
Unit 1: Data Fitting



Motivation

Data fitting: Construct a continuous function that represents
discrete data, fundamental topic in Scientific Computing

We will study two types of data fitting

I interpolation: Fit the data points exactly

I least-squares: Minimize error in the fit (useful when there is
experimental error, for example)

Data fitting helps us to

I interpret data: deduce hidden parameters, understand trends

I process data: reconstructed function can be differentiated,
integrated, etc



Motivation

For example, suppose we are given the following data points
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This data could represent

I Time series data (stock price, sales figures)

I Laboratory measurements (pressure, temperature)

I Astronomical observations (star light intensity)

I . . .



Motivation

We often need values between the data points

Easiest thing to do: “connect the dots” (piecewise linear
interpolation)
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Question: What if we want a smoother approximation?



Motivation

We have 11 data points, we can use a degree 10 polynomial
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We will discuss how to construct this type of polynomial
interpolant in this unit



Motivation

However, a degree 10 interpolant is not aesthetically pleasing: it is
too bumpy, and doesn’t seem to capture the underlying pattern

Maybe we can capture the data better with a lower order
polynomial . . .



Motivation

Let’s try linear regression (familiar from elementary statistics):
minimize the error in a linear approximation of the data

Best linear fit: y = 2.94 + 0.24x
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Clearly not a good fit!



Motivation

We can use least-squares fitting to generalize linear regression to
higher order polynomials

Best quadratic fit: y = 3.27− 0.83x + 0.53x2
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Still not so good . . .



Motivation

Best cubic fit: y = 3.00 + 1.31x − 2.27x2 + 0.93x3
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Looks good! A “cubic model” captures this data well

(In real-world problems it can be challenging to find the “right”
model for experimental data)



Motivation

Data fitting is often performed with multi-dimensional data (find
the best hypersurface in RN)

2D example:
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Motivation: Summary

Interpolation is a fundamental tool in Scientific Computing,
provides simple representation of discrete data

I Common to differentiate, integrate, optimize an interpolant

Least squares fitting is typically more useful for experimental data

I Smooths out noise using a lower-dimensional model

These kinds of data-fitting calculations are often performed with
huge datasets in practice

I Efficient and stable algorithms are very important



Polynomial Fitting: The Problem Formulation

Let Pn denote the set of all polynomials of degree n on R

i.e. if p(·; b) ∈ Pn, then

p(x ; b) = b0 + b1x + b2x
2 + . . .+ bnx

n

for b ≡ [b0, b1, . . . , bn]T ∈ Rn+1



The Problem Formulation

Suppose we have the data S ≡ {(x0, y0), (x1, y1), . . . , (xn, yn)},
where the {x0, x1, . . . , xn} are called interpolation points

Goal: Find a polynomial that passes through every data point in S

Therefore, we must have p(xi ; b) = yi for each (xi , yi ) ∈ S,
i.e. n + 1 equations

For uniqueness, we should look for a polynomial with n + 1
parameters, i.e. look for p ∈ Pn



Vandermonde Matrix

Then we obtain the following system of n + 1 equations in n + 1
unknowns

b0 + b1x0 + b2x
2
0 + . . .+ bnx

n
0 = y0

b0 + b1x1 + b2x
2
1 + . . .+ bnx

n
1 = y1

...

b0 + b1xn + b2x
2
n + . . .+ bnx

n
n = yn



Vandermonde Matrix

This can be written in matrix form Vb = y , where

b = [b0, b1, . . . , bn]T ∈ Rn+1,

y = [y0, y1, . . . , yn]T ∈ Rn+1

and V ∈ R(n+1)×(n+1) is the Vandermonde matrix:
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn





Existence and Uniqueness

Let’s prove that if the n + 1 interpolation points are distinct, then
Vb = y has a unique solution

We know from linear algebra that for a square matrix A
if Az = 0 =⇒ z = 0, then Ab = y has a unique solution

If Vb = 0, then p(·; b) ∈ Pn vanishes at n + 1 distinct points

Therefore we must have p(·; b) = 0, or equivalently b = 0 ∈ Rn+1

Hence Vb = 0 =⇒ b = 0, so that Vb = y has a unique solution
for any y ∈ Rn+1



Vandermonde Matrix

This tells us that we can find the polynomial interpolant by solving
the Vandermonde system Vb = y

In general, however, this is a bad idea since V is ill-conditioned



Monomial Interpolation
The problem here is that Vandermonde matrix corresponds to
interpolation using the monomial basis

Monomial basis for Pn is {1, x , x2, . . . , xn}

Monomial basis functions become increasingly indistinguishable

Vandermonde columns become nearly linearly-dependent
[vander cond.txt] =⇒ ill-conditioned matrix!
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https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/vander_cond.txt


Monomial Basis

Question: What is the practical consequence of this
ill-conditioning?

