AMZ205: additional notes on ODE solution methods

This document contains two derivations that were presented in lecture 13, about numeri-
cally solving the ordinary differential equations (ODEs) of the form

dy _
o = f(ty). (1)

For simplicity, y(t) is interpreted as a scalar function y : R — R, but the arguments easily
generalize to coupled ODE systems for a vector function, y : R — R".

Order conditions for the two-step Runge-Kutta method

Consider taking a single integration step of size h from f; to t;, 1, where y, = y(t). A gen-
eral class of two-step Runge-Kutta methods is based on first computing two intermediate
steps!

ko= fltoye), k2= f(te+ah, yx + Bhki) (2)

after which the value of y at ;. is given by
Yk+1 = Yk + h(aky + bky), ()

where 4, b, «, and B are arbitrary constants. Consider what conditions must be placed
on these constants in order to achieve second-order accuracy. To begin, the Taylor series
expansion of y(tx, 1) about y(ty) is

tess) = vt + By (1) + "o/ (5) + O)
2
= Y1)+ () + o TFy()]  +O0)

t=t;
2

= y(te) + hf (te yi) + % (fi(toyi) + ¥ fy (B yi)) +O(R)
= (1) + Rt ) + o () + £t w0 fy () + OF) )

where f; = df /dt and f, = df /dy. The Taylor series expansion of k; is

ko = f(teyx) + ahfe(te, yi) + BIf (tr, yi) fy (tk yi) + O(K?). (5)

Substituting this expansion into Eq. 3 gives

Yir1 = Vi + h(a+b) f(ti, yi) + abh> fi (b, yi) + PO f (e vi) fy (teo yi) + O(H3). (6)

1Be aware that there is some unfortunate notation here: k is used both to represent an intermediate step,
and as the subscript on the timestep. Since these are both standard notations for the course, we make use of
them regardless.




This will match the Taylor series in Eq. 4 to second order in & provided that
a+b=1, ab = Bb = -. (7)

This gives three constraints for the four unknowns, meaning that there is still some freedom
to choose the constants. As discussed in the lecture, several different methods satisfying
these constraints are typically used, such as the improved Euler method, modified Euler
method, or Ralston’s method. Usually, the additional freedom is used to simplify the con-
stants to be simple numbers; in particular, setting a number to be zero can result in better
performance, since terms can be skipped during the calculation of the k;. Furthermore, the
additional freedom can be used to minimize the O(h?) error term.

Satisfying the order conditions becomes increasingly complex to achieve higher-order
accuracy. As can be seen in the above derivation, all of the differential partial derivatives
of f must match, and this will become more complicated when higher-order, mixed partial
derivatives must be accounted for. Indeed, it can be shown that for p > 5, there is no
explicit Runge-Kutta method of order p with exactly p intermediate stages; it becomes
necessary to use more stages than the order required.

Derivation of Adams-Bashforth multi-step methods

The Adams-Bashforth methods are part of a family of multi-step integration methods
that use information from previous timesteps as a way to increase the order of accuracy.
Suppose that the ODE in Eq. 1 has been integrated over many timesteps t; each with step
size h, and consider taking a step to ;1. Then the integral

) =ut) + [ ®)

is an exact relationship for y (1) in terms of y(#x). The explicit Adams-Bashforth methods
are based on approximating f(t,y) over this interval by using a polynomial interpolation
function p(t) of f over the some number of previous time points tx_ 11, tk_ma2,-- -, bk
since at each one of these points f; = f(#;,y(t;)) can be computed. Substitution of p(t) into
Eq. 8 gives an explicit formula for y(t;,1) in terms of y(¢¢) and fi_ a1, fe—maios - - -5 fr-

To illustrate this consider the case of m = 2, so that the polynomial interpolant is a

straight line,
p(t) = fi +5(fk = fim1), ©)

where the variable s is defined as t = t; + hs for notational convenience. Substituting Eq. 9



into Eq. 8 gives

Y(tesn) = y(t) + [ p(tyde

tx

=yt + [ (oot s(fi— i)
1

=y(t) +h [ka + e~ fir) ;fk_l)}

0
=y(ty) +h (gfk - %fkl) , (10)

which is a second-order accurate formula for y ;1)
A second family of implicit Adams-Bashforth methods can be derived by considering
a different interpolating polynomial p*(t) which also goes through the point t1, fy41. In

this case, the resulting numerical scheme will also depend on f;, 1, and in general it must
be solved using nonlinear root finding.



