back subsitution costs only ∼ 2n2

Makes a huge difference if n is large!

Stability of Gaussian Elimination

There is a problem with the LU algorithm presented above

Consider the matrix

A =

[
0 1
1 1

]

A is nonsingular, well-conditioned (κ(A) ≈ 2.62) but LU
factorization fails at first step (division by zero)

Stability of Gaussian Elimination

LU factorization doesn’t fail for

A =

[
10−20 1
1 1

]
but we get

L =

[
1 0

1020 1

]
, U =

[
10−20 1
0 1− 1020

]

Stability of Gaussian Elimination

Let’s suppose that −1020 ∈ F (a floating point number) and that
round(1− 1020) = −1020

Then in finite precision arithmetic we get

L̃ =

[
1 0

1020 1

]
, Ũ =

[
10−20 1
0 −1020

]

Stability of Gaussian Elimination

Hence due to rounding error we obtain

L̃Ũ =

[
10−20 1
1 0

]
which is not close to

A =

[
10−20 1
1 1

]
Then, for example, let b = [3, 3]T

▶ Using L̃Ũ, we get x̃ = [3, 3]T

▶ True answer is x = [0, 3]T

Hence large relative error (rel. err. = 1) even though the problem
is well-conditioned

Stability of Gaussian Elimination

In this example, standard Gaussian elimination yields a large
residual

Or equivalently, it yields the exact solution to a problem
corresponding to a large input perturbation: ∆b = [0, 3]T

Hence unstable algorithm! In this case the cause of the large error
in x is numerical instability, not ill-conditioning

To stabilize Gaussian elimination, we need to permute rows, i.e.
perform pivoting

Pivoting

Recall the Gaussian elimination process
× × × ×

xjj × ×
× × ×
× × ×

 −→


× × × ×

xjj × ×
0 × ×
0 × ×


But we could just as easily do

× × × ×
× × ×
xij × ×
× × ×

 −→


× × × ×

0 × ×
xij × ×
0 × ×



Partial Pivoting

The entry xij is called the pivot, and flexibility in choosing the
pivot is essential otherwise we can’t deal with:

A =

[
0 1
1 1

]

From a numerical stability point of view, it is crucial to choose the
pivot to be the largest entry in column j : “partial pivoting”4

This ensures that each ℓij entry — which acts as a multiplier in the
LU factorization process — satisfies |ℓij | ≤ 1

4Full pivoting refers to searching through columns j : n for the largest entry;
this is more expensive and only marginal benefit to stability in practice

Partial Pivoting

To maintain the triangular LU structure, we permute rows by
premultiplying by permutation matrices


× × × ×

× × ×
× × ×
xij × ×

 P1−→


× × × ×

xij × ×
× × ×
× × ×

 L1−→


× × × ×

xij × ×
0 × ×
0 × ×


Pivot selection Row interchange

In this case

P1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


and each Pj is obtained by swapping two rows of I

Partial Pivoting

Therefore, with partial pivoting we obtain

Ln−1Pn−1 · · · L2P2L1P1A = U

It can be shown (we omit the details here, see Trefethen & Bau)
that this can be rewritten as

PA = LU

where5 P ≡ Pn−1 · · ·P2P1

Theorem: Gaussian elimination with partial pivoting produces
nonsingular factors L and U if and only if A is nonsingular.

5The L matrix here is lower triangular, but not the same as L in the
non-pivoting case: we have to account for the row swaps

Partial Pivoting
Pseudocode for LU factorization with partial pivoting (blue text is
new):

1: U = A, L = I, P = I
2: for j = 1 : n − 1 do
3: Select i(≥ j) that maximizes |uij |
4: Interchange rows of U: u(j ,j :n) ↔ u(i ,j :n)
5: Interchange rows of L: ℓ(j ,1:j−1) ↔ ℓ(i ,1:j−1)

6: Interchange rows of P: p(j ,:) ↔ p(i ,:)
7: for i = j + 1 : n do
8: ℓij = uij/ujj
9: for k = j : n do

10: uik = uik − ℓijujk
11: end for
12: end for
13: end for

Again this requires ∼ 2
3n

3 floating point operations

Partial Pivoting: Solve Ax = b

To solve Ax = b using the factorization PA = LU:

▶ Multiply through by P to obtain PAx = LUx = Pb

▶ Solve Ly = Pb using forward substitution

▶ Then solve Ux = y using back substitution

Partial Pivoting in Python
Python’s scipy.linalg.lu function can do LU factorization with
pivoting.

Python 3.8.5 (default, Sep 6 2020, 03:54:05)

[Clang 11.0.3 (clang-1103.0.32.62)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> import scipy.linalg

>>> a=np.random.random((4,4))

>>> a

array([[0.7565817 , 0.69602842, 0.46957017, 0.51744408],

[0.91458599, 0.6853307 , 0.0949905 , 0.41508579],

[0.29342843, 0.833517 , 0.7024628 , 0.16247883],

[0.33738185, 0.56514679, 0.89047111, 0.62546956]])

>>> (p,l,u)=scipy.linalg.lu(a)

>>> p

array([[0., 0., 0., 1.],

[1., 0., 0., 0.],

[0., 1., 0., 0.],

[0., 0., 1., 0.]])