Answer:

I We want to solve Vb = y , but due to finite precision
arithmetic we get an approximation b̂

I b̂ will ensure ‖V b̂ − y‖ is small (in a rel. sense),1 but ‖b − b̂‖
can still be large! (see Unit 2 for details)

I Similarly, small perturbation in b̂ can give large perturbation
in V b̂

I Large perturbations in V b̂ can yield large ‖V b̂ − y‖, hence a
“perturbed interpolant” becomes a poor fit to the data

1This “small residual” property is because we use a stable numerical
algorithm for solving the linear system



Monomial Basis

These sensitivities are directly analogous to what happens with an
ill-conditioned basis in Rn, e.g. consider a basis {v1, v2} of R2:

v1 = [1, 0]T , v2 = [1, 0.0001]T

Then, let’s express y = [1, 0]T and ỹ = [1, 0.0005]T in terms of
this basis

We can do this by solving a 2× 2 linear system in each case (see
Unit 2), and hence we get

b = [1, 0]T , b̃ = [−4, 5]T

Hence the answer is highly sensitive to perturbations in y !



Monomial Basis

The same effect happens with interpolation with a monomial basis

The answer (the polynomial coefficient vector) is highly sensitive
to perturbations in the data

If we perturb b slightly, we can get a large perturbation in Vb and
then no longer solve the Vandermonde equation accurately. Hence
the resulting polynomial no longer fits the data well.

See code examples:

I [v inter.py ] Vandermonde interpolation using text output, for
plotting with Gnuplot

I [v inter2.py ] Vandermonde interpolation with native Python
plotting using Matplotlib

https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/v_inter.py
http://www.gnuplot.info/
https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/v_inter2.py
http://matplotlib.org/


Interpolation

We would like to avoid these kinds of sensitivities to perturbations
. . . How can we do better?

Try to construct a basis such that the interpolation matrix is the
identity matrix

This gives a condition number of 1, and as an added bonus we also
avoid inverting a dense (n + 1)× (n + 1) matrix



Lagrange Interpolation

Key idea: Construct basis {Lk ∈ Pn, k = 0, . . . , n} such that

Lk(xi ) =

{
0, i 6= k,
1, i = k.

The polynomials that achieve this are called Lagrange polynomials2

See Lecture: These polynomials are given by:

Lk(x) =
n∏

j=0,j 6=k

x − xj
xk − xj

and then the interpolant can be expressed as
pn(x) =

∑n
k=0 ykLk(x)

2Joseph-Louis Lagrange, 1736–1813



Lagrange Interpolation

Two Lagrange polynomials of degree 5
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Hence we can use Lagrange polynomials to interpolate discrete
data
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We have essentially solved the problem of interpolating discrete
data perfectly!

With Lagrange polynomials we can construct an interpolant of
discrete data with condition number of 1



Interpolation for Function Approximation

We now turn to a different (and much deeper) question: Can we
use interpolation to accurately approximate continuous functions?

Suppose the interpolation data come from samples of a continuous
function f on [a, b] ⊂ R

Then we’d like the interpolant to be “close to” f on [a, b]

The error in this type of approximation can be quantified from the
following theorem due to Cauchy3:

f (x)−pn(x) = f (n+1)(θ)
(n+1)! (x−x0) . . . (x−xn) for some θ ∈ (a, b)

3Augustin-Louis Cauchy, 1789–1857



Polynomial Interpolation Error

We prove this result in the case n = 1

Let p1 ∈ P1[x0, x1] interpolate f ∈ C 2[a, b] at {x0, x1}

For some λ ∈ R, let

q(x) ≡ p1(x) + λ(x − x0)(x − x1),

here q is quadratic and interpolates f at {x0, x1}

Fix an arbitrary point x̂ ∈ (x0, x1) and set q(x̂) = f (x̂) to get

λ =
f (x̂)− p1(x̂)

(x̂ − x0)(x̂ − x1)

Goal: Get an expression for λ, since then we obtain an expression
for f (x̂)− p1(x̂)



Polynomial Interpolation Error

Now, let e(x) ≡ f (x)− q(x)

I e has 3 roots in [x0, x1], i.e. at x = x0, x̂ , x1
I Therefore e ′ has 2 roots in (x0, x1) (by Rolle’s theorem)

I Therefore e ′′ has 1 root in (x0, x1) (by Rolle’s theorem)

Let θ ∈ (x0, x1) be such that4 e ′′(θ) = 0

Then

0 = e ′′(θ) = f ′′(θ)− q′′(θ)

= f ′′(θ)− p′′1 (θ)− λ d2

dθ2
(θ − x0)(θ − x1)

= f ′′(θ)− 2λ

hence λ = 1
2 f
′′(θ)

4Note that θ is a function of x̂



Polynomial Interpolation Error

Hence, we get

f (x̂)− p1(x̂) = λ(x̂ − x0)(x̂ − x1) =
1

2
f ′′(θ)(x̂ − x0)(x̂ − x1)

for any x̂ ∈ (x0, x1) (recall that x̂ was chosen arbitrarily)

This argument can be generalized to n > 1 to give

f (x)−pn(x) = f (n+1)(θ)
(n+1)! (x−x0) . . . (x−xn) for some θ ∈ (a, b)



Polynomial Interpolation Error

For any x ∈ [a, b], this theorem gives us the error bound

|f (x)− pn(x)| ≤ Mn+1

(n + 1)!
max
x∈[a,b]

|(x − x0) . . . (x − xn)|,

where Mn+1 = maxθ∈[a,b] |f n+1(θ)|

If 1/(n + 1)!→ 0 faster than

Mn+1 max
x∈[a,b]

|(x − x0) . . . (x − xn)| → ∞

then pn → f

Unfortunately, this is not always the case!



