
Iterative methods for linear systems

Chris H. Rycroft*

November 19th, 2016

Introduction

For many elliptic PDE problems, finite-difference and finite-element methods are the tech-
niques of choice. In a finite-difference approach, a solution uk on a set of discrete gridpoints
1, . . . , k is searched for. The discretized partial differential equation and boundary condi-
tions create linear relationships between the different values of uk. In the finite-element
method, the solution is expressed as a linear combination uk of basis functions λk on
the domain, and the corresponding finite-element variational problem again gives linear
relationships between the different values of uk.

Regardless of the precise details, all of these approaches ultimately end up with having
to find the uk that satisfy all the linear relationships prescribed by the PDE. This can be
written as a matrix equation of the form

Au = b (1)

where one aims to find a solution u, given that A is a matrix capturing the differentiation
operator, and b corresponds to any source or boundary terms. Theoretically, this problem
could be solved on a computer by any of the standard methods for dealing with matrices.
However, the real challenge for PDEs is that frequently the dimensionality of the problem
can be enormous. For example, for a two-dimensional PDE problem, a 100× 100 grid
would be a perfectly reasonable size to consider. Thus u would be a vector with 104

elements, and A would be a matrix with 108 elements. Even allocating memory for such a
large matrix may be problematic. Direct approaches, such as the explicit construction of
A−1, are impractical.

The key to making progress is to note that in general the matrix A is extremely sparse,
since the linear relationships usually only relate nearby gridpoints together. It is therefore
natural to seek methods that do not require ever explicitly specifying all the elements of A,
but exploit its special structure directly. Many of these methods are iterative—starting with

*Electronic address: chr@seas.harvard.edu.

1

a guess uk, a process is applied that yields a closer solution uk+1. Typically, these iterative
methods are based on a splitting of A. This is a decomposition A = M− K where M is
non-singular. Any splitting creates a possible iterative process. Equation 1 can be rewritten
as

(M− K)u = b, (2)
Mu = Ku + b, (3)

u = M−1Ku + M−1b, (4)

and hence a possible iteration is

uk+1 = M−1Kuk + M−1b. (5)

Of course, there is no guarantee that an arbitrary splitting will result in an iterative method
that converges. To study convergence, one must look at the properties of the matrix
R = M−1K. For convergence analysis, it is helpful to introduce the spectral radius

ρ(R) = max
j
{|λj|}, (6)

where the λj are the eigenvalues of R. It can be shown [2] that an iterative scheme converges
if and only if ρ(R) < 1. The size of the spectral radius determines the convergence rate,
and ideally one would like to find splittings that result in as small a ρ(R) as possible.

An example: a two-dimensional Poisson problem

In the convergence analysis later, we will consider a two-dimensional Poisson problem on
the square −1 ≤ x ≤ 1,−1 ≤ y ≤ 1, given by the equation

−∇2u = f , (7)

subject to the Dirichlet conditions that u(x, y) vanishes on the boundary. We use a source
function of the form

f (x, y) =
{

1 if |x| < 0.5 and |y| < 0.5
0 otherwise. (8)

This is plotted on a 33× 33 grid in figure 1. For convergence properties, the eigenfunctions
and eigenvalues of this function are very important, and to determine these, it is helpful to
consider an associated one-dimensional Poisson problem on the interval −1 ≤ x ≤ 1,

− d2u
dx2 = f (x), (9)

2

subject to Dirichlet boundary conditions u(−1) = u(1) = 0. We consider a discretization
into N + 2 gridpoints such that xj = −1 + 2j/(N + 1) for j = 0, . . . , N + 1. When con-
structing the corresponding matrix problem, u0 and uN+1 need not be considered, since
their values are always fixed to zero. By discretizing the second derivative according to

d2u
dx2

∣∣∣∣
x=xj

=
uj−1 + uj+1 − 2uj

h2 (10)

where h = 2/(N + 1), the corresponding linear system is

TN

u1
u2
...

uN

 =

2 −1 0

−1 2 −1 . . .