>>> l

array([[1. , 0. , 0. , 0.],

[0.32083197, 1. , 0. , 0.],

[0.36889024, 0.50898649, 1. , 0.],

[0.82723954, 0.21037669, 0.48621147, 1.]])

>>> u

array([[0.91458599, 0.6853307 , 0.0949905 , 0.41508579],

[0. , 0.613641 , 0.67198681, 0.02930604],

[0. , 0. , 0.51339783, 0.45743209],

[0. , 0. , 0. , -0.05450533]])

Stability of Gaussian Elimination

Numerical stability of Gaussian Elimination has been an important
research topic since the 1940s

Major figure in this field: James H. Wilkinson (English numerical
analyst, 1919–1986)

Showed that for Ax = b with A ∈ Rn×n:

▶ Gaussian elimination without partial pivoting is numerically
unstable (as we’ve already seen)

▶ Gaussian elimination with partial pivoting satisfies

∥r∥
∥A∥∥x∥ ≤ 2n−1n2ϵmach

Stability of Gaussian Elimination

That is, pathological cases exist where the relative residual,
∥r∥/∥A∥∥x∥, grows exponentially with n due to rounding error

Worst case behavior of Gaussian Elimination with partial pivoting is
explosive instability but such pathological cases are extremely rare!

In over 50 years of Scientific Computation, instability has only been
encountered due to deliberate construction of pathological cases

In practice, Gaussian elimination is stable in the sense that it
produces a small relative residual

Stability of Gaussian Elimination

In practice, we typically obtain

∥r∥
∥A∥∥x∥ ≲ nϵmach,

i.e. grows only linearly with n, and is scaled by ϵmach

Combining this result with our inequality:

∥∆x∥
∥x∥ ≤ κ(A)

∥r∥
∥A∥∥x∥

implies that in practice Gaussian elimination gives small error for
well-conditioned problems!

Cholesky Factorization

Cholesky factorization

Suppose that A ∈ Rn×n is an “SPD” matrix, i.e.:

▶ Symmetric: AT = A

▶ Positive Definite: for any v ̸= 0, vTAv > 0

Then the LU factorization of A can be arranged so that U = LT ,
i.e. A = LLT (but in this case L may not have 1s on the diagonal)

Consider the 2× 2 case:[
a11 a21
a21 a22

]
=

[
ℓ11 0
ℓ21 ℓ22

] [
ℓ11 ℓ21
0 ℓ22

]
Equating entries gives

ℓ11 =
√
a11, ℓ21 = a21/ℓ11, ℓ22 =

√
a22 − ℓ221

Cholesky factorization

This approach of equating entries can be used to derive the
Cholesky factorization for the general n × n case

1: L = A
2: for j = 1 : n do
3: ℓjj =

√
ℓjj

4: for i = j + 1 : n do
5: ℓij = ℓij/ℓjj
6: end for
7: for k = j + 1 : n do
8: for i = k : n do
9: ℓik = ℓik − ℓijℓkj

10: end for
11: end for
12: end for

Cholesky factorization

Notes on Cholesky factorization:

▶ For an SPD matrix A, Cholesky factorization is numerically
stable and does not require any pivoting

▶ Operation count: ∼ 1
3n

3 operations in total, i.e. about half as
many as Gaussian elimination

▶ Only need to store L, hence uses less memory than LU

Timing algorithms

Up to now, we have shown that for a matrix A ∈ Rn×n, the LU
factorization requires ∼ 2

3n
3 operations

If A is symmetric and positive definite, then the Cholesky
factorization can be performed in ∼ 1

3n
3 operations

These asymptotic expressions were found by analyzing the
algorithms and counting the floating point operations required

It is useful to examine the real-world performance of these
algorithms, since various computer hardware factors (e.g. memory
bandwidth, caching) may be important

Two measures of time

There are different ways to think about time taken on a computer,
and we’ll consider two

Wall-clock time measures the time as perceived by the computer
user (i.e. by looking at the clock on the wall)

Processor time measures the time that a program spends being
processed on a CPU

How the two timing measures differ
A job (shown in orange) is run on an idle CPU core. The
wall-clock time and processor time are similar.

Idle

Physical
time

CPU
usage

Wall-clock time

Processor time

If the CPU core is under load and running other tasks, the job will
be rapidly switched on and off the core. Wall-clock time will
increase but processor time will be similar.

Physical
time

CPU
usage

Wall-clock time

Processor time is the sum of these

Other
task

Other
task

Other
task

Other
task

Examples of timing

Which timing method should we use?

Wall-clock time is often the most important aspect to the user

But as the example shows, processor time is more insensitive to
various real-world factors

Often it is useful to have both measurements available to us

Modern CPU features

Most modern CPUs have multiple cores that can process
independent jobs simultaneously

Laptops typically have CPUs with 2–8 cores, and desktops have
CPUs with 4–16 cores

In addition, over the last decade CPU makers such as Intel and
AMD have developed a technology called hyperthreading, where
each physical core appears to the system as two virtual cores

Two programs are rapidly switched on the same physical core. Can
be good for system responsiveness, but physical cores usually the
most important for scientific computing performance.