Runge’s Phenomenon
A famous pathological example of the difficulty of interpolation at
equally spaced points is Runge’s Phenomenon

Consider f (x) = 1/(1 + 25x2) for x ∈ [−1, 1]
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Runge’s Phenomenon

Note that of course pn fits the evenly spaced samples exactly

But we are now also interested in the maximum error between f
and its polynomial interpolant pn

That is, we want maxx∈[−1,1] |f (x)− pn(x)| to be small!

This is generally referred to as the “infinity norm” or the “max
norm”:

‖f − pn‖∞ ≡ max
x∈[−1,1]

|f (x)− pn(x)|



Runge’s Phenomenon

Interpolating Runge’s function at evenly spaced points leads to
exponential growth of infinity norm error!

We would like to construct an interpolant of f such that this kind
of pathological behavior is impossible



Minimizing Interpolation Error

To do this, we recall our error equation

f (x)− pn(x) =
f n+1(θ)

(n + 1)!
(x − x0) . . . (x − xn)

We focus our attention on the polynomial (x − x0) . . . (x − xn),
since we can choose the interpolation points

Intuitively, we should choose x0, x1, . . . , xn such that
‖(x − x0) . . . (x − xn)‖∞ is as small as possible



Interpolation at Chebyshev Points
Result from Approximation Theory:
For x ∈ [−1, 1], the minimum value of ‖(x − x0) . . . (x − xn)‖∞ is
1/2n, achieved by the polynomial Tn+1(x)/2n

Tn+1(x) is the Chebyshev poly. (of the first kind) of order n + 1
(Tn+1 has leading coefficient of 2n, hence Tn+1(x)/2n is monic)

Chebyshev polys “equi-oscillate” between −1 and 1, hence it’s not
surprising that they are related to the minimum infinity norm
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Interpolation at Chebyshev Points

Chebyshev polynomials are defined for x ∈ [−1, 1] by
Tn(x) = cos(n cos−1 x), n = 0, 1, 2, . . .

Or equivalently5, the recurrence relation,
T0(x) = 1,
T1(x) = x ,
Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, 3, . . .

To set (x − x0) . . . (x − xn) = Tn+1(x)/2n, we choose interpolation
points to be the roots of Tn+1

Exercise: Show that the roots of Tn are given by
xj = cos((2j − 1)π/2n), j = 1, . . . , n

5Equivalence can be shown using trig. identities for Tn+1 and Tn−1



Interpolation at Chebyshev Points
We can combine these results to derive an error bound for
interpolation at “Chebyshev points”

Generally speaking, with Chebyshev interpolation, pn converges to
any smooth f very rapidly! e.g. Runge function:
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Interpolation at 32 Chebyshev points

If we want to interpolate on an arbitrary interval, we can map
Chebyshev points from [−1, 1] to [a, b]



Interpolation at Chebyshev Points
Note that convergence rates depend on smoothness of f —precise
statements about this can be made, outside the scope of AM205

In general, smoother f =⇒ faster convergence6

e.g. [ch inter.py ] compare convergence of Chebyshev interpolation
of Runge’s function (smooth) and f (x) = |x | (not smooth)
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6For example, if f is analytic, we get exponential convergence!

https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/ch_inter.py


Another View on Interpolation Accuracy

We have seen that the interpolation points we choose have an
enormous effect on how well our interpolant approximates f

The choice of Chebyshev interpolation points was motivated by our
interpolation error formula for f (x)− pn(x)

But this formula depends on f — we would prefer to have a
measure of interpolation accuracy that is independent of f

This would provide a more general way to compare the quality of
interpolation points . . . This is provided by the Lebesgue constant



Lebesgue Constant

Let X denote a set of interpolation points,
X ≡ {x0, x1, . . . , xn} ⊂ [a, b]

A fundamental property of X is its Lebesgue constant, Λn(X ),

Λn(X ) = max
x∈[a,b]

n∑
k=0

|Lk(x)|

The Lk ∈ Pn are the Lagrange polynomials associated with X ,
hence Λn is also a function of X

Λn(X ) ≥ 1, why?



Lebesgue Constant

Think of polynomial interpolation as a map, In, where
In : C [a, b]→ Pn[a, b]

In(f ) is the degree n polynomial interpolant of f ∈ C [a, b] at the
interpolation points X

Exercise: Convince yourself that In is linear (e.g. use the Lagrange
interpolation formula)

The reason that the Lebesgue constant is interesting is because it
bounds the “operator norm” of In:

sup
f ∈C [a,b]

‖In(f )‖∞
‖f ‖∞

≤ Λn(X )



Lebesgue Constant

Proof:

‖In(f )‖∞ = ‖
n∑

k=0

f (xk)Lk‖∞ = max
x∈[a,b]

∣∣∣∣∣
n∑

k=0

f (xk)Lk(x)

∣∣∣∣∣
≤ max

x∈[a,b]

n∑
k=0

|f (xk)||Lk(x)|

≤
(

max
k=0,1,...,n

|f (xk)|
)

max
x∈[a,b]

n∑
k=0

|Lk(x)|

≤ ‖f ‖∞ max
x∈[a,b]

n∑
k=0

|Lk(x)|

= ‖f ‖∞Λn(X )

Hence

‖In(f )‖∞
‖f ‖∞

≤ Λn(X ), so sup
f ∈C [a,b]

‖In(f )‖∞
‖f ‖∞

≤ Λn(X ).



