
AM205: Examples of calculating a finite difference stencil

In the lectures, we discussed several typical methods of numerically calculating the deriva-
tive of a function f : R→ R using finite differences. Two of the simplest methods are the
forward and backward differences, defined as

f ′fwd(x) =
f (x + h)− f (x)

h
, f ′bck(x) =

f (x)− f (x− h)
h

, (1)

respectively, where h is a small step size. Another common method is the centered-
difference formula,

f ′cen(x) =
f (x + h)− f (x− h)

2h
. (2)

By analyzing the Taylor series expansion of f at x, one can verify that the forward and
backward finite differences have errors of size O(h), making them first-order accurate
approximations. Due to some additional cancellations because of symmetry, the centered
difference has errors of size O(h2), and is therefore a second-order approximation.

Given any set of n points, it is possible to construct an approximation to f ′. Usually,
the order of accuracy is n− 1, although in some cases like the centered-difference formula
additional cancellations may lead to a higher order of accuracy. In this document, two
methods to construct finite difference operators are presented, using the example set of
points x, x + h, and x + 2h.

The Taylor series approach

The Taylor series of f at the points are x, x + h, and x + 2h are

f (x) = f (x) + 0 f ′(x) + 0 f ′′(x), (3)

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x), (4)

f (x + 2h) = f (x) + 2h f ′(x) +
4h2

2
f ′′(x). (5)

The aim is to construct a numerical approximation of the form

f ′tay(x) = α f (x) + β f (x + h) + γ f (x + 2h) (6)

such that
f ′tay(x) = f ′(x) + O(h2). (7)

Equating the Taylor series terms in f (x), f ′(x), and f ′′(x) gives three equations,

0 = α + β + γ, (8)
1 = hβ + 2hγ, (9)

0 =
β

2
+ 2γ. (10)



Equation 10 states that β = −4γ, and substituting this into Eq. 9 gives β = 2/h. Hence
γ = −1/2h, and by using Eq. 8, α = −3/2h. Hence

f ′tay(x) =
−3 f (x) + 4 f (x + h)− f (x + 2h)

2h
(11)

is a second-order accurate expression for f ′(x).

The Lagrange interpolant approach

An alternative approach is to construct the Lagrange interpolant through the function at x,
x + h, and x + 2h. To accomplish this, it is useful to introduce a shifted dummy variable z
such that z = 0 at x. Then the three Lagrange basis functions through z = 0, h, 2h are

L0(z) =
(z− h)(z− 2h)

2h2 , L1(z) =
−z(z− 2h)

h2 , L2(z) =
z(z− h)

2h2 . (12)

The Lagrange interpolant of f (x) is given by

l(z) = f (x)L0(z) + f (x + h)L1(z) + f (x + 2h)L2(z) (13)

Differentiating l with respect to z gives

l′(z) = f (x)
2z− 3h

2h2 + f (x + h)
−2z + 2h

h2 + f (x + 2h)
2z− h

2h2 . (14)

This leads to the finite-difference approximation

f ′lgr(x) = l′(0) =
−3 f (x) + 4 f (x + h)− f (x + 2h)

2h
, (15)

which exactly matches the Taylor series stencil found in Eq. 11. A benefit of the Lagrange
interpolant approach is that even for a large number of points, it is an explicit, direct
procedure, whereas the Taylor series approach requires solving a linear system.