Timing example

[timing test.py] Comparing wall-clock time and processor time for
a sample calculation

5

10

15

20

25

30

1 2 3 4 5 6 7 8

T
im

e
(s

)

Simultaneous jobs

Wall-clock time
Processor time

https://github.com/chr1shr/am205_examples/blob/master/2_num_lin_alg/timing_test.py

Timing example

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

R
at

io

Simultaneous jobs

(Processor time)/(Wall-clock time)
(WC time for one job)/(Wall-clock time)

(Proc. time)/(WC time) starts to decrease after 4 jobs (i.e once the
number of virtual cores is exceeded)

But comparing WC time for n jobs with the WC time for one job, shows

that actual performance is lowered after 2 jobs (i.e. once the number of

physical cores is exceeded)

Timing numerical linear algebra routines

[lu time.py and chol time.py] Measuring the time of the LU and
Cholesky factorizations

10−5

10−4

10−3

10−2

0.1

1

10 100 1000 10000

∝ n
3

W
al

l-c
lo

ck
tim

e
(s

)

Number of matrix rows and columns, n

LU factorization
Cholesky factorization

https://github.com/chr1shr/am205_examples/blob/master/2_num_lin_alg/lu_time.py
https://github.com/chr1shr/am205_examples/blob/master/2_num_lin_alg/chol_time.py

Sparse Matrices

In applications, we often encounter sparse matrices

A prime example is in discretization of partial differential equations
(covered in the next section)

“Sparse matrix” is not precisely defined, roughly speaking it is a
matrix that is “mostly zeros”

From a computational point of view it is advantageous to store
only the non-zero entries

The set of non-zero entries of a sparse matrix is referred to as its
sparsity pattern

Sparse Matrices

A =

2 2 2 2 2

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

A sparse =

(1,1) 2

(1,2) 2

(2,2) 1

(1,3) 2

(3,3) 1

(1,4) 2

(4,4) 1

(1,5) 2

(5,5) 1

Sparse Matrices

From a mathematical point of view, sparse matrices are no
different from dense matrices

But from Sci. Comp. perspective, sparse matrices require different
data structures and algorithms for computational efficiency

e.g., can apply LU or Cholesky to sparse A, but “new” non-zeros
(i.e. outside sparsity pattern of A) are introduced in the factors

These new non-zero entries are called “fill-in” — many methods
exist for reducing fill-in by permuting rows and columns of A

QR Factorization

A square matrix Q ∈ Rn×n is called orthogonal if its columns and
rows are orthonormal vectors

Equivalently, QTQ = QQT = I

Orthogonal matrices preserve the Euclidean norm of a vector, i.e.

∥Qv∥22 = vTQTQv = vT v = ∥v∥22

Hence, geometrically, we picture orthogonal matrices as reflection
or rotation operators

Orthogonal matrices are very important in scientific computing,
norm-preservation implies no amplification of numerical error!

QR Factorization

A matrix A ∈ Rm×n, m ≥ n, can be factorized into

A = QR

where

▶ Q ∈ Rm×m is orthogonal

▶ R ≡
[
R̂
0

]
∈ Rm×n

▶ R̂ ∈ Rn×n is upper-triangular

QR is very good for solving overdetermined linear least-squares
problems, Ax ≃ b 6

6QR can also be used to solve a square system Ax = b, but requires ∼ 2×
as many operations as Gaussian elimination hence not the standard choice

QR Factorization

To see why, consider the 2-norm of the least squares residual:

∥r(x)∥22 = ∥b − Ax∥22 = ∥b − Q

[
R̂
0

]
x∥22

= ∥QT

(
b − Q

[
R̂
0

]
x

)
∥22

= ∥QTb −
[
R̂
0

]
x∥22

(We used the fact that ∥QT z∥2 = ∥z∥2 in the second line)

QR Factorization

Then, let QTb = [c1, c2]
T where c1 ∈ Rn, c2 ∈ Rm−n, so that

∥r(x)∥22 = ∥c1 − R̂x∥22 + ∥c2∥22

Question: Based on this expression, how do we minimize ∥r(x)∥2?

QR Factorization

Answer: We can’t influence the second term, ∥c2∥22, since it
doesn’t contain an x

Hence we minimize ∥r(x)∥22 by making the first term zero

That is, we solve the n× n triangular system R̂x = c1 — this what
Python does in its lstsq function for solving least squares

Also, this tells us that min
x∈Rn

∥r(x)∥2 = ∥c2∥2

QR Factorization

Recall that solving linear least-squares via the normal equations
requires solving a system with the matrix ATA

But using the normal equations directly is problematic since
cond(ATA) = cond(A)2 (this is a consequence of the SVD, which
we’ll cover soon)

The QR approach avoids this condition-number-squaring effect and
is much more numerically stable!

QR Factorization

How do we compute the QR Factorization?

There are three main methods

▶ Gram–Schmidt orthogonalization

▶ Householder triangularization

▶ Givens rotations

Gram–Schmidt Orthogonalization

Suppose A ∈ Rm×n, m ≥ n

One way to picture the QR factorization is to construct a sequence
of orthonormal vectors q1, q2, . . . such that

span{q1, q2, . . . , qj} = span{a(:,1), a(:,2), . . . , a(:,j)}, j = 1, . . . , n

We seek coefficients rij such that

a(:,1) = r11q1,

a(:,2) = r12q1 + r22q2,

...

a(:,n) = r1nq1 + r2nq2 + · · ·+ rnnqn.