0 −1 . . . −1 0
. . . −1 2 −1

0 −1 2

u0
u1
...

uN

 = h2

f0
f1
...

fN

 . (11)

We expect that the eigenvectors of TN may be based on sine functions. A reasonable guess
for the jth eigenfunction is

zj(k) =
√

2
N + 1

sin
πkj

N + 1
. (12)

To verify this is an eigenfunction, and find its eigenvalue, we apply TN to obtain

(
TNzj

)
(k) =

√
2

N + 1

(
2 sin

πkj
N + 1

− sin
π(k + 1)j

N + 1
− sin

π(k− 1)j
N + 1

)
. (13)

Note that this expression will always be valid for the range k = 1, 2, . . . , N, and the
boundary values will automatically work out. The last two sine functions can be rewritten
using a trigonometric identity to give

(
TNzj

)
(k) =

√
2

N + 1

(
2 sin

πkj
N + 1

− 2 sin
πkj

N + 1
cos

π j
N + 1

)
=

√
2

N + 1
2
(

1− cos
π j

N + 1

)
sin

πkj
N + 1

= 2
(

1− cos
π j

N + 1

)
zj(k) (14)

and hence zj is an eigenvector with eigenvalue λj = 2(1− cos π j/(N + 1)). The smallest
eigenvalue is λ1 = 2(1− cos π/(N + 1)) and the largest is λN = 2(1− cos Nπ/(N + 1)).

Returning to the two-dimensional problem, the corresponding derivative matrix TN×N
can be written as the tensor product of two one-dimensional problems TN . Its eigenvectors
are the tensor products of the one-dimensional eigenvectors, namely

zi,j(k, l) = zi(k)zj(l), (15)

3

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f

x

y

f

Figure 1: A sample source function f (x, y) on a 33× 33 grid.

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0
0.05
0.1

0.15
0.2

u

x

y

u

Figure 2: The exact solution to the 2D Poisson problem −∇2u = f , with zero boundary conditions and a
source term given in figure 1.

4

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0
0.002
0.004
0.006
0.008
0.01

u

x

y

u

Figure 3: The solution to the example 2D Poisson problem after ten iterations of the Jacobi method.

and the corresponding eigenvalues are

λi,j = λi + λj. (16)

The Jacobi Method

The Jacobi method is one of the simplest iterations to implement. While its convergence
properties make it too slow for use in many problems, it is worthwhile to consider since
it forms the basis of other methods. Starting with an initial guess u0, one successively
applies an iteration of the form

for j = 1 to N do
um+1,j =

1
ajj

(
bj −∑k 6=j ajkum,k

)
end for

In other words, the jth component of u is set so that it exactly satisfies equation j of
the linear system. For the two-dimensional Poisson problem considered above, this
corresponds to an iteration of the form

for i = 1 to N do
for j = 1 to N do

5

um+1,i,j =
(
h2 f j + um,i,j+1 + um,i,j−1 + um,i+1,j + um,i−1,j

)
/4

end for
end for

To find the corresponding matrix form, write A = D− L−U where D is diagonal, L is
lower-triangular, and U is upper-triangular. Then the above iteration is

um+1 = D−1(L + U)um + D−1b. (17)

The convergence properties, discussed later, are then set by the matrix RJ = D−1(L + U).
The Jacobi method has the advantage that for each m, the order in which the compo-

nents of um+1 are computed has no effect—this may be a favorable property to have in
some parallel implementations. However, it can also be seen that um must be retained
until after um+1 is constructed, meaning we must store um+1 in a different part of the
memory. The listing given in Appendix A.1 carries out the Jacobi iteration on the Poisson
test function. It makes use of two arrays for the storage of u, computing the odd uk in one
and the even uk in the other. Figure 3 shows a the progress of the Jacobi method after ten
iterations.