Lebesgue Constant

The Lebesgue constant allows us to bound interpolation error in
terms of the smallest possible error from Pn

Let p∗n ∈ Pn denote the best infinity-norm approximation to f , i.e.
‖f − p∗n‖∞ ≤ ‖f − w‖∞ for all w ∈ Pn

Some facts about p∗n:

I ‖p∗n − f ‖∞ → 0 as n→∞ for any continuous f !
(Weierstraß approximation theorem)

I p∗n ∈ Pn is unique

I In general, p∗n is unknown



Bernstein interpolation

The Bernstein polynomials on [0, 1] are

bm,n(x) =

(
n
m

)
xm(1− x)n−m.

For a function f on the [0, 1], the approximating polynomial is

Bn(f )(x) =
n∑

m=0

f
(m
n

)
bm,n(x).

Bernstein interpolation is impractical for normal use, and converges
extremely slowly. However, it has robust convergence properties,
which can be used to prove the Weierstraß approximation theorem.
See a textbook on real analysis for a full discussion.7

7e.g. Elementary Analysis by Kenneth A. Ross



Bernstein interpolation

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

x

Bernstein polynomials
f(x)



Bernstein interpolation
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Lebesgue Constant

Then, we can relate interpolation error to ‖f − p∗n‖∞ as follows:

‖f − In(f )‖∞ ≤ ‖f − p∗n‖∞ + ‖p∗n − In(f )‖∞
= ‖f − p∗n‖∞ + ‖In(p∗n)− In(f )‖∞
= ‖f − p∗n‖∞ + ‖In(p∗n − f )‖∞

= ‖f − p∗n‖∞ +
‖In(p∗n − f )‖∞
‖p∗n − f ‖∞

‖f − p∗n‖∞

≤ ‖f − p∗n‖∞ + Λn(X )‖f − p∗n‖∞
= (1 + Λn(X ))‖f − p∗n‖∞



Lebesgue Constant

Small Lebesgue constant means that our interpolation can’t be
much worse that the best possible polynomial approximation!

[lsum.py ] Now let’s compare Lebesgue constants for equispaced
(Xequi) and Chebyshev points (Xcheb)

https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/lsum.py


Lebesgue Constant

Plot of
∑10

k=0 |Lk(x)| for Xequi and Xcheb (11 pts in [−1, 1])

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

−1 −0.5 0 0.5 1
1

1.5

2

2.5

Λ10(Xequi) ≈ 29.9 Λ10(Xcheb) ≈ 2.49



Lebesgue Constant

Plot of
∑20

k=0 |Lk(x)| for Xequi and Xcheb (21 pts in [−1, 1])
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Λ20(Xequi) ≈ 10,987 Λ20(Xcheb) ≈ 2.9



Lebesgue Constant

Plot of
∑30

k=0 |Lk(x)| for Xequi and Xcheb (31 pts in [−1, 1])
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Λ30(Xequi) ≈ 6,600,000 Λ30(Xcheb) ≈ 3.15



Lebesgue Constant

The explosive growth of Λn(Xequi) is an explanation for Runge’s
phenomenon8

It has been shown that as n→∞,

Λn(Xequi) ∼
2n

en log n
BAD!

whereas

Λn(Xcheb) <
2

π
log(n + 1) + 1 GOOD!

Important open mathematical problem: What is the optimal set of
interpolation points (i.e. what X minimizes Λn(X ))?

8Runge’s function f (x) = 1/(1 + 25x2) excites the “worst case” behavior
allowed by Λn(Xequi)



Summary

It is helpful to compare and contrast the two key topics we’ve
considered so far in this chapter

1. Polynomial interpolation for fitting discrete data:

I We get “zero error” regardless of the interpolation points, i.e.
we’re guaranteed to fit the discrete data

I Should use Lagrange polynomial basis (diagonal system,
well-conditioned)

2. Polynomial interpolation for approximating continuous
functions:

I For a given set of interpolating points, uses the methodology
from 1 above to construct the interpolant

I But now interpolation points play a crucial role in determining
the magnitude of the error ‖f − In(f )‖∞



Piecewise Polynomial Interpolation

We can’t always choose our interpolation points to be Chebyshev,
so another way to avoid “blow up” is via piecewise polynomials

Idea is simple: Break domain into subdomains, apply polynomial
interpolation on each subdomain (interp. pts. now called “knots”)

Recall piecewise linear interpolation, also called “linear spline”
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Piecewise Polynomial Interpolation

With piecewise polynomials, we avoid high-order polynomials hence
we avoid “blow-up”

However, we clearly lose smoothness of the interpolant

Also, can’t do better than algebraic convergence9

9Recall that for smooth functions Chebyshev interpolation gives exponential
convergence with n



Splines

Splines are a popular type of piecewise polynomial interpolant

In general, a spline of degree k is a piecewise polynomial that is
continuously differentiable k − 1 times