This can be done via the Gram–Schmidt process, as we’ll discuss
shortly

Gram–Schmidt Orthogonalization

In matrix form we have: a(:,1) a(:,2) · · · a(:,n)

 =

 q1 q2 · · · qn




r11 r12 · · · r1n
r22 r2n

. . .
...
rnn



This gives A = Q̂R̂ for Q̂ ∈ Rm×n, R̂ ∈ Rn×n

This is called the reduced QR factorization of A, which is slightly
different from the definition we gave earlier

Note that for m > n, Q̂T Q̂ = I, but Q̂Q̂T ̸= I (the latter is why
the full QR is sometimes nice)

Full vs Reduced QR Factorization

The full QR factorization (defined earlier)

A = QR

is obtained by appending m − n arbitrary orthonormal columns to
Q̂ to make it an m ×m orthogonal matrix

We also need to append rows of zeros to R̂ to “silence” the last

m − n columns of Q, to obtain R =

[
R̂
0

]

Full vs Reduced QR Factorization

Full QR

Reduced QR

Full vs Reduced QR Factorization

Exercise: Show that the linear least-squares solution is given by
R̂x = Q̂Tb by plugging A = Q̂R̂ into the Normal Equations

This is equivalent to the least-squares result we showed earlier
using the full QR factorization, since c1 = Q̂Tb

Full versus Reduced QR Factorization

In Python, numpy.linalg.qr gives the reduced QR factorization
by default

Python 3.8.5 (default, Sep 6 2020, 03:54:05)

[Clang 11.0.3 (clang-1103.0.32.62)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.random.random((5,3))

>>> (q,r)=np.linalg.qr(a)

>>> q

array([[-0.60657572, 0.29216376, -0.14455158],

[-0.23608755, -0.66242317, -0.48304524],

[-0.29339096, -0.36132885, -0.25299114],

[-0.35279836, -0.43526372, 0.82530864],

[-0.60480048, 0.39474401, -0.02516495]])

>>> r

array([[-1.63178556, -1.29232138, -0.92550283],

[0. , -0.93369372, -0.25039136],

[0. , 0. , 0.36307913]])

Full versus Reduced QR Factorization

In Python, supplying the mode=’complete’ option gives the
complete QR factorization

Python 3.8.5 (default, Sep 6 2020, 03:54:05)

[Clang 11.0.3 (clang-1103.0.32.62)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.random.random((5,3))

>>> (q,r)=np.linalg.qr(a,mode=’complete’)

>>> q

array([[-0.60657572, 0.29216376, -0.14455158, -0.2162523 , -0.6921315],

[-0.23608755, -0.66242317, -0.48304524, -0.48923968, 0.18102498],

[-0.29339096, -0.36132885, -0.25299114, 0.84156254, -0.10550441],

[-0.35279836, -0.43526372, 0.82530864, -0.06510356, -0.02657044],

[-0.60480048, 0.39474401, -0.02516495, 0.03759649, 0.6901788]])

>>> r

array([[-1.63178556, -1.29232138, -0.92550283],

[0. , -0.93369372, -0.25039136],

[0. , 0. , 0.36307913],

[0. , 0. , 0.],

[0. , 0. , 0.]])

Gram–Schmidt Orthogonalization

Returning to the Gram–Schmidt process, how do we compute the
qi , i = 1, . . . , n?

In the jth step, find a unit vector qj ∈ span{a(:,1), a(:,2), . . . , a(:,j)}
that is orthogonal to span{q1, qn, . . . , qj−1}

We set

vj ≡ a(:,j) − (qT1 a(:,j))q1 − · · · − (qTj−1a(:,j))qj−1,

and then qj ≡ vj/∥vj∥2 satisfies our requirements

We can now determine the required values of rij

Gram–Schmidt Orthogonalization
We then write our set of equations for the qi as

q1 =
a(:,1)
r11

,

q2 =
a(:,2) − r12q1

r22
,

...

qn =
a(:,n) −

∑n−1
i=1 rinqi

rnn
.

Then from the definition of qj , we see that

rij = qTi a(:,j), i ̸= j

|rjj | = ∥a(:,j) −
j−1∑
i=1

rijqi∥2

The sign of rjj is not determined uniquely, e.g. we could choose
rjj > 0 for each j

Classical Gram–Schmidt Process

The Gram–Schmidt algorithm we have described is provided in the
pseudocode below

1: for j = 1 : n do
2: vj = a(:,j)
3: for i = 1 : j − 1 do
4: rij = qTi a(:,j)
5: vj = vj − rijqi
6: end for
7: rjj = ∥vj∥2
8: qj = vj/rjj
9: end for

This is referred to the classical Gram–Schmidt (CGS) method

Gram–Schmidt Orthogonalization

The only way the Gram–Schmidt process can fail is if
|rjj | = ∥vj∥2 = 0 for some j

This can only happen if a(:,j) =
∑j−1

i=1 rijqi for some j , i.e. if
a(:,j) ∈ span{q1, qn, . . . , qj−1} = span{a(:,1), a(:,2), . . . , a(:,j−1)}

This means that columns of A are linearly dependent

Therefore, Gram–Schmidt fails =⇒ cols. of A linearly dependent

Gram–Schmidt Orthogonalization

Equivalently, by contrapositive: cols. of A linearly independent
=⇒ Gram–Schmidt succeeds

Theorem: Every A ∈ Rm×n(m ≥ n) of full rank has a unique
reduced QR factorization A = Q̂R̂ with rii > 0

The only non-uniqueness in the Gram–Schmidt process was in the
sign of rii , hence Q̂R̂ is unique if rii > 0

Gram–Schmidt Orthogonalization

Theorem: Every A ∈ Rm×n(m ≥ n) has a full QR factorization.