The Gauss–Seidel Method

The Gauss–Seidel method improves on the Jacobi algorithm, by noting that when up-
dating a particular point um+1,j, one might as well reference the already updated values
um+1,1,. . . ,um+1,j−1 in the calculation, rather than using the original values um,1,. . . , um,j−1.
The iteration can be written as

for j = 1 to N do
um+1,j =

1
ajj

(
bj −∑

j−1
k=1 ajkum+1,k −∑N

k=j+1 um,k

)
end for

The Gauss–Seidel algorithm has the advantage that in a computer implementation, it is
not necessary to allocate two arrays for um+1 and um. Instead, a single array for um can be
used and all updates can be carried out in situ. However, the Gauss–Seidel implementation
introduces an additional complication that the order in which the updates are applied
affects the values of um. For a two-dimensional problem, two particular orderings are
worth special attention:

• Natural ordering – this is the typical ordering that would result in a for loop. We first
loop successively through all elements of the first row (1, 1), . . . , (1, n) before moving
onto the second row, and so on. Since this frequently corresponds to the order that
the grid is stored within the computer memory, this order can lead to performance
improvements due to good cache efficiency.

6

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0
0.004
0.008
0.012
0.016
0.02

u

x

y

u

Figure 4: The Gauss–Seidel solution to the example 2D Poisson problem after ten iterations. The crinkles in
the solution are due to the Red–Black update procedure.

• Red–Black ordering – this is the ordering that results by coloring the gridpoints red
and black in a checkerboard pattern. Specifically, a gridpoint (i, j) is colored red if
i + j is even and colored black if i + j is odd. During the Gauss–Seidel update, all red
points are updated before the black points. For the two-dimensional Poisson problem,
updating a red grid point only requires information from the black gridpoints, and
vice versa. Hence the order in which points in each set are updated does not matter.
The whole Gauss–Seidel update is divided into a red gridpoint update and black
gridpoint update, and this can be helpful in the convergence analysis.

From the algorithm above, the corresponding matrix splitting for the Gauss–Seidel method
is

(D− L)um+1 = Uum + b, (18)

um+1 = (D− L)−1Uum + (D− L)−1b. (19)

Appendix A.2 contains a C++ code to carry out a Gauss–Seidel method on the example
problem, and the result after ten iterations is shown in figure 4.

Successive Over-Relaxation

Successive Over-Relaxation (SOR) is a refinement to the Gauss–Seidel algorithm. At each
stage in the Gauss–Seidel algorithm, a value um,j is updated to a new one um+1,j, which is

7

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0
0.02
0.04
0.06
0.08

u

x

y

u

Figure 5: The SOR solution (using the theoretically optimal ω) to the example 2D Poisson problem after ten
iterations. The solution is closer to the answer than the Jacobi or Gauss–Seidel methods.

equivalent to displacing um,j by an amount ∆u = um+1,j − um,j. The SOR algorithm works
by displacing the values by an amount ω∆u, where typically ω > 1, in the hope that if
∆u is a good direction to move in, one might as well move further in that direction. The
iteration is

for j = 1 to N do
um+1,j = (1−ω)um,j +

ω
ajj

(
bj −∑

j−1
k=1 ajkum+1,k −∑N

k=j+1 um,k

)
end for

The corresponding matrix form is

(D + ωL)um+1 = [(1−ω)D−Uω] um + ωb, (20)

um+1 = (D + ωL)−1 [(1−ω)D−Uω] um + (D + ωL)−1ωb. (21)

Appendix A.3 contains a C++ code to carry out the SOR iteration on the example problem,
and the result is shown in figure 5. In the SOR algorithm, the value of ω can be chosen
freely, and the best choices can be determined by considering the eigenfunctions of the
associated problem. This is discussed in more detail below.

8

Convergence analysis and complexity

To examine the convergence properties of the different methods, we need to look at the
associated spectral radii. For the Jacobi method, the matrix of interest is RJ = D−1(L + U).
For the 2D Poisson problem, D = 4I and hence

RJ = (4I)−1 (4I − TN×N) = I − TN×N

4
. (22)

The largest eigenvalue of RJ corresponds to the smallest of TN×N, namely

λ1,1 = 4− 2 cos
(

π

N + 1

)
− 2 cos

(
π

N + 1

)
= 4− 4 cos

(
π

N + 1

)
. (23)

Hence

ρ(RJ) = cos
(

π

N + 1

)
. (24)