Splines solve the “loss of smoothness” issue to some extent since
they have continuous derivatives

Splines are the basis of CAD software (AutoCAD, SolidWorks),
also used in vector graphics, fonts, etc.10

(The name “spline” comes from a tool used by ship designers to
draw smooth curves by hand)

10CAD software uses NURB splines, font definitions use Bézier splines



Splines

We focus on a popular type of spline: Cubic spline ∈ C 2[a, b]

Continuous second derivatives =⇒ looks smooth to the eye

Example: Cubic spline interpolation of Runge function
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Cubic Splines: Formulation

Suppose we have knots x0, . . . , xn, then cubic on each interval
[xi−1, xi ] =⇒ 4n parameters in total

Let s denote our cubic spline, and suppose we want to interpolate
the data {fi , i = 0, 1, . . . , n}

We must interpolate at n + 1 points, s(xi ) = fi , which provides two
equations per interval =⇒ 2n equations for interpolation

Also, s ′−(xi ) = s ′+(xi ), i = 1, . . . , n − 1 =⇒ n − 1 equations for
continuous first derivative

And, s ′′−(xi ) = s ′′+(xi ), i = 1, . . . , n − 1 =⇒ n − 1 equations for
continuous second derivative

Hence 4n − 2 equations in total



Cubic Splines

We are short by two conditions! There are many ways to make up
the last two, e.g.

I Natural cubic spline: Set s ′′(x0) = s ′′(xn) = 0

I “Not-a-knot spline”11: Set s ′′′− (x1) = s ′′′+ (x1) and
s ′′′− (xn−1) = s ′′′+ (xn−1)

I Or we can choose any other two equations we like (e.g. set
two of the spline parameters to zero)12

See examples: [spline.py ] & [spline2.py ]

11“Not-a-knot” because all derivatives of s are continuous at x1 and xn−1
12As long as they are linearly independent from the first 4n − 2 equations

https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/spline.py
https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/spline2.py


Linear Least Squares: The Problem Formulation

Recall that it can be advantageous to not fit data points exactly
(e.g. due to experimental error), we don’t want to “overfit”

Suppose we want to fit a cubic polynomial to 11 data points
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Question: How do we do this?



The Problem Formulation

Suppose we have m constraints and n parameters with m > n (e.g.
m = 11, n = 4 on previous slide)

In terms of linear algebra, this is an overdetermined system
Ab = y , where A ∈ Rm×n, b ∈ Rn (parameters), y ∈ Rm (data)


A



 b

 =


y


i.e. we have a “tall, thin” matrix A



The Problem Formulation

In general, cannot be solved exactly (hence we will write Ab ' y);
instead our goal is to minimize the residual, r(b) ∈ Rm

r(b) ≡ y − Ab

A very effective approach for this is the method of least squares:13

Find parameter vector b ∈ Rn that minimizes ‖r(b)‖2

As we shall see, we minimize the 2-norm above since it gives us a
differentiable function (we can then use calculus)

13Developed by Gauss and Legendre for fitting astronomical observations
with experimental error



The Normal Equations

Goal is to minimize ‖r(b)‖2, recall that ‖r(b)‖2 =
√∑n

i=1 ri (b)2

Since minimizing b is the same for ‖r(b)‖2 and ‖r(b)‖22, we
consider the differentiable “objective function” φ(b) = ‖r(b)‖22

φ(b) = ‖r‖22 = rT r = (y − Ab)T (y − Ab)

= yT y − yTAb − bTAT y + bTATAb

= yT y − 2bTAT y + bTATAb

where last line follows from yTAb = (yTAb)T , since yTAb ∈ R

φ is a quadratic function of b, and is non-negative, hence a
minimum must exist, (but not nec. unique, e.g. f (b1, b2) = b21)



The Normal Equations

To find minimum of φ(b) = yT y − 2bTAT y + bTATAb,
differentiate with respect to b and set to zero14

First, let’s differentiate bTAT y with respect to b

That is, we want ∇(bT c) where c ≡ AT y ∈ Rn:

bT c =
n∑

i=1

bici =⇒ ∂

∂bi
(bT c) = ci =⇒ ∇(bT c) = c

Hence ∇(bTAT y) = AT y

14We will discuss numerical optimization of functions of many variables in
detail in Unit IV



The Normal Equations

Next consider ∇(bTATAb) (note ATA is symmetric)

Consider bTMb for symmetric matrix M ∈ Rn×n

bTMb = bT

(
n∑

j=1

m(:,j)bj

)

From the product rule

∂

∂bk
(bTMb) = eTk

n∑
j=1

m(:,j)bj + bTm(:,k)

=
n∑

j=1

m(k,j)bj + bTm(:,k)

= m(k,:)b + bTm(:,k)

= 2m(k,:)b,

where the last line follows from symmetry of M

Therefore, ∇(bTMb) = 2Mb, so that ∇(bTATAb) = 2ATAb



The Normal Equations

Putting it all together, we obtain

∇φ(b) = −2AT y + 2ATAb

We set ∇φ(b) = 0 to obtain

−2AT y + 2ATAb = 0 =⇒ ATAb = AT y

This square n × n system ATAb = AT y is known as the normal
equations



The Normal Equations

For A ∈ Rm×n with m > n, ATA is singular if and only if A is
rank-deficient.15

Proof:

(⇒) Suppose ATA is singular. ∃z 6= 0 such that ATAz = 0.
Hence zTATAz = ‖Az‖22 = 0, so that Az = 0. Therefore A
is rank-deficient.

