
Harvard Applied Mathematics 205

Unit 0: Overview of Scientific Computing

Instructor: Chris H. Rycroft

Scientific Computing

Computation is now recognized as the “third pillar” of science
(along with theory and experiment)

Why?

I Computation allows us to explore theoretical/mathematical
models when those models can’t be solved analytically. This is
usually the case for real-world problems

I Computation allows us to process and analyze data on large
scale

I Advances in algorithms and hardware over the past 50 years
have steadily increased the prominence of scientific computing

What is Scientific Computing?

Scientific computing (SC) is closely related to numerical analysis
(NA)

“Numerical analysis is the study of algorithms for the problems of
continuous mathematics”
Nick Trefethen, SIAM News, 1992.

NA is the study of these algorithms, while SC emphasizes their
application to practical problems

Continuous mathematics: algorithms involving real (or complex)
numbers, as opposed to integers

NA/SC are quite distinct from Computer Science, which usually
focus on discrete mathematics (e.g. graph theory or cryptography)

Scientific Computing: Cosmology

Cosmological simulations allow researchers to test theories of
galaxy formation

(cosmicweb.uchicago.edu)

Scientific Computing: Biology

Scientific computing is now crucial in molecular biology,
e.g. protein folding (cnx.org)

Or statistical analysis of gene expression

(Markus Ringner, Nature Biotechnology, 2008)

Scientific Computing: Computational Fluid Dynamics

Wind-tunnel studies are being replaced and/or complemented by
CFD simulations

I Faster/easier/cheaper to tweak a computational design than a
physical model

I Can visualize the entire flow-field to inform designers

(www.mentor.com)

Scientific Computing: Geophysics

In geophysics we only have data on the Earth’s surface

Computational simulations allow us to test models of the interior

(www.tacc.utexas.edu)

What is Scientific Computing?

NA and SC have been important subjects for centuries, even
though the names we use today are relatively recent.

One of the earliest examples: calculation of π. Early values:

I Babylonians: 31/8

I Quote from the Old Testament: “And he made the molten
sea of ten cubits from brim to brim, round in compass, and
the height thereof was five cubits; and a line of thirty cubits
did compass it round about” – 1 Kings 7:23. Implies π ≈ 3.

I Egyptians: 4(8/9)2 ≈ 3.16049

What is Scientific Computing?

Archimedes’ (287–212 BC) approximation of π used a recursion
relation for the area of a polygon

Archimedes calculated that 3 10
71 < π < 3 1

7 , an interval of 0.00201

What is Scientific Computing?

Key numerical analysis ideas captured by Archimedes:

I Approximate an infinite/continuous process (area integration)
by a finite/discrete process (polygon perimeter)

I Error estimate (3 10
71 < π < 3 1

7) is just as important as the
approximation itself

What is Scientific Computing?

We will encounter algorithms from many great mathematicians:
Newton, Gauss, Euler, Lagrange, Fourier, Legendre, Chebyshev, . . .

They were practitioners of scientific computing (using “hand
calculations”), e.g. for astronomy, optics, mechanics, . . .

Very interested in accurate and efficient methods since hand
calculations are so laborious

Calculating π more accurately

James Gregory (1638–1675) discovers the arctangent series

tan−1 x = x − x3

3
+

x5

5
− x7

7
+

Putting x = 1 gives

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . . ,

but this formula converges very slowly.

Formula of John Machin (1680–1752)

If tanα = 1/5, then

tan 2α =
2 tanα

1− tan2 α
=

5

12
=⇒ tan 4α =

2 tan 2α

1− tan2 2α
=

120

119
.

This very close to one, and hence

tan
(

4α− π

4

)
=

tan 4α− 1

1 + tan 4α
=

1

239
.

Taking the arctangent of both sides gives the Machin formula

π

4
= 4 tan−1 1

5
− tan−1 1

239
,

which gives much faster convergence.

The arctangent digit hunters

1706 John Machin, 100 digits
1719 Thomas de Lagny, 112 digits
1739 Matsunaga Ryohitsu, 50 digits
1794 Georg von Vega, 140 digits
1844 Zacharias Dase, 200 digits
1847 Thomas Clausen, 248 digits
1853 William Rutherford, 440 digits
1876 William Shanks, 707 digits

A short poem to Shanks1

Seven hundred seven
Shanks did state

Digits of π he would calculate
And none can deny
It was a good try

But he erred in five twenty eight!