Expanding the cosine as a Taylor series shows that ρ(RJ) ≈ 1− π2

2(N+1)2 . The time to gain
an extra digit of accuracy is approximately

1
log10 ρ(RJ)

∝ N2, (25)

so the algorithm must be run for O(N2) iterations to attain a specific level of accuracy.
Since there are O(N2) gridpoints for the 2D problem, the total running time is O(N4). For
detailed proofs of the convergence properties of the other methods, the reader should
consult the book by Demmel [2]. It can be shown that

ρ(RGS) = cos2
(

π

N + 1

)
, (26)

so that one iteration of the Gauss–Seidel method is equivalent to two Jacobi iterations.
Note however the complexity is the same: O(N2) iterations are still required to reach a
desired level of accuracy. For the SOR algorithm, it can be shown that the optimal value of
ω is

2

1 +
√

1− ρ(RJ)2
. (27)

and that for this value
ρ(RSOR) ≈ 1− 2

2π

N + 1
. (28)

Since there is a factor of N in the denominator as opposed to N2, the order of computation
decreases to O(N) per gridpoint.

9

10−30

10−25

10−20

10−15

10−10

10−5

1

105

0 2000 4000 6000 8000 10000

L2 -n
or

m
er

ro
r

Iterations

Jacobi
Gauss–Seidel
Optimal SOR

Figure 6: Errors versus the number of effective iterations for the Jacobi, Gauss–Seidel, and SOR methods,
applied to the example 2D Poisson problem on a 65× 65 grid. The plots are in line with the theoretical
results of the text. The Gauss–Seidel method is faster than the Jacobi method, but has still not reached double
numerical precision after 10000 iterations. The SOR method is significantly faster, but still requires 1200
iterations to reach double numerical precision.

Figure 6 shows a plot of mean square error against the number of iterations for the
model problem with the Jacobi, Gauss–Seidel, and optimal SOR method. The lines agree
with the above results. The SOR method reaches numerical precision within 1200 iterations,
while the other two methods have not fully converged even after 104 iterations.

Multigrid

One of the major problems with the three methods considered so far is that they only apply
locally. Information about different cell values only propagates by one or two gridpoints
per iteration. However, for many elliptic problems, a point source may cause an effect
over the entire domain. The above methods have a fundamental limitation that they will
need to be applied for at least as many iterations as it takes for information to propagate
across the grid. As such, we should not expect to ever do better than O(N) operations
per point. This can also be seen by considering the eigenvalues. The maximal eigenvalue
of RJ was set by the λ1,1, corresponding to the lowest order mode. While the methods
may effectively damp out high frequency oscillations, it takes a very long time to correctly
capture the lowest modes with the largest wavelengths.

The multigrid method circumvents these limitations by introducing a hierarchy of

10

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f (0)

x
y

f (0)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f (1)

x
y

f (1)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f (2)

x
y

f (2)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f (3)

x
y

f (3)

Figure 7: The restriction of the example source term f using the multigrid method with vdown = 0, vup = 2.
Top left: the initial grid, with 33× 33 gridpoints. Top right: grid 1, with 17× 17 gridpoints. Bottom left: grid
2, with 9× 9 gridpoints. Bottom right: grid 3, with 5× 5 gridpoints.

coarser and coarser grids. Typically, at each level, the number of gridpoints is reduced
by a factor of two in each direction, with the coarsest grid having roughly ten to twenty
points. To find a solution, we restrict the source term to the coarse grids, refine the solution
on each, and interpolate up to the original grid. On the coarser grids, the lower frequency
modes in the final solution can be dealt with much more effectively. Since the coarser grids
have progressively fewer gridpoints, the time spent computing them is minimal. Because
of this, the multigrid algorithm requires only O(1) computation per point, which is the
best order of complexity that can be achieved.

