
AM205: Gaussian quadrature

In the lectures, we discussed the accuracy of different quadrature schemes for numerically
evaluating integrals of the form

I[ f ] =
∫ b

a
f (x) dx. (1)

Let Qn be a quadrature scheme that integrates polynomials up to degree n exactly. Then
we derived that the error between Qn[ f ] and the true integral satisfies the bound

|I[ f ]−Qn[ f ]| ≤ Cn min
p∈Pn
‖p− f ‖∞, (2)

where Pn is the family of all polynomials of degree n. Here Cn = b− a + ∑n
k=0 |wk|, where

wk are the quadrature weights. As n increases, the accuracy of approximation of f by
polynomials will increase. Indeed, by the Weierstraß approximation theorem, we know
that for a continuous function f , then minp∈Pn ‖p− f ‖ → 0 as n→ ∞. Hence, to improve
accuracy, it is generally desirable to search for quadrature schemes that maximize the
degree of polynomial that they integrate exactly.

Given any set of n + 1 quadrature points x0, x1, . . . , xn, the associated quadrature
scheme is based upon constructing a Lagrange interpolating polynomial of degree n
through the function f at those points. Hence any choice of quadrature points will
integrate all polynomials of up to order n exactly, since the Lagrange interpolant will
simply match the polynomial itself. However, we can ask whether it is possible to do better
via a judicious choice of points. A quadrature scheme is defined by the points x0, x1, . . . , xn
plus the associated weights w0, w1, . . . , wn, providing 2n + 2 total degrees of freedom.

Amazingly, it is possible to construct an (n+ 1)-point quadrature scheme that integrates
polynomials up to degree 2n + 1 exactly. Since polynomials in P2n+1 have 2n + 2 degrees
of freedom, this is the maximum that we could hope to achieve. These quadrature schemes
are called Gaussian quadrature. The points of the (n + 1)-point Gaussian quadrature scheme
are given by the roots of the (n + 1)th Legendre polynomial, discussed in the next section.
Once the roots are known, the weights are given by integrating the associated Lagrange
polynomial basis. A further useful property of Gaussian quadrature is that the weights
always work out to be positive, which is not true for other schemes such as Newton–Cotes.

At first sight, it is not obvious why Gaussian quadrature schemes are able to integrate
double the expected order of polynomials. This document explains why.

Orthogonal polynomials

The Legendre polynomials are an example of an orthogonal polynomial set. To define an
orthogonal polynomial set, an inner product of the form

〈p, q〉 =
∫ b

a
p(x)q(x)w(x)dx (3)
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is first introduced, where w(x) is a positive weight function. This inner product can be
viewed as a generalization of the scalar product for vectors.1 An orthogonal polynomial
set is then given by a family of polynomials u0, u1, u2, . . . such that

〈uj, uk〉 = 0 for j 6= k. (4)

Many different families of orthogonal polynomials are used in mathematics, depending on
the choice of weight function w(x) and interval [a, b]. The two of most relevance to AM205
are:

• The Chebyshev polynomials, given by w(x) = (1− x2)−1/2 and the interval [−1, 1],
which are optimal in some sense for function interpolation.

• The Legendre polynomials given by w(x) = 1 and the interval [−1, 1], which form
the basis of Gaussian quadrature.

However, many other examples exist, such as

• The Hermite polynomials, given by w(x) = e−x2
and the interval (−∞, ∞).

• The Laguerre polynomials, given by w(x) = e−x and the interval [0, ∞).

• The Jacobi polynomials, given by w(x) = (1− x)α(1 + x)β and the interval [−1, 1].
Here α and β are free parameters. Note that the Chebyshev and Legendre polynomi-
als are special cases when (α, β) = (−1/2,−1/2) and (α, β) = (0, 0), respectively.

In each polynomial set, the polynomials have increasing order, so that uk has degree k.
Furthermore, for any k, the set {u0, u1, . . . , uk} forms a basis for Pk. Note that for the
polynomials specified over a finite interval, the range [−1, 1] is typically used by conven-
tion, but the polynomials can be applied to any other interval by an appropriate rescaling.
Orthogonal polynomials have many useful properties. Here, we focus particularly on the
Legendre polynomials Pk(x), the first several of which are given by

P0(x) = 1, P1(x) = x, P2(x) = 1
2(3x2 − 1). (5)

They can be calculated using Rodrigues’ formula,

Pk(x) =
1

2kk!
dk

dxk (x2 − 1)k, (6)

and they satisfy the recurrence relation

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x). (7)
1Let p = (p1, p2, . . . , pm) and q = (q1, q2, . . . , qm) be m-dimensional vectors. The scalar product is

p · q = ∑m
i=1 piqi, and as m gets large, this sum becomes similar to taking an integral like Eq. 3, for the special

case of w(x) = 1.
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Gaussian quadrature

We now establish the main result that the (n + 1)-point Gaussian quadrature scheme can
integrate polynomials of degree 2n + 1 exactly. For maximum generality, we keep w(x) as
an arbitrary weight function and let u0, u1, . . . be the associated orthogonal polynomial set.
Let un+1 be the associated orthogonal polynomial of degree n + 1. Consider a monomial
xl where l ≤ n. Then using the basis property of orthogonal polynomials, there is an
expansion xl = ∑l

i=0 γiui(x) and hence∫ b

a
xlun+1(x)w(x)dx =

∫ b

a

(
l

∑
i=0

γiui(x)

)
un+1(x)w(x)dx =

l

∑
i=0

γi〈ui, un+1〉 = 0 (8)

where the inner products vanish from the orthogonality relations. Let the points of the
quadrature scheme x0, x1, . . . , xn be the roots of un+1(x), and define associated quadrature
weights using

wk =
∫ b

a
`k(x)w(x)dx (9)

where `k is the kth Lagrange basis polynomial.
Now consider integrating a polynomial f of degree at most 2n + 1. The key observation

is that by using long division, f can always be written as

f (x) = p(x)un+1(x) + r(x) (10)

where p and r are polynomials of degree at most n. The exact integral of f is given by

I[ f ] =
∫ b

a
f (x)w(x)dx =

∫ b

a
(p(x)un+1(x) + r(x))w(x)dx =

∫ b

a
r(x)w(x)dx (11)

where the orthogonality relation of Eq. 8 has been used to eliminate the term involving p.
Applying the quadrature scheme to f yields

Q[ f ] =
n

∑
k=0

wk f (xk) =
n

∑
k=0

wk (p(xk)un+1(xk) + r(xk)) =
n

∑
k=0

wkr(xk). (12)

Here, the terms involving p vanish because the points xk are chosen to be at the roots of
un+1. Since r is a polynomial of degree at most n, it follows that

Q[ f ] =
n

∑
k=0

wkr(xk) =
∫ b

a
r(x)w(x)dx = I[ f ], (13)

so the quadrature scheme is exact for f ∈ P2n+1.
The result for Gaussian quadrature is therefore established by considering the special

case when w(x) = 1, where the orthogonal polynomials are the Legendre polynomials (i.e.
uk = Pk). However, the same principles can be used to derive other practical quadrature
schemes. If w(x) = (1− x2)−1/2, then the orthogonal polynomials become the Chebyshev
polynomials, uk = Tk. The roots of the Chebyshev polynomials are clustered more tightly
toward the interval endpoints, reflective of the fact that the choice of w(x) adds more
weight to those regions.
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