1If you would like more poems and facts about π, see slides from The
Wonder of Pi , a public lecture Chris gave at Newton Free Library on 3/14/19.

https://people.seas.harvard.edu/~chr/events/pi_day_talk.pdf
https://people.seas.harvard.edu/~chr/events/pi_day_talk.pdf

Scientific Computing vs. Numerical Analysis

SC and NA are closely related, each field informs the other

Emphasis of AM205 is Scientific Computing

We focus on knowledge required for you to be a responsible
user of numerical methods for practical problems

Sources of Error in Scientific Computing

There are several sources of error in solving real-world Scientific
Computing problems

Some are beyond our control, e.g. uncertainty in modeling
parameters or initial conditions

Some are introduced by our numerical approximations:

I Truncation/discretization: We need to make approximations in
order to compute (finite differences, truncate infinite series...)

I Rounding: Computers work with finite precision arithmetic,
which introduces rounding error

Sources of Error in Scientific Computing

It is crucial to understand and control the error introduced by
numerical approximation, otherwise our results might be garbage

This is a major part of Scientific Computing, called error analysis

Error analysis became crucial with advent of modern computers:
larger scale problems =⇒ more accumulation of numerical error

Most people are more familiar with rounding error, but
discretization error is usually far more important in practice

Discretization Error vs. Rounding Error

Consider finite difference approximation to f ′(x):

fdiff(x ; h) ≡ f (x + h)− f (x)

h
.

From Taylor series

f (x + h) = f (x) + hf ′(x) + f ′′(θ)h2/2, where θ ∈ [x , x + h]

we see that

fdiff(x ; h) =
f (x + h)− f (x)

h
= f ′(x) + f ′′(θ)h/2.

Suppose |f ′′(θ)| ≤ M, then bound on discretization error is

|f ′(x)− fdiff(x ; h)| ≤ Mh/2.

Discretization Error vs. Rounding Error

But we can’t compute fdiff(x ; h) in exact arithmetic

Let f̃diff(x ; h) denote finite precision approximation of fdiff(x ; h)

Numerator of f̃diff introduces rounding error . ε|f (x)|
(on modern computers ε ≈ 10−16, will discuss this shortly)

Hence we have the rounding error

|fdiff(x ; h)− f̃diff(x ; h)| .

∣∣∣∣ f (x + h)− f (x)

h
− f (x + h)− f (x) + εf (x)

h

∣∣∣∣
≤ ε|f (x)|/h

Discretization Error vs. Rounding Error

We can then use the triangle inequality (|a + b| ≤ |a|+ |b|) to
bound the total error (discretization and rounding)

|f ′(x)− f̃diff(x ; h)| = |f ′(x)− fdiff(x ; h) + fdiff(x ; h)− f̃diff(x ; h)|
≤ |f ′(x)− fdiff(x ; h)|+ |fdiff(x ; h)− f̃diff(x ; h)|
≤ Mh/2 + ε|f (x)|/h

Since ε is so small, here we expect discretization error to dominate
until h gets sufficiently small

Discretization Error vs. Rounding Error

For example, consider f (x) = exp(5x), f.d. error at x = 1 as
function of h:

10
−15

10
−10

10
−5

10
−6

10
−4

10
−2

10
0

10
2

10
4

h

T
o
t
a
l

e
r
r
o
r

Truncation dominantRounding dominant

Exercise: Use calculus to find local minimum of error bound as a
function of h to see why minimum occurs at h ≈ 10−8

Discretization Error vs. Rounding Error

Note that in this finite difference example, we observe error growth
due to rounding as h→ 0

This is a nasty situation, due to factor of h on the denominator in
the error bound

A more common situation (that we’ll see in Unit 1, for example) is
that the error plateaus at around ε due to rounding error

Discretization Error vs. Rounding Error

Error plateau:

0 5 10 15 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

N

E
r
r
o
r

Convergence plateau at ǫTruncation dominant

Absolute vs. Relative Error

Recall our bound |f ′(x)− f̃diff(x ; h)| ≤ Mh/2 + ε|f (x)|/h

This is a bound on Absolute Error2:

Absolute Error ≡ true value− approximate value

Generally more interesting to consider Relative Error:

Relative Error ≡ Absolute Error

true value

Relative error takes the scaling of the problem into account

2We generally don’t know the true value, we often have to use a surrogate
for the true value, e.g. an accurate approximation using a different method

Absolute vs. Relative Error

For our finite difference example, plotting relative error just
rescales the error values

10
−15

10
−10

10
−5

10
−8

10
−6

10
−4

10
−2

10
0

10
2

h

R
e
l
a
t
i
v
e

e
r
r
o
r

Sidenote: Convergence plots

We have shown several plots of error as a function of a
discretization parameter

In general, these plots are very important in scientific computing to
demonstrate that a numerical method is behaving as expected

To display convergence data in a clear way, it is important to use
appropriate axes for our plots

Sidenote: Convergence plots

Most often we will encounter algebraic convergence, where error
decreases as αhβ for some α, β ∈ R