To be more specific, let the original problem be on grid 0, and we then introduce a
sequence of successively coarser grids 1, . . . , g. Write u(i) and b(i) to represent the solution
and source terms on the ith grid. A multigrid algorithm requires the following:

• A solution operator S(u(i), b(i)) that returns a better approximation u(i) to the solution
on the ith level,

• An interpolation operator T(u(i)) that returns an interpolation u(i−1) on the (i− 1)th
level,

• A restriction operator R(b(i)) that returns a restriction b(i+1) on the (i + 1)th level.

The interpolation and restriction operators can be thought of as rectangular matrices. As
an example, consider a problem with nine equally-spaced gridpoints on the unit interval,

11

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.05

0.1
0.15

0.2
u(3)

x
y

u(3)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.05
0.1

0.15
0.2

u(2)

x
y

u(2)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.05

0.1
0.15

0.2
u(1)

x
y

u(1)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.05
0.1

0.15
0.2

u(0)

x
y

u(0)

Figure 8: The solution of the v in the first multigrid V-cycle for the example 2D Poisson problem. Top left: the
exact solution on grid 3 to the f (3) source term in figure 7. Top right: the interpolation and refinement on grid
2. Bottom left: the interpolation and refinement on grid 1. Bottom right: the interpolation and refinement on
grid 0. Even after a single V-cycle, the solution is closer to the exact solution than the plots of 3, 4, and 5.

at (0, 1/8, 2/8, . . . , 1). Let grid 1 have five points at (0, 1/4, 2/4, 3/4, 1), and let grid 2 have
three gridpoints at (0, 1/2, 1). Interpolation operators between the grids can be written as

T(1) =

1 0 0 0 0
1/2 1/2 0 0 0
0 1 0 0 0
0 1/2 1/2 0 0
0 0 1 0 0
0 0 1/2 1/2 0
0 0 0 1 0
0 0 0 1/2 1/2

0 0 0 0 1

, T(2)

1 0 0

1/2 1/2 0
0 1 0
0 1/2 1/2

0 0 1

 (29)

where the function values at gridpoints common between the two levels are kept, and
the function values at midpoints are calculated using linear interpolation. Similarly, the

12

restriction operators can be written as

R(0) =

1 0 0 0 0 0 0 0 0
0 1/4 1/2 1/4 0 0 0 0 0
0 0 0 1/4 1/2 1/4 0 0 0
0 0 0 0 0 1/4 1/2 1/4 0
0 0 0 0 0 0 0 0 1

 R(1) =

 1 0 0 0 0
0 1/4 1/2 1/4 0
0 0 0 0 1

 .

(30)
Without the boundary points, R(i) is the proportional to the transpose of T(i+1), and this
property is very useful in proving the convergence of the multigrid method. However, this
property is not strictly necessary to create an efficient multigrid algorithm. Other methods
of interpolating and restricting are also possible, and it should also be noted that while
a grid of size 2n + 1 has a particularly convenient multigrid formulation, the multigrid
method can be applied to grids of arbitrary size. Given a differential operator matrix
A = A(0) on the top level, corresponding matrices on the lower levels can be calculated
according to

A(i) = R(i−1)A(i−1)T(i). (31)

With this definition, a solution operator S(u(i), b(i)) can be constructed as a single red–black
Gauss–Seidel sweep. The multigrid algorithm is then given by

function Multi(u(i), b(i))
if i = g then

compute exact solution to A(i)u(i) = b(i)

return u(i)

else
for j = 1 to vdown do

u(i) = S(u(i), b(i))
end for
r(i) = b(i) − A(i)u(i)

d(i) = T(Multi(0(i+1), R(r(i))))
u(i) = u(i) + d(i)

for j = 1 to vup do
u(i) = S(u(i), b(i))

end for
end if

Here, 0(i+1) represents a zero vector on grid level i + 1. The multigrid function is applied
recursively, and at each stage, the remainder of the problem on the level above is sent to
the lower level. The algorithm starts on level 0, descends to level g, and then ascends to
level 0 again, following the shape of a V. It is therefore referred to as the multigrid V-cycle.
Other more elaborate methods of moving between grids are possible, although the V-cycle
is very efficient in many situations. In the algorithm, we are free to choose the number of

