
AM205: More on the condition number

Many numerical operations that we consider can essentially be boiled down to

y = f (x), (1)

where x is a collection of some input values, y is a collection of some output values, and f
is a function encapsulating the details of the operation. For any system such as this, an
important numerical feature of interest is to know how a small change in the input from x
to x + ∆x will affect the output. Mathematically, the change ∆y to y is defined by

y + ∆y = f (x + ∆x). (2)

Ideally, one would like that a small change in the input ∆x would create only a small
change in the output ∆y, so that the numerical procedure is not sensitive to the initial
conditions, and small errors in input will not create large variations in output. This can be
mathematically characterized via the condition number, defined as

κ =
|∆y/y|
|∆x/x| , (3)

where the input and output are normalized so that x and y are dimensionless. Equation 3
is a rather loose, general definition and needs to be further specified depending on the
situation. If x and y are vectors, then the | · | operators must be interpreted as some type
of norm. In addition, κ will depend on the specific choices of x and ∆x. Usually, the
maximum bound on κ over the range of permissible values is reported.

The condition number for function evaluation

Suppose that x and y in Eq. 1 are scalars, and f is a real, differentiable function. Then by
making use of Eq. 1 and 2,

∆y
y

=
f (x + ∆x)− f (x)

f (x)
=

f (x + ∆x)− f (x)
∆x

∆x
f (x)

. (4)

Hence, if ∆x is small,
∆y
y
≈ f ′(x)∆x

f (x)
. (5)

An approximate value of the condition number is therefore

κ ≈
∣∣∣∣ f ′(x)x

f (x)

∣∣∣∣ . (6)

As expected, the condition number is higher in places where f varies rapidly and f ′ is
large, so that small changes in x will result in large changes in y.



The condition number for matrix calculations

Suppose that we now consider the condition number for the matrix multiplication

Ax = b, (7)

where A is an invertible matrix, x is an input vector, and b is the output vector. Hence
A(x + ∆x) = b + ∆b and by linearity A∆x = ∆b, so the condition number is given by

κ =
‖∆b‖/‖b‖
‖∆x‖/‖x‖ =

‖A∆x‖
‖∆x‖

‖x‖
‖Ax‖ (8)

where ‖ · ‖ represents any vector norm, such as the Euclidean norm. To proceed, a matrix
norm can be defined in terms of the vector norm as

‖A‖ = max
v 6=0

‖Av‖
‖v‖ (9)

representing the maximum ratio that the matrix can scale a vector’s length by. Then

κ ≤ ‖A‖ ‖x‖‖Ax‖ . (10)

By rewriting x = A−1b, this becomes

κ ≤ ‖A‖‖A−1b‖
‖b‖ ≤ ‖A‖ ‖A−1‖, (11)

and hence the upper bound on the condition number is the product of the matrix norm
and the inverse matrix norm.

Suppose now that we consider closely-related problem of solving a linear system

Cy = f , (12)

where C is an invertible matrix, f is the input vector of source terms, and y is the output
solution. This can be rewritten as Eq. 7 by putting C = A−1, f = x, and y = b. By
following the same derivation as above, the condition number satisfies

κ ≤ ‖A−1‖ ‖(A−1)−1‖ = ‖C‖ ‖C−1‖. (13)

Therefore both problems—matrix muplication and solving a linear system—lead to exactly
the same form of bound on the condition number.

As described previously, the condition number is often reported as a maximum bound
over a range of values. Hence, the expression in Eq. 11 is often defined to be the condition
number of a matrix,

κ(A) = ‖A‖ ‖A−1‖. (14)

This can be computed using the numpy.linalg.cond function in Python, or the cond

function in MATLAB.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.cond.html
http://www.mathworks.com/help/matlab/ref/cond.html


Example for 2× 2 diagonal matrices

Now suppose that the vector norm is given by the Euclidean norm. Consider a 2× 2
invertible diagonal matrix of the form

A =

(
α 0
0 β

)
(15)

where |α| ≥ |β|. Starting from Eq. 9, and writing v in terms of polar coordinates as
v = [r cos θ, r sin θ]T, the matrix norm is

‖A‖ = max
v 6=0

‖Av‖
‖v‖

= max
r 6=0,θ∈[0,2π)

√
α2r2 cos2 θ + β2r2 sin2 θ√

r2 cos2 θ + r2 sin2 θ

= max
θ∈[0,2π)

√
α2 cos2 θ + β2 sin2 θ

√
1

= max
θ∈[0,2π)

√
α2 − (α2 − β2) sin2 θ. (16)

Since α2 − β2 ≥ 0, it follows that the expression will be maximized when θ = 0, and hence

‖A‖ = |α|. (17)

The inverse of the matrix is

A−1 =

(
α−1 0

0 β−1

)
(18)

and applying the same argument shows that ‖A−1‖ = |β−1|. Hence

κ(A) = |αβ−1|. (19)

Note that while α and β also coincide with the eigenvalues of A for this particular example
it not always the case that the condition number can be given in terms of the eigenvalues.