Case 1: A has full rank

▶ We compute the reduced QR factorization from above

▶ To make Q square we pad Q̂ with m − n arbitrary
orthonormal columns

▶ We also pad R̂ with m − n rows of zeros to get R

Case 2: A doesn’t have full rank

▶ At some point in computing the reduced QR factorization, we
encounter ∥vj∥2 = 0

▶ At this point we pick an arbitrary qj orthogonal to
span{q1, q2, . . . , qj−1} and then proceed as in Case 1

Modified Gram–Schmidt Process

The classical Gram–Schmidt process is numerically unstable!
(sensitive to rounding error, orthogonality of the qj degrades)

The algorithm can be reformulated to give the modified
Gram–Schmidt process, which is numerically more robust

Key idea: when each new qj is computed, orthogonalize each
remaining column of A against it

Modified Gram–Schmidt Process

Modified Gram–Schmidt (MGS):

1: for i = 1 : n do
2: vi = a(:,i)
3: end for
4: for i = 1 : n do
5: rii = ∥vi∥2
6: qi = vi/rii
7: for j = i + 1 : n do
8: rij = qTi vj
9: vj = vj − rijqi

10: end for
11: end for

Modified Gram–Schmidt Process

Key difference between MGS and CGS:

▶ In CGS we compute orthogonalization coefficients rij wrt the
“raw” vector a(:,j)

▶ In MGS we remove components of a(:,j) in
span{q1, q2, . . . , qi−1} before computing rij

This makes no difference mathematically: In exact arithmetic
components in span{q1, q2, . . . , qi−1} are annihilated by qTi

But in practice it reduces degradation of orthogonality of the qj
=⇒ superior numerical stability of MGS over CGS

Operation Count

Work in MGS is dominated by lines 8 and 9, the innermost loop:

rij = qTi vj

vj = vj − rijqi

First line requires m multiplications, m − 1 additions; second line
requires m multiplications, m subtractions

Hence ∼ 4m operations per single inner iteration

Hence total number of operations is asymptotic to

n∑
i=1

n∑
j=i+1

4m ∼ 4m
n∑

i=1

i ∼ 2mn2

Alternative QR computation methods

The QR factorization can also be computed using Householder
triangularization and Givens rotations.

Both methods take the approach of applying a sequence of
orthogonal matrices Q1,Q2,Q3, . . . to the matrix that successively
remove terms below the diagonal (similar to the method employed
by the LU factorization).

Householder Triangularization

We will now discuss Householder7 triangularization

The Householder algorithm is more numerically stable and more
efficient than Gram–Schmidt

But Gram–Schmidt allows us to build up orthogonal basis for
successive spaces spanned by columns of A

span{a(:,1)}, span{a(:,1), a(:,2)}, . . .

which can be important in some cases

7Alston Householder, 1904–1993, American numerical analyst

Householder Triangularization

Householder idea: Apply a succession of orthogonal matrices
Qk ∈ Rm×m to A to compute upper triangular matrix R

Qn · · ·Q2Q1A = R

Hence we obtain the full QR factorization A = QR, where
Q ≡ QT

1 QT
2 . . .QT

n

Householder Triangularization

In 1958, Householder proposed a way to choose Qk to introduce
zeros below diagonal in col. k while preserving previous zeros


× × ×
× × ×
× × ×
× × ×
× × ×

 Q1−→


× × ×
0 × ×
0 × ×
0 × ×
0 × ×

 Q2−→


× × ×
0 × ×
0 0 ×
0 0 ×
0 0 ×

 Q3−→


× × ×
0 × ×
0 0 ×
0 0 0
0 0 0


A Q1A Q2Q1A Q3Q2Q1A

This is achieved by Householder reflectors

Householder Reflectors

We choose

Qk =

[
I 0
0 F

]
where

▶ I ∈ R(k−1)×(k−1)

▶ F ∈ R(m−k+1)×(m−k+1) is a Householder reflector

The I block ensures the first k − 1 rows are unchanged

F is an orthogonal matrix that operates on the bottom m − k + 1
rows

(Note that F orthogonal =⇒ Qk orthogonal)

Householder Reflectors

Let x ∈ Rm−k+1 denote entries k , . . . ,m of of the kth column

We have two requirements for F :

1. F is orthogonal, so must have ∥Fx∥2 = ∥x∥2
2. Only the first entry of Fx should be non-zero

Hence we must have

x =


×
×
...
×

 −→ Fx =


∥x∥2
0
...
0

 = ∥x∥2e1

Question: How can we achieve this?