13

10−30

10−25

10−20

10−15

10−10

10−5

1

105

0 100 200 300 400 500

L2 -n
or

m
er

ro
r

Effective iterations

Jacobi
Gauss–Seidel
Optimal SOR

Multigrid, vdown = 0, vup = 2
Multigrid, vdown = vup = 2

Figure 9: Errors versus the number of effective iterations for the several different iteration techniques. Here,
to allow a direct comparison, “effective iterations” for the multigrid methods is defined by the number of
Gauss–Seidel iterations that are applied on the top grid level, since the Gauss–Seidel iterations on the coarser
grids are small in comparison. For the vdown = 0, vup = 2 method, the effective number of iterations is twice
the number of V-cycles. For the vdown = vup = 2 method, the algorithm was slightly modified, so that only
two Gauss–Seidel iterations were applied at the top level each time, instead of the expected four. Thus the
effective number of iterations is also twice the number of V-cycles. The speed of the multigrid methods is
startling when compared to any of the other three iterations.

times the solution operator is applied on the way down and on the way up, and typical
good values to try may be vdown = vup = 2, or even vdown = 0, vup = 2. It may also be
worthwhile to carry out more iterations on the coarser grids, since the computation is
much cheaper there.

Figure 7 shows the restriction of the source term in the test problem on the coarser
grids. Figure 8 shows the solution being successively refined on the grids. Even after a
single V-cycle, the solution is close to the exact answer. Figure 9 shows the computation
times for two different multigrid algorithms, compared with the previous three methods
considered. The multigrid algorithms reach numerical precision extremely quickly, much
faster even than SOR. Only twenty Gauss–Seidel iterations are applied at the top level
before double numerical precision has been reached.

A Code listings

The following codes were used to generate the Jacobi, Gauss–Seidel, and SOR diagrams in
these notes. They are written in C++ and were compiled using the GNU C++ compiler.

14

Each of the first three routines calls a common code listed in appendix A.4 for setting
up useful constants and defining common routines. This common code also contains a
function for outputting the 2D matrices in a matrix binary format that is readable by the
plotting program Gnuplot [1]. This output routine could be replaced in order to save to
different plotting programs.

A.1 Jacobi method – jacobi.cc

// Load common routines and constants
#include "common.cc"

int main() {
int i,j,ij,k;
double error,u[m*n],v[m*n],z;
double *a,*b;

// Set initial guess to be identically zero
for(ij=0;ij<m*n;ij++) u[ij]=v[ij]=0;
output and error("jacobi out",u,0);

// Carry out Jacobi iterations
for(k=1;k<=total iters;k++) {

// Alternately flip input and output matrices
if (k%2==0) {a=u;b=v;} else {a=v;b=u;}

// Compute Jacobi iteration
for(j=1;j<n−1;j++) {

for(i=1;i<m−1;i++) {
ij=i+m*j;
a[ij]=(f(i,j)+dxxinv*(b[ij−1]+b[ij+1])

+dyyinv*(b[ij−m]+b[ij+m]))*dcent;
}

}

// Save and compute error if necessary
output and error("jacobi out",a,k);

}
}

A.2 Gauss–Seidel – gsrb.cc

// Load common routines and constants
#include "common.cc"

int main() {

15

int i,j,ij,k;
double error,u[m*n],z;

// Set initial guess to be identically zero
for(ij=0;ij<m*n;ij++) u[ij]=0;
output and error("gsrb out",u,0);

// Compute Red−Black Gauss−Seidel iteration
for(k=1;k<=total iters;k++) {

for(j=1;j<n−1;j++) {
for(i=1+(j&1);i<m−1;i+=2) {
ij=i+m*j;
u[ij]=(f(i,j)+dxxinv*(u[ij−1]+u[ij+1])

+dyyinv*(u[ij−m]+u[ij+m]))*dcent;
}

}
for(j=1;j<n−1;j++) {
for(i=2−(j&1);i<m−1;i+=2) {
ij=i+m*j;
u[ij]=(f(i,j)+dxxinv*(u[ij−1]+u[ij+1])

+dyyinv*(u[ij−m]+u[ij+m]))*dcent;
}

}

// Save the result and compute error if necessary
output and error("gsrb out",u,k);