(⇐) Suppose A is rank-deficient. ∃z 6= 0 such that Az = 0,
hence ATAz = 0, so that ATA is singular.

15Recall A ∈ Rm×n, m > n is rank-deficient if columns are not L.I., i.e.
∃z 6= 0 s.t. Az = 0



The Normal Equations

Hence if A has full rank (i.e. rank(A) = n) we can solve the
normal equations to find the unique minimizer b

However, in general it is a bad idea to solve the normal equations
directly, because it is not as numerically stable as some alternative
methods

Question: If we shouldn’t use normal equations, how do we
actually solve least-squares problems ?



Least-squares polynomial fit

Find least-squares fit for degree 11 polynomial to 50 samples of
y = cos(4x) for x ∈ [0, 1]

Let’s express the best-fit polynomial using the monomial basis:
p(x ; b) =

∑11
k=0 bkx

k

(Why not use the Lagrange basis? Lagrange loses its nice
properties here since m > n, so we may as well use monomials)

The ith condition we’d like to satisfy is p(xi ; b) = cos(4xi ) =⇒
over-determined system with “50× 12 Vandermonde matrix”



Least-squares polynomial fit

[lfit.py ] But solving the normal equations still yields a small
residual, hence we obtain a good fit to the data

‖r(bnormal)‖2 = ‖y − Abnormal‖2 = 1.09× 10−8

‖r(blst.sq.)‖2 = ‖y − Ablst.sq.‖2 = 8.00× 10−9

https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/lfit.py


Non-polynomial Least-squares fitting

So far we have dealt with approximations based on polynomials,
but we can also develop non-polynomial approximations

We just need the model to depend linearly on parameters

Example [np lfit.py ]: Approximate e−x cos(4x) using
fn(x ; b) ≡

∑n
k=−n bke

kx

(Note that fn is linear in b: fn(x ; γa + σb) = γfn(x ; a) + σfn(x ; b))

https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/np_lfit.py


Non-polynomial Least-squares fitting
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Non-polynomial Least-squares fitting
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Non-polynomial Least-squares fitting
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Pseudoinverse

Recall that from the normal equations we have:

ATAb = AT y

This motivates the idea of the “pseudoinverse” for A ∈ Rm×n:

A+ ≡ (ATA)−1AT ∈ Rn×m

Key point: A+ generalizes A−1, i.e. if A ∈ Rn×n is invertible, then
A+ = A−1

Proof: A+ = (ATA)−1AT = A−1(AT )−1AT = A−1



Pseudoinverse

Also:

I Even when A is not invertible we still have still have A+A = I

I In general AA+ 6= I (hence this is called a “left inverse”)

And it follows from our definition that b = A+y , i.e. A+ ∈ Rn×m

gives the least-squares solution

Note that we define the pseudoinverse differently in different
contexts



Underdetermined Least Squares

So far we have focused on overconstrained systems (more
constraints than parameters)

But least-squares also applies to underconstrained systems:
Ab = y with A ∈ Rm×n, m < n

 A




b


=

 y



i.e. we have a “short, wide” matrix A



Underdetermined Least Squares

For φ(b) = ‖r(b)‖22 = ‖y − Ab‖22, we can apply the same
argument as before (i.e. set ∇φ = 0) to again obtain

ATAb = AT y

But in this case ATA ∈ Rn×n has rank at most m (where m < n),
why?

Therefore ATA must be singular!

Typical case: There are infinitely vectors b that give r(b) = 0, we
want to be able to select one of them



Underdetermined Least Squares

First idea, pose as a constrained optimization problem to find the
feasible b with minimum 2-norm:

minimize bTb
subject to Ab = y

This can be treated using Lagrange multipliers (discussed later in
the Optimization section)

Idea is that the constraint restricts us to an (n −m)-dimensional
hyperplane of Rn on which bTb has a unique minimum



Underdetermined Least Squares

We will show later that the Lagrange multiplier approach for the
above problem gives:

b = AT (AAT )−1y

As a result, in the underdetermined case the pseudoinverse is
defined as A+ = AT (AAT )−1 ∈ Rn×m

Note that now AA+ = I , but A+A 6= I in general (i.e. this is a
“right inverse”)



Underdetermined Least Squares

Here we consider an alternative approach for solving the
underconstrained case

Let’s modify φ so that there is a unique minimum!

For example, let
φ(b) ≡ ‖r(b)‖22 + ‖Sb‖22

where S ∈ Rn×n is a scaling matrix

This is called regularization: we make the problem well-posed
(“more regular”) by modifying the objective function



Underdetermined Least Squares

Calculating ∇φ = 0 in the same way as before leads to the system

(ATA + STS)b = AT y

We need to choose S in some way to ensure (ATA + STS) is
invertible

Can be proved that if STS is positive definite then (ATA + STS)
is invertible

Simplest positive definite regularizer: S = µI ∈ Rn×n for µ ∈ R>0



Underdetermined Least Squares

Example [under lfit.py ]: Find least-squares fit for degree 11
polynomial to 5 samples of y = cos(4x) for x ∈ [0, 1]

12 parameters, 5 constraints =⇒ A ∈ R5×12

We express the polynomial using the monomial basis (can’t use
Lagrange since m 6= n): A is a submatrix of a Vandermonde matrix

If we naively use the normal equations we see that
cond(ATA) = 4.78× 1017, i.e. “singular to machine precision”!