Algebraic convergence: If y = αhβ, then

log(y) = logα + β log h

Plotting algebraic convergence on log–log axes asymptotically
yields a straight line with gradient β

Hence a good way to deduce the algebraic convergence rate is by
comparing error to αhβ on log–log axes

Sidenote: Convergence plots

Sometimes we will encounter exponential convergence, where error
decays as αe−βN as N →∞

If y = αe−βN then log y = logα− βN

Hence for exponential convergence, better to use semilog-y axes
(like the previous “error plateau” plot)

Numerical sensitivity

In practical problems we will always have input perturbations
(modeling uncertainty, rounding error)

Let y = f (x), and denote perturbed input x̂ = x + ∆x

Also, denote perturbed output by ŷ = f (x̂), and ŷ = y + ∆y

The function f is sensitive to input perturbations if ∆y � ∆x

This is sensitivity inherent in f , independent of any approximation
(though approximation f̂ ≈ f can exacerbate sensitivity)

Sensitivity and Conditioning

For a sensitive problem, small input perturbation =⇒ large output
perturbation

Can be made quantitative with concept of condition number3

Condition number ≡ |∆y/y |
|∆x/x |

Condition number � 1 ⇐⇒ small perturbations
are amplified

⇐⇒ ill-conditioned problem

3Here we introduce the relative condition number, generally more
informative than the absolute condition number

Sensitivity and Conditioning

Condition number can be analyzed for all sorts of different problem
types (independent of algorithm used to solve the problem), e.g.

I Function evaluation, y = f (x)

I Matrix multiplication, Ax = b (solve for b given x)

I Matrix equation, Ax = b (solve for x given b)

See notes: Numerical conditioning examples

Stability of an algorithm

In practice, we solve problems by applying a numerical method to a
mathematical problem, e.g. apply Gaussian elimination to Ax = b

To obtain an accurate answer, we need to apply a stable numerical
method to a well-conditioned mathematical problem

Question: What do we mean by a stable numerical method?

Answer: Roughly speaking, the numerical method doesn’t
accumulate error (e.g. rounding error) and produce garbage

We will make this definition more precise shortly, but first, we
discuss rounding error and finite-precision arithmetic

Code examples

From here on, a number of code examples will be provided.

They will all be available via the am205 examples Git repository.

Git is one example of version control software, which tracks the
development of files in a software project. It has many desirable
features, such as allowing files to be compared to any previous
version,4 and allowing multiple people to collaborate.

In the slides, notation like [code example.py] will be used to
indicate an associated example in the repository.

4This is extremely useful for debugging.

https://github.com/chr1shr/am205_examples

Code examples

You can simply browse files on the Github website, or download a
current snapshot as a ZIP file.

Git can be installed as a command-line utility on all major systems.
To get a copy of the repository, type

git clone git@github.com:chr1shr/am205_examples.git

Then, at later times, you can type

git pull

to obtain any updated files. Graphical interfaces for Git are also
available.

https://git-scm.com/download/gui/windows

Finite-precision arithmetic

Key point: we can only represent a finite and discrete subset of the
real numbers on a computer.

The standard approach in modern hardware is to use binary
floating point numbers (basically “scientific notation” in base 2),

x = ±(1 + d12−1 + d22−2 + . . .+ dp2−p)× 2E

= ±(1.d1d2 . . . dp)2 × 2E

Finite-precision arithmetic

We store

±︸︷︷︸
1 sign bit

d1, d2, . . . , dp︸ ︷︷ ︸
p mantissa bits

E︸︷︷︸
exponent bits

Note that the term bit is a contraction of “binary digit”5.

This format assumes that d0 = 1 to save a mantissa bit, but
sometimes d0 = 0 is required, such as to represent zero.

The exponent resides in an interval L ≤ E ≤ U.

5This terminology was first used in Claude Shannon’s seminal 1948 paper, A
Mathematical Theory of Communication.

IEEE floating point arithmetic

Universal standard on modern hardware is IEEE floating point
arithmetic (IEEE 754), adopted in 1985.

Development led by Prof. William Kahan (UC Berkeley)6, who
received the 1989 Turing Award for his work.

total bits p L U

IEEE single precision 32 23 -126 127

IEEE double precision 64 52 -1022 1023

Note that single precision has 8 exponent bits but only 254
different values of E , since some exponent bits are reserved to
represent special numbers.

6It’s interesting to search for paranoia.c.

Exceptional values

These exponents are reserved to indicate special behavior,
including values such as Inf and NaN:

I Inf = “infinity”, e.g. 1/0 (also −1/0 = −Inf)

I NaN = “Not a Number”, e.g. 0/0, Inf/Inf

IEEE floating point arithmetic

Let F denote the floating point numbers. Then F ⊂ R and
|F| <∞.

Question: how should we represent a real number x , which is not
in F?