}
}

A.3 Successive Over-Relaxation – sor.cc

// Load common routines and constants
#include "common.cc"

int main() {
int i,j,ij,k;
double error,u[m*n],z;

// Set initial guess to be identically zero
for(ij=0;ij<m*n;ij++) u[ij]=0;
output and error("sor out",u,0);

// Compute SOR Red−Black iterations
for(k=1;k<=total iters;k++) {

for(j=1;j<n−1;j++) {
for(i=1+(j&1);i<m−1;i+=2) {

16

ij=i+m*j;
u[ij]=u[ij]*(1−omega)+omega*(f(i,j)

+dxxinv*(u[ij−1]+u[ij+1])
+dyyinv*(u[ij−m]+u[ij+m]))*dcent;

}
}
for(j=1;j<n−1;j++) {

for(i=2−(j&1);i<m−1;i+=2) {
ij=i+m*j;
u[ij]=u[ij]*(1−omega)+omega*(f(i,j)

+dxxinv*(u[ij−1]+u[ij+1])
+dyyinv*(u[ij−m]+u[ij+m]))*dcent;

}
}

// Save the result and compute error if necessary
output and error("sor out",u,k);

}
}

A.4 Common routine for setup and output – common.cc

// Load standard libraries
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <cmath>
using namespace std;

// Set grid size and number of iterations
const int save iters=20;
const int total iters=200;
const int error every=2;
const int m=33,n=33;
const double xmin=−1,xmax=1;
const double ymin=−1,ymax=1;

// Compute useful constants
const double pi=3.1415926535897932384626433832795;
const double omega=2/(1+sin(2*pi/n));
const double dx=(xmax−xmin)/(m−1);
const double dy=(ymax−ymin)/(n−1);
const double dxxinv=1/(dx*dx);
const double dyyinv=1/(dy*dy);
const double dcent=1/(2*(dxxinv+dyyinv));

17

// Input function
inline double f(int i,int j) {

double x=xmin+i*dx,y=ymin+j*dy;
return abs(x)>0.5||abs(y)>0.5?0:1;

}

// Common output and error routine
void output and error(char* filename,double *a,const int sn) {
// Computes the error if sn%error every==0
if(sn%error every==0) {

double z,error=0;int ij;
for(int j=1;j<n−1;j++) {
for(int i=1;i<m−1;i++) {
ij=i+m*j;
z=f(i,j)−a[ij]*(2*dxxinv+2*dyyinv)

+dxxinv*(a[ij−1]+a[ij+1])
+dyyinv*(a[ij−m]+a[ij+m]);

error+=z*z;
}

}
cout << sn << " " << error*dx*dy << endl;

}

// Saves the matrix if sn<=save iters
if(sn<=save iters) {

int i,j,ij=0,ds=sizeof(float);
float x,y,data float;const char *pfloat;
pfloat=(const char*)&data float;

ofstream outfile;
static char fname[256];
sprintf(fname,"%s.%d",filename,sn);
outfile.open(fname,fstream::out

|fstream::trunc |fstream::binary);

data float=m;outfile.write(pfloat,ds);
for(i=0;i<m;i++) {

x=xmin+i*dx;
data float=x;outfile.write(pfloat,ds);

}

for(j=0;j<n;j++) {
y=ymin+j*dy;
data float=y;

18

outfile.write(pfloat,ds);
for(i=0;i<m;i++) {

data float=a[ij++];
outfile.write(pfloat,ds);

}
}
outfile.close();

}
}

References

[1] http://gnuplot.info/.

[2] J. W. Demmel, Applied numerical linear algebra, SIAM, 1997.

[3] G. H. Golub and C. H. Van Loan, Matrix computations, Johns Hopkins University
Publishers, 1996.

19

http://gnuplot.info/

	A Code listings
	A.1 Jacobi method – jacobi.cc
	A.2 Gauss–Seidel – gsrb.cc
	A.3 Successive Over-Relaxation – sor.cc
	A.4 Common routine for setup and output – common.cc