Let’s see what happens when we regularize the problem with some
different choices of S

https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/under_lfit.py


Underdetermined Least Squares

Find least-squares fit for degree 11 polynomial to 5 samples of
y = cos(4x) for x ∈ [0, 1]

Try S = 0.001I (i.e. µ = 0.001)
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‖r(b)‖2 = 1.07× 10−4

‖b‖2 = 4.40

cond(ATA + STS) = 1.54× 107

Fit is good since regularization term is small but condition number
is still large



Underdetermined Least Squares

Find least-squares fit for degree 11 polynomial to 5 samples of
y = cos(4x) for x ∈ [0, 1]

Try S = 0.5I (i.e. µ = 0.5)
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‖r(b)‖2 = 6.60× 10−1

‖b‖2 = 1.15

cond(ATA + STS) = 62.3

Regularization term now dominates: small condition number and
small ‖b‖2, but poor fit to the data!



Underdetermined Least Squares

Find least-squares fit for degree 11 polynomial to 5 samples of
y = cos(4x) for x ∈ [0, 1]

Try S = diag(0.1, 0.1, 0.1, 10, 10 . . . , 10)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

‖r(b)‖2 = 4.78× 10−1

‖b‖2 = 4.27

cond(ATA + STS) = 5.90× 103

We strongly penalize b3, b4, . . . , b11, hence the fit is close to
parabolic



Underdetermined Least Squares

Find least-squares fit for degree 11 polynomial to 5 samples of
y = cos(4x) for x ∈ [0, 1]
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‖r(b)‖2 = 1.03× 10−15

‖b‖2 = 7.18

Python routine gives Lagrange multiplier based solution, hence
satisfies the constraints to machine precision



Nonlinear Least Squares

So far we have looked at finding a “best fit” solution to a linear
system (linear least-squares)

A more difficult situation is when we consider least-squares for
nonlinear systems

Key point: We are referring to linearity in the parameters, not
linearity of the model

(e.g. polynomial pn(x ; b) = b0 + b1x + . . .+ bnx
n is nonlinear in x ,

but linear in b!)

In nonlinear least-squares, we fit functions that are nonlinear in the
parameters



Nonlinear Least Squares: Example
Example: Suppose we have a radio transmitter at b̂ = (b̂1, b̂2)
somewhere in [0, 1]2 (×)

Suppose that we have 10 receivers at locations
(x11 , x

1
2 ), (x21 , x

2
2 ), . . . , (x101 , x102 ) ∈ [0, 1]2 (•)

Receiver i returns a measurement for the distance yi to the
transmitter, but there is some error/noise (ε)
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Nonlinear Least Squares: Example

Let b be a candidate location for the transmitter

The distance from b to (x i1, x
i
2) is

di (b) ≡
√

(b1 − x i1)2 + (b2 − x i2)2

We want to choose b to match the data as well as possible, hence
minimize the residual r(b) ∈ R10 where ri (b) = yi − di (b)



Nonlinear Least Squares: Example

In this case, ri (α + β) 6= ri (α) + ri (β), hence nonlinear
least-squares!

Define the objective function φ(b) = 1
2‖r(b)‖22, where r(b) ∈ R10

is the residual vector

The 1/2 factor in φ(b) has no effect on the minimizing b, but
leads to slightly cleaner formulae later on



Nonlinear Least Squares

As in the linear case, we seek to minimize φ by finding b such that
∇φ = 0

We have φ(b) = 1
2

∑m
j=1[rj(b)]2

Hence for the i th component of the gradient vector, we have

∂φ

∂bi
=

∂

∂bi

1

2

m∑
j=1

r2j =
m∑
j=1

rj
∂rj
∂bi



Nonlinear Least Squares

This is equivalent to ∇φ = Jr (b)T r(b) where Jr (b) ∈ Rm×n is the
Jacobian matrix of the residual

{Jr (b)}ij =
∂ri (b)

∂bj

Exercise: Show that Jr (b)T r(b) = 0 reduces to the normal
equations when the residual is linear



Nonlinear Least Squares

Hence we seek b ∈ Rn such that:

Jr (b)T r(b) = 0

This has n equations, n unknowns; in general this is a nonlinear
system that we have to solve iteratively

An important recurring theme is that linear systems can be solved
in “one shot,” whereas nonlinear generally requires iteration

We will briefly introduce Newton’s method for solving this system
and defer detailed discussion until the optimization section



Nonlinear Least Squares

Recall Newton’s method for a function of one variable: find x ∈ R
such that f (x) = 0

Let xk be our current guess, and xk + ∆x = x , then Taylor
expansion gives

0 = f (xk + ∆x) = f (xk) + ∆xf ′(xk) + O((∆x)2)