Householder Reflectors
We can see geometrically that this can be achieved via reflection
across a subspace H

Here H is the subspace orthogonal to v ≡ ∥x∥e1 − x , and the key
point is that H “bisects” v

Householder Reflectors

We see that this bisection property is because x and Fx both live
on the hypersphere centered at the origin with radius ∥x∥2

Householder Reflectors

Next, we need to determine the matrix F which maps x to ∥x∥2e1

F is closely related to the orthogonal projection of x onto H, since
that projection takes us “half way” from x to ∥x∥2e1

Hence we first consider orthogonal projection onto H, and
subsequently derive F

See Lecture: The orthogonal projection of a onto b is given by
(a·b)
∥b∥2 b

Therefore the matrix vvT

vT v
orthogonally projects x onto v

Householder Reflectors

Let PH ≡ I− vvT

vT v

It follows that PHx is the orthogonal projection of x onto H, since
it satisfies:

▶ PHx ∈ H
(vTPHx = vT x − vT vvT

vT v
x = vT x − vT v

vT v
vT x = 0)

▶ The projection error x − PHx is orthogonal to H
(x − PHx = x − x + vvT

vT v
x = vT x

vT v
v , parallel to v)

Householder Reflectors

But recall that F should reflect across H rather than project onto
H

Hence we obtain F by going “twice as far” in the direction of v
compared to PH , i.e. F = I− 2 vvT

vT v

Exercise: Show that F is an orthogonal matrix, i.e. that FTF = I

Householder Reflectors

But in fact, we can see that there are two Householder reflectors
that we can choose from8

8This picture is “not to scale”; H− should bisect −∥x∥e1 − x

Householder Reflectors

In practice, it’s important to choose the “better of the two
reflectors”

If x and ∥x∥2e1 (or x and −∥x∥2e1) are close, we could obtain loss
of precision due to cancellation (cf. Unit 0) when computing v

To ensure x and its reflection are well separated we should choose
the reflection to be − sign(x1)∥x∥2e1 (more details on next slide)

Therefore, we want v to be v = − sign(x1)∥x∥2e1 − x ; but since
the sign of v does not affect F , we scale v by −1 to get

v = sign(x1)∥x∥2e1 + x

Householder Reflectors
Let’s compare the two options for v in the potentially problematic
case when x ≈ ±∥x∥2e1, i.e. when |x1| ≈ ∥x∥2:

vbad ≡ − sign(x1)∥x∥2e1 + x

vgood ≡ sign(x1)∥x∥2e1 + x

∥vbad∥22 = ∥− sign(x1)∥x∥2e1 + x∥22
= (− sign(x1)∥x∥2 + x1)

2 + ∥x2:(m−k+1)∥22
= (− sign(x1)∥x∥2 + sign(x1)|x1|)2 + ∥x2:(m−k+1)∥22
≈ 0

∥vgood∥22 = ∥sign(x1)∥x∥2e1 + x∥22
= (sign(x1)∥x∥2 + x1)

2 + ∥x2:(m−k+1)∥22
= (sign(x1)∥x∥2 + sign(x1)|x1|)2 + ∥x2:(m−k+1)∥22
≈ (2 sign(x1)∥x∥2)2

Householder Reflectors

Recall that v is computed from two vectors of magnitude ∥x∥2

The argument above shows that with vbad we can get ∥v∥2 ≪ ∥x∥2
=⇒ “loss of precision due to cancellation” is possible

In contrast, with vgood we always have ∥vgood∥2 ≥ ∥x∥2, which
rules out loss of precision due to cancellation

Householder Triangularization

We can now write out the Householder algorithm:

1: for k = 1 : n do
2: x = a(k:m,k)

3: vk = sign(x1)∥x∥2e1 + x
4: vk = vk/∥vk∥2
5: a(k:m,k:n) = a(k:m,k:n) − 2vk(v

T
k a(k:m,k:n))

6: end for

This replaces A with R and stores v1, . . . , vn

Note that we don’t divide by vTk vk in line 5 since we normalize vk
in line 4

Householder algorithm requires ∼ 2mn2 − 2
3n

3 operations9

9Compared to 2mn2 for Gram–Schmidt

Householder Triangularization

Note that we don’t explicitly form Q

We can use the vectors v1, . . . , vn to compute Q in a
post-processing step

Recall that

Qk =

[
I 0
0 F

]
and Q ≡ (Qn · · ·Q2Q1)

T = QT
1 QT

2 · · ·QT
n

Also, the Householder reflectors are symmetric (refer to the
definition of F), so Q = QT

1 QT
2 · · ·QT

n = Q1Q2 · · ·Qn

Householder Triangularization

Hence, we can evaluate Qx = Q1Q2 · · ·Qnx using the vk :

1: for k = n : −1 : 1 do
2: x(k:m) = x(k:m) − 2vk(v

T
k x(k:m))

3: end for

Question: How can we use this to form the matrix Q?

Householder Triangularization

Answer: Compute Q via Qei , i = 1, . . . ,m

Similarly, compute Q̂ via Qei , i = 1, . . . , n

However, often not necessary to form Q or Q̂ explicitly, e.g. to
solve Ax ≃ b we only need the product QTb

Note the product QTb = Qn · · ·Q2Q1b can be evaluated as:

1: for k = 1 : n do
2: b(k:m) = b(k:m) − 2vk(v

T
k b(k:m))

3: end for

A Givens rotation

For i < j and an angle θ, the elements of the m ×m Givens
rotation matrix G (i , j , θ) are

gii = c , gjj = c , gij = s, gji = −s,

gkk = 1 for k ̸= i , j ,

gkl = 0 otherwise, (1)

where c = cos θ and s = sin θ.

