
AM205: Assignment 5 solutions*

Problem 1 – Function minimization

The minimization algorithms are tested on the Rosenbrock function,

f (x, y) = 100(y − x2)2 + (1 − x)2. (1)

Part (a) – Steepest descent

The gradient of the function f (x, y) defined in Eq. 1 is

∇ f =

(
−400(y − x2)x − 2(1 − x)

200(y − x2)

)
, (2)

and the direction of steepest descent is

sk = −∇ f . (3)

We then perform a line search to compute the magnitude of the local descent. It is
equivalent of solving a constrained optimization problem. Instead of searching over a
two-dimensional domain, we only need to search for the minimum on a line, which is a
much simpler computational task. The linear constraint can be written as

A1x + A2y = b, (4)

and by considering Eq. 3 we know that

A1 =
∂ f
∂y

, A2 =
∂ f
∂x

. (5)

We now solve for b. We have

b = A1xk + A2yk =
∂ f
∂y

xk +
∂ f
∂x

yk. (6)

We then use the Matlab function fmincon to solve the one-dimensional linear search. The
Matlab code is as follows.

{[}x_min,f_min,exitflag,output{]}=...

fmincon(@rosenbrock_function,x_k,{[}{]},{[}{]},A,b,{[}{]},{[}{]},{[}{]},options)

*Solutions to problems 1 and 3 were written by Kevin Chen (TF, Fall 2014). Solutions to problem 2 was
written by Chris H. Rycroft. Edited by Chris H. Rycroft.

1

x

y
final stepsize is 0 with 2 iterations

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3
[−1,1]

x

y

final stepsize is 4.8018e−05 with 2000 iterations

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3
[0,1]

x

y

final stepsize is 0 with 1369 iterations

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3
[2,1]

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

stepsize versus iterations

[0,1]

Figure 1: Plots showing the progress of the steepest descent method for finding the minimum of
the Rosenbrock function, starting from (top left) (−1, 1), (top right) (0, 1), and (bottom left) (2, 1).
In the bottom right plot the step size versus the number of iterations is shown using a log–log scale,
for the case of the (0, 1) starting point.

Details can be found in the code problem1aDriver. This process is repeated until the
change of consecutive steps is smaller than the tolerance. Figure 1 shows the iterations
from three different starting positions. The program is terminated if number of iterations
exceeds 2000. For the case of most iteration numbers, we plot the step size versus iterations
on a log–log plot to show convergence. The number of iterations we obtain is

[−1, 1]T → 2 iterations,
[0, 1]T → more than 2000 iterations,

[2, 1]T → 1321 iterations.

2

x

y

final stepsize is 7.9541e−14 with 3 iterations

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4
[−1,1]

x

y

final stepsize is 7.1297e−12 with 6 iterations

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4
[0,1]

x

y

final stepsize is 0 with 6 iterations

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4
[2,1]

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

stepsize versus iterations

[0,1]

Figure 2: Plots showing the progress of Newton’s method for finding the minimum of the Rosen-
brock function, starting from (top left) (−1, 1), (top right) (0, 1), and (bottom left) (2, 1). In the
bottom right plot the step size versus the number of iterations is shown using a log–log scale, for
the case of the (0, 1) starting point.

Part (b) – Newton’s method

We repeat part (a) with Newton’s method. To implement Newton’s method, we compute
the second derivative (or Hessian matrix) as

H =

(
−400(y − x2) + 800x2 + 2 −400x

−400x 200

)
. (7)

The algorithm is described in the lecture notes, and the key steps inside the loop are

H f (xk)sk = −∇ f (xk), (8)

xk+1 = xk + sk. (9)

3

x

y

final stepsize is 3.3735e−10 with 124 iterations

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4
[−1,1]

x

y

final stepsize is 4.7316e−12 with 38 iterations

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4
[0,1]

x

y

final stepsize is 1.0922e−11 with 45 iterations

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4
[2,1]

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

10
5

stepsize versus iterations

[0,1]

Figure 3: Plots showing the progress of the BFGS method for finding the minimum of the Rosen-
brock function, starting from (top left) (−1, 1), (top right) (0, 1), and (bottom left) (2, 1). In bottom
right plot, the step size versus the number of iterations is shown using a log–log scale, for the case
of the (0, 1) starting point.

Figure 2 shows the result. In general, this algorithm will converge to local extrema, but not
necessarily minima. However, in this problem there is only one local minimum at (1, 1), so
we do not need to check for alternative behavior. The number of iterations we obtain is

[−1, 1]T → 3 iterations,
[0, 1]T → 6 iterations,
[2, 1]T → 6 iterations.

Part (c) – BFGS method

The BFGS method converges faster than steepest descent but is slower than Newton’s
method. Instead of computing the Hessian matrix by hand, we construct an estimate B of

4

the Hessian, which is continually updated throughout the computation. In this question,
we initialize the B matrix as an identity matrix. The algorithm is detailed in lecture notes.
Figure 3 shows the path of convergence for three different initial conditions. Note that the
convergence rate is faster than steepest descent but slower than Newton’s method, also
the step size is larger at early time. The number of iterations we obtain is

[−1, 1]T → 124 iterations,
[0, 1]T → 38 iterations,
[2, 1]T → 45 iterations.