It follows that f ′(xk)∆x ≈ −f (xk) (approx. since we neglect the
higher order terms)

This motivates Newton’s method: f ′(xk)∆xk = −f (xk), where
xk+1 = xk + ∆xk



Nonlinear Least Squares

This argument generalizes directly to functions of several variables

For example, suppose F : Rn → Rn, then find x s.t. F (x) = 0 by

JF (xk)∆xk = −F (xk)

where JF is the Jacobian of F , ∆xk ∈ Rn, xk+1 = xk + ∆xk



Nonlinear Least Squares

In the case of nonlinear least squares, to find a stationary point of
φ we need to find b such that Jr (b)T r(b) = 0

That is, we want to solve F (b) = 0 for F (b) ≡ Jr (b)T r(b)

We apply Newton’s Method, hence need to find the Jacobian, JF ,
of the function F : Rn → Rn



Nonlinear Least Squares

Consider ∂Fi
∂bj

(this will be the ij entry of JF ):

∂Fi
∂bj

=
∂

∂bj

(
Jr (b)T r(b)

)
i

=
∂

∂bj

m∑
k=1

∂rk
∂bi

rk

=
m∑

k=1

∂rk
∂bi

∂rk
∂bj

+
m∑

k=1

∂2rk
∂bi∂bj

rk



Gauss–Newton Method

It is generally a pain to deal with the second derivatives in the
previous formula, second derivatives get messy!

Key observation: As we approach a good fit to the data, the
residual values rk(b), 1 ≤ k ≤ m, should be small

Hence we omit the term
∑m

k=1 rk
∂2rk
∂bi∂bj

.



Gauss–Newton Method

Note that
∑m

k=1
∂rk
∂bj

∂rk
∂bi

= (Jr (b)T Jr (b))ij , so that when the

residual is small JF (b) ≈ Jr (b)T Jr (b)

Then putting all the pieces together, we obtain the iteration:
bk+1 = bk + ∆bk where

Jr (bk)T Jr (bk)∆bk = −Jr (bk)T r(bk), k = 1, 2, 3, . . .

This is known as the Gauss–Newton Algorithm for nonlinear least
squares



Gauss–Newton Method

This looks similar to Normal Equations at each iteration, except
now the matrix Jr (bk) comes from linearizing the residual

Gauss–Newton is equivalent to solving the linear least squares
problem Jr (bk)∆bk ' −r(bk) at each iteration

This is a common refrain in Scientific Computing: Replace a
nonlinear problem with a sequence of linearized problems



Computing the Jacobian

To use Gauss–Newton in practice, we need to be able to compute
the Jacobian matrix Jr (bk) for any bk ∈ Rn

We can do this “by hand”, e.g. in our transmitter/receiver
problem we would have:

[Jr (b)]ij = − ∂

∂bj

√
(b1 − x i1)2 + (b2 − x i2)2

Differentiating by hand is feasible in this case, but it can become
impractical if r(b) is more complicated

Or perhaps our mapping b → y is a “black box” — no closed form
equations hence not possible to differentiate the residual!



Computing the Jacobian

So, what is the alternative to “differentiation by hand”?
Finite difference approximation: for h� 1 we have

[Jr (bk)]ij ≈
ri (bk + ejh)− ri (bk)

h

Avoids tedious, error prone differentiation of r by hand!

Also, can be used for differentiating “black box” mappings since
we only need to be able to evaluate r(b)



Gauss–Newton Method

We derived the Gauss–Newton algorithm method in a natural way:

I apply Newton’s method to solve ∇φ = 0

I neglect the second derivative terms that arise

However, Gauss–Newton is not widely used in practice since it
doesn’t always converge reliably



Levenberg–Marquardt Method

A more robust variation of Gauss–Newton is the
Levenberg–Marquardt Algorithm, which uses the update

[JT (bk)J(bk) + µk diag(STS)]∆b = −J(bk)T r(bk)

where16 S = I or S = J(bk), and some heuristic is used to choose
µk

This looks like our “regularized” underdetermined linear least
squares formulation!

16In this context diag(A) means “zero the off-diagonal part of A”



Levenberg–Marquardt Method

Key point: The regularization term µk diag(STS) improves the
reliability of the algorithm in practice

Levenberg–Marquardt is implemented in Python and Matlab’s
optimization toolbox

We need to pass the residual to the routine, and we can also pass
the Jacobian matrix or ask for a finite-differenced Jacobian

Now let’s solve our transmitter/receiver problem



Nonlinear Least Squares: Example

Python example: Using nonlinlsq.py we provide an initial guess
(•), and converge to the solution (×)
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https://github.com/chr1shr/am205_examples/blob/master/1_data_fitting/nonlinlsq.py


Nonlinear Least Squares: Example
Levenberg–Marquardt minimizes φ(b), as we see from the contour
plot of φ(b) below

Recall × is the true transmitter location, × is our best-fit to the
data; φ(×) = 0.0248 < 0.0386 = φ(×).
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These contours are quite different from what we get in linear
problems



Linear Least-Squares Contours

Two examples of linear least squares contours for
φ(b) = ‖y − Ab‖22, b ∈ R2
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In linear least squares φ(b) is quadratic, hence contours are
“hyperellipses”