A Givens rotation

Hence the matrix has the form

G (i , j , θ) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . c . . . s . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . −s . . . c . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1


It applies a rotation within the space spanned by the ith and jth
coordinates

Effect of a Givens rotation

Consider a m × n rectangular matrix A where m ≥ n

Suppose that a1 and a2 are in the ith and jth positions in a
particular column of A. Assume at least one ai is non-zero.

Restricting to just ith and jth dimensions, a Givens rotation
G (i , j , θ) for a particular angle θ can be applied so that(

c s
−s c

)(
a1
a2

)
=

(
α
0

)
,

where α is non-zero, and the jth component is eliminated

Stable computation

α is given by
√
a21 + a22. We could compute

c = a1/
√
a21 + a22, s = a2/

√
a21 + a22

but this is susceptible to underflow/overflow if α is very small.

A better procedure is as follows:

▶ if |a1| > |a2|, set t = tan θ = a2/a1, and hence
c = 1√

1+t2
, s = ct.

▶ if |a2| ≥ |a1|, set τ = cot θ = a1/a2, and hence
s = 1√

1+τ2
, c = sτ .

Givens rotation algorithm

To perform the Givens procedure on a dense m × n rectangular
matrix A where m ≥ n, the following algorithm can be used:

1: R = A,Q = I
2: for k = 1 : n do
3: for j = m : k + 1 do
4: Construct G = G (j − 1, j , θ) to eliminate ajk
5: R = GR
6: Q = QGT

7: end for
8: end for

Givens rotation advantages
In general, for dense matrices, Givens rotations are not as efficient
as the other two approaches (Gram–Schmidt and Householder)

However, they are advantageous for sparse matrices, since non-zero
entries can be eliminated one-by-one. They are also amenable to
parallelization. Consider the 6× 6 matrix:

× × × × × ×
5 × × × × ×
4 6 × × × ×
3 5 7 × × ×
2 4 6 8 × ×
1 3 5 7 9 ×


The numbers represent the steps at which a particular matrix entry
can be eliminated. e.g. on step 3, elements (4, 1) and (6, 2) can be
eliminated concurrently using G (3, 4, θa) and G (5, 6, θb),
respectively, since these two matrices operate on different rows.

Singular Value Decomposition

The Singular Value Decomposition (SVD) is a very useful matrix
factorization

Motivation for SVD: image of the unit sphere, S , from any m × n
matrix is a hyperellipse

A hyperellipse is obtained by stretching the unit sphere in Rm by
factors σ1, . . . , σm in orthogonal directions u1, . . . , um

Singular Value Decomposition

For A ∈ R2×2, we have

Singular Value Decomposition

Based on this picture, we make some definitions:

▶ Singular values: σ1, σ2, . . . , σn ≥ 0 (we typically assume
σ1 ≥ σ2 ≥ . . .)

▶ Left singular vectors: {u1, u2, . . . , un}, unit vectors in
directions of principal semiaxes of AS

▶ Right singular vectors: {v1, v2, . . . , vn}, preimages of the ui so
that Avi = σiui , i = 1, . . . , n

(The names “left” and “right” come from the formula for the SVD
below)

Singular Value Decomposition

The key equation above is that

Avi = σiui , i = 1, . . . , n

Writing this out in matrix form we get
A



 v1 v2 · · · vn

 =


u1 u2 · · · un




σ1

σ2

. . .

σn



Or more compactly:

AV = ÛΣ̂

Singular Value Decomposition

Here

▶ Σ̂ ∈ Rn×n is diagonal with non-negative, real entries

▶ Û ∈ Rm×n with orthonormal columns

▶ V ∈ Rn×n with orthonormal columns

Therefore V is an orthogonal matrix (V TV = VV T = I), so that
we have the reduced SVD for A ∈ Rm×n:

A = ÛΣ̂V T

Singular Value Decomposition

Just as with QR, we can pad the columns of Û with m − n
arbitrary orthogonal vectors to obtain U ∈ Rm×m

We then need to “silence” these arbitrary columns by adding rows
of zeros to Σ̂ to obtain Σ

This gives the full SVD for A ∈ Rm×n:

A = UΣV T

Full vs Reduced SVD

Full SVD

Reduced SVD

Singular Value Decomposition

Theorem: Every matrix A ∈ Rm×n has a full singular value
decomposition. Furthermore:

▶ The σj are uniquely determined

▶ If A is square and the σj are distinct, the {uj} and {vj} are
uniquely determined up to sign

Singular Value Decomposition

This theorem justifies the statement that the image of the unit
sphere under any m × n matrix is a hyperellipse

Consider A = UΣV T (full SVD) applied to the unit sphere, S , in
Rn:

1. The orthogonal map V T preserves S

2. Σ stretches S into a hyperellipse aligned with the canonical
axes ej

3. U rotates or reflects the hyperellipse without changing its
shape

SVD in Python

Python’s numpy.linalg.svd function computes the full SVD of a
matrix

Python 3.8.5 (default, Sep 6 2020, 03:54:05)