Answer: There are two cases to consider:

I Case 1: x is outside the range of F (too small or too large)

I Case 2: The mantissa of x requires more than p bits.

IEEE floating point arithmetic

Case 1: x is outside the range of F (too small or too large)

Too small:

I Smallest positive value that can be represented in double
precision is ≈ 10−323.

I For a value smaller than this we get underflow, and the value
typically set to 0.

Too large:

I Largest x ∈ F (E = U and all mantissa bits are 1) is
approximately 21024 ≈ 10308.

I For values larger than this we get overflow, and the value
typically gets set to Inf.

IEEE floating point arithmetic

Case 2: The mantissa of x requires more than p bits

Need to round x to a nearby floating point number

Let round : R→ F denote our rounding operator. There are
several different options: round up, round down, round to nearest,
etc.

This introduces a rounding error:

I absolute rounding error x − round(x)

I relative rounding error (x − round(x))/x

Machine precision

It is important to be able to quantify this rounding error—it’s
related to machine precision, often denoted as ε or εmach.

ε is the difference between 1 and the next floating point number
after 1, i.e. ε = 2−p.

In IEEE double precision, ε = 2−52 ≈ 2.22× 10−16.

Rounding Error

Let x = (1.d1d2 . . . dpdp+1)2 × 2E ∈ R>0.

Then x ∈ [x−, x+] for x−, x+ ∈ F, where
x− = (1.d1d2 . . . dp)2 × 2E and x+ = x− + ε× 2E .

round(x) = x− or x+ depending on the rounding rule, and hence
|round(x)− x | < ε× 2E (why not “≤”)7

Also, |x | ≥ 2E .

7With “round to nearest” we have |round(x)− x | ≤ 0.5× ε× 2E , but here
we prefer the above inequality because it is true for any rounding rule.

Rounding Error

Hence we have a relative error of less than ε, i.e.,∣∣∣∣round(x)− x

x

∣∣∣∣ < ε.

Another standard way to write this is

round(x) = x

(
1 +

round(x)− x

x

)
= x(1 + δ)

where δ = round(x)−x
x and |δ| < ε.

Hence rounding give the correct answer to within a factor of 1 + δ.

Floating Point Operations

An arithmetic operation on floating point numbers is called a
“floating point operation”: ⊕, 	, ⊗, � versus +, −, ×, /.

Computer performance is often measured in “flops”: number of
floating point operations per second.

Supercomputers are ranked based on number of flops achieved in
the “linpack test,” which solves dense linear algebra problems.

Currently, the fastest computers are in the 100 petaflop range:
1 petaflop = 1015 floating point operations per second

Floating Point Operations
See http://www.top500.org for an up-to-date list of the fastest
supercomputers.8

8Rmax: flops from linpack test. Rpeak: theoretical maximum flops.

http://www.top500.org

Floating Point Operations

Modern supercomputers are very large, link many processors
together with fast interconnect to minimize communication time

Floating Point Operation Error

IEEE standard guarantees that for x , y ∈ F, x ~ y = round(x ∗ y)
(∗ and ~ represent one of the 4 arithmetic operations)

Hence from our discussion of rounding error it follows that for
x , y ∈ F, x ~ y = (x ∗ y)(1 + δ), for some |δ| < ε

Loss of Precision

Machine precision can be tested [acc test.py , acc test.cc]

Since ε is so small, we typically lose very little precision per
operation

See Lecture: Example of benign loss of precision

But loss of precision is not always benign:

See Lecture: Significant loss of precision due to cancellation

https://github.com/chr1shr/am205_examples/blob/master/0_overview/acc_test.py
https://github.com/chr1shr/am205_examples/blob/master/0_overview/acc_test.cc

IEEE Floating Point Arithmetic

For more detailed discussion of floating point arithmetic, see:

“Numerical Computing with IEEE Floating Point Arithmetic,”
Michael L. Overton, SIAM, 2001

Numerical Stability of an Algorithm

We have discussed rounding for a single operation, but in AM205
we will study numerical algorithms that require many operations

For an algorithm to be useful, it must be stable in the sense that
rounding errors do not accumulate and result in “garbage” output

More precisely, numerical analysts aim to prove backward stability:
The method gives the exact answer to a slightly perturbed problem

For example, a numerical method for solving Ax = b should give
the exact answer for (A + ∆A)x = (b + ∆b) for small ∆A, ∆b

Numerical Stability of an Algorithm

We note the importance of conditioning: Backward stability
doesn’t help us if the mathematical problem is ill-conditioned

For example, if A is ill-conditioned then a backward stable
algorithm for solving Ax = b can still give large error for x

Backward stability analysis is a deep subject which we do not cover
in detail in AM205

We will, however, compare algorithms with different stability
properties and observe the importance of stability in practice

