AM205: Examples of calculating a finite difference stencil

In the lectures, we discussed several typical methods of numerically calculating the deriva-
tive of a function f : R — R using finite differences. Two of the simplest methods are the
forward and backward differences, defined as
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respectively, where & is a small step size. Another common method is the centered-
difference formula,
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By analyzing the Taylor series expansion of f at x, one can verify that the forward and
backward finite differences have errors of size O(h), making them first-order accurate
approximations. Due to some additional cancellations because of symmetry, the centered
difference has errors of size O(h?), and is therefore a second-order approximation.

Given any set of 1 points, it is possible to construct an approximation to f’. Usually,
the order of accuracy is n — 1, although in some cases like the centered-difference formula
additional cancellations may lead to a higher order of accuracy. In this document, two
methods to construct finite difference operators are presented, using the example set of
points x, x 4+ h, and x + 2h.

The Taylor series approach

The Taylor series of f at the points are x, x + h, and x + 2h are
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The aim is to construct a numerical approximation of the form
faay(x) = af (x) + Bf (x + 1) + 7 f (x +2h) (6)
such that
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Equating the Taylor series terms in f(x), f/'(x), and f”(x) gives three equations,
O=a+pB+1, (8)
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0= é + 27. (10)
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Equation 10 states that B = —4, and substituting this into Eq. 9 gives p = 2/h. Hence
v = —1/2h, and by using Eq. 8, « = —3/2h. Hence
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is a second-order accurate expression for f’(x).

The Lagrange interpolant approach

An alternative approach is to construct the Lagrange interpolant through the function at x,
x + h, and x + 2h. To accomplish this, it is useful to introduce a shifted dummy variable z
such that z = 0 at x. Then the three Lagrange basis functions through z = 0, h, 2h are
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The Lagrange interpolant of f(x) is given by
I(z) = f(x)Lo(z) + f(x + h)L1(z) + f(x + 2h)Ly(2) (13)
Differentiating | with respect to z gives
rrn 2z —3h —2z+2h 2z—h
I'(z) = f(x)—zh2 + f(x —l—h)—h2 + f(x +2h)—2h2 . (14)
This leads to the finite-difference approximation
—3f(x)+4f(x+h)— f(x+2h

which exactly matches the Taylor series stencil found in Eq. 11. A benefit of the Lagrange
interpolant approach is that even for a large number of points, it is an explicit, direct
procedure, whereas the Taylor series approach requires solving a linear system.