[Clang 11.0.3 (clang-1103.0.32.62)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.random.random((4,2))

>>> (u,s,v)=np.linalg.svd(a)

>>> u

array([[-0.63528498, -0.57683859, -0.38592413, -0.3387223],

[-0.39378781, -0.29780026, 0.4298513 , 0.75595901],

[-0.47505011, 0.36689119, 0.64669137, -0.47064692],

[-0.46440451, 0.66630556, -0.49807699, 0.30378391]])

>>> s

array([1.90854638, 0.61500954])

>>> v

array([[-0.87128424, -0.49077874],

[0.49077874, -0.87128424]])

SVD in Python

The full matrices=0 option computes the reduced SVD

Python 3.8.5 (default, Sep 6 2020, 03:54:05)

[Clang 11.0.3 (clang-1103.0.32.62)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.random.random((4,2))

>>> (u,s,v)=np.linalg.svd(a,full_matrices=0)

>>> u

array([[-0.63528498, -0.57683859],

[-0.39378781, -0.29780026],

[-0.47505011, 0.36689119],

[-0.46440451, 0.66630556]])

>>> s

array([1.90854638, 0.61500954])

>>> v

array([[-0.87128424, -0.49077874],

[0.49077874, -0.87128424]])

Matrix Properties via the SVD

• The rank of A is r , the number of nonzero singular values10

Proof: In the full SVD A = UΣV T , U and V T have full rank,
hence it follows from linear algebra that rank(A) = rank(Σ)

• image(A) = span{u1, . . . , ur} and null(A) = span{vr+1, . . . , vn}

Proof: This follows from A = UΣV T and

image(Σ) = span{e1, . . . , er} ∈ Rm

null(Σ) = span{er+1, . . . , en} ∈ Rn

10This also gives us a good way to define rank in finite precision: the number
of singular values larger than some (small) tolerance

Matrix Properties via the SVD

• ∥A∥2 = σ1

Proof: Recall that ∥A∥2 ≡ max∥v∥2=1 ∥Av∥2. Geometrically, we see
that ∥Av∥2 is maximized if v = v1 and Av = σ1u1.

• The singular values of A are the square roots of the eigenvalues
of ATA or AAT

Proof: (Analogous for AAT)

ATA = (UΣV T)T (UΣV T) = VΣUTUΣV T = V (ΣTΣ)V T ,

hence (ATA)V = V (ΣTΣ), or (ATA)v(:,j) = σ2
j v(:,j)

Matrix Properties via the SVD

The pseudoinverse, A+, can be defined more generally in terms of
the SVD

Define pseudoinverse of a scalar σ to be 1/σ if σ ̸= 0 and zero
otherwise

Define pseudoinverse of a (possibly rectangular) diagonal matrix as
transpose of the matrix and taking pseudoinverse of each entry

Pseudoinverse of A ∈ Rm×n is defined as

A+ = VΣ+UT

A+ exists for any matrix A, and it captures our definitions of
pseudoinverse from previously

Matrix Properties via the SVD

We generalize the condition number to rectangular matrices via
the definition κ(A) = ∥A∥∥A+∥

We can use the SVD to compute the 2-norm condition number:

▶ ∥A∥2 = σmax

▶ Largest singular value of A+ is 1/σmin so that
∥A+∥2 = 1/σmin

Hence κ(A) = σmax/σmin

Matrix Properties via the SVD

These results indicate the importance of the SVD, both
theoretically and as a computational tool

Algorithms for calculating the SVD are an important topic in
Numerical Linear Algebra, but outside scope of this course

Requires ∼ 4mn2 − 4
3n

3 operations

For more details on algorithms, see Trefethen & Bau, or Golub &
van Loan

Low-Rank Approximation via the SVD

One of the most useful properties of the SVD is that it allows us to
obtain an optimal low-rank approximation to A

We can recast SVD as

A =
r∑

j=1

σjujv
T
j

Follows from writing Σ as sum of r matrices, Σj , where
Σj ≡ diag(0, . . . , 0, σj , 0, . . . , 0)

Each ujv
T
j is a rank one matrix: each column is a scaled version of

uj

Low-Rank Approximation via the SVD

Theorem: For any 0 ≤ ν ≤ r , let Aν ≡∑ν
j=1 σjujv

T
j , then

∥A− Aν∥2 = inf
B∈Rm×n, rank(B)≤ν

∥A− B∥2 = σν+1

That is:

▶ Aν gives us the closest rank ν matrix to A, measured in the
2-norm

▶ The error in Aν is given by the first omitted singular value

Low-Rank Approximation via the SVD

A similar result holds in the Frobenius norm:

∥A− Aν∥F = inf
B∈Rm×n, rank(B)≤ν

∥A− B∥F =
√
σ2
ν+1 + · · ·+ σ2

r

Low-Rank Approximation via the SVD

These theorems indicate that the SVD is an effective way to
compress data encapsulated by a matrix!

If singular values of A decay rapidly, can approximate A with few
rank one matrices (only need to store σj , uj , vj for j = 1, . . . , ν)

Example: Image compression via the SVD