(10)

Problem 2 – an inextensible jump rope

Part (a)

The rope’s vertical position as a function of x can be parameterized as

y(x) =
n

∑
k=1

bk sin
πkx

L
(11)

where b = (b1, b2, . . . , bn) are free parameters. The derivative is

dy
dx

=
π

L

n

∑
k=1

kbk cos
πkx

L
. (12)

For the subsequent calculations it is useful to define

g(x) =

√
1 +

(
dy
dx

)2

(13)

representing the total length of rope over an interval from x to x + dx. The aim is to
maximize the kinetic energy

T(b) =
∫ L

0
ρgω2y2 dx (14)

subject to the constraint that the length of the rope is R, which can be written as

S(b) =
∫ L

0
g dx = R. (15)

This constrained optimization problem can be solved by introducing a Lagrange multiplier
λ and considering

L(λ, b) = T(b) + λ (R − S(b))

= λR +
∫ L

0
g
(

ρω2y2 − λ
)

dx. (16)

5

The partial derivative of L with respect to λ is

∂L
∂λ

= R −
∫ L

0
g dx (17)

and the partial derivative of L with respect to bj is

∂L
∂bj

=
∫ L

0
g
(

2ρω2y sin
π jx

L

)
dx +

π

L

∫ L

0

jy′(ρω2y2 − λ)

g
cos

π jx
L

dx. (18)

Parts (b) and (c)

The code jump rope inex.py finds the extremal point of L by using the Levenberg–
Marquardt algorithm to set all components of ∇L to zero. It uses n = 20, R = 3, and
ω = L = ρ = 1. It evaluates the integrals in Eqs. 17 and 18 using the composite trapezoid
rule with 251 control points. Figure 4(a) shows a plot of the initial guess when b1 = 1.3,
and the optimized solution. Figure 4(b) shows a plot of the initial guess when b2 = 0.7,
and the optimized solution.

Problem 3 – quantum eigenmodes

In non-dimensionalized form the Schrödinger equation is

−∂2Ψ(x)
∂x2 + v(x)Ψ(x) = EΨ(x). (19)

Part (a) – eigenvalues and eigenmodes

We first want to turn the equation into an eigenvalue problem in the form of

AΨ = EΨ, (20)

where A is an operator matrix, Ψ is a vector and E is a scalar. We discretize the Schrödinger
equation on a finite domain [−12, 12] using n = 1921 grid points. We use a finite-difference
approach, and hence the second-order accurate second-order differentiation matrix is
given by

D2 =
1
h2



−2 1
1 −2 1

1 −2 . . .
. 1

1 −2


, (21)

6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

(a)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

(b)

y

x

Initial guess
Optimized solution

y

x

Initial guess
Optimized solution

Figure 4: (a) Initial guess of b1 = 1.3 and optimized solution of the steady-state shape of an
incompressible jump rope. (b) Initial guess of b2 = 0.7 and optimized solution of the steady-state
shape of an incompressible jump rope.

7

0

1

2

3

4

5

6

−10 −5 0 5 10

3Ψ
i
+

E i

x

E5 4.821710730858221
E4 4.0893267226561525
E3 3.2492942302664067
E2 2.338905797822476
E1 1.0191290231979593

Figure 5: Five wavefunctions Ψi and corresponding energy levels Ei for the potential v(x) = |x|.

where h = 24/(n − 1). Since we have Dirichlet boundary conditions and Ψ(−12) =
Ψ(12) = 0, we do not need to modify the differentiation matrix at the end points. The
function v(x) needs to be evaluated at grid points, and therefore needs to be added to the
diagonals of the sparse matrix. The operator A can be written as

A = − 1
h2


−2 1

1 −2 . . .
. 1

1 −2

+


v(xl)

v(xl + h)
. . .

v(xr)

 . (22)

We then use the Python function eigs(A,5,’SM’) to find the five smallest eigenvalues and
eigenvectors. The eigenvectors are the discretized solution Ψi and the eigenvalues are the
energy levels Ei. For display purposes, we plot

yi(x) = 3Ψi(x) + Ei. (23)

Figures 5, 6, and 7 show the plots of Ψi and tables of the corresponding energy levels.

Part (b) – probability

We want to compute the probability of a particle being found in an interval. We know the
approximate formula is

p =

∫ b
a |Ψ(x)|2dx∫ 12

−12 |Ψ(x)|2dx
. (24)

8

0

0.5

1

1.5

2

2.5

−10 −5 0 5 10

3Ψ
i
+

E i

x

E5 1.9474321713361762
E4 1.6033174539486321
E3 1.401854850616602
E2 1.0424311558478319
E1 0.3906776858847012

Figure 6: Five wavefunctions Ψi and corresponding energy levels Ei for the potential
v(x) = 12(x

10)
4 − x2

18 +
x
8 + 1.3.

0

2

4

6

8

10

−10 −5 0 5 10

3Ψ
i
+

E i

x

E5 8.910147335373491
E4 7.712138062039048
E3 4.186966493986489
E2 3.666154338642915
E1 3.2540714519633127

Figure 7: Five wavefunctions Ψi and corresponding energy levels Ei for the potential
v(x) = 7|||x| − 1| − 1|.

9

We use the composite Simpson’s rule, which has the formula∫ b

a
f (x)dx ≈ h

3
(f (xa) + 4 f (x1) + 2 f (x2) + 4 f (x3) + . . . + 4 f (xn−1) + f (xn)) , (25)

where h = 2(b − a)/(n − 1). We integrate over 481 points from x = 0 to x = 6. The
implementation details are included in program quantum.py. To four significant figures,
the probabilities for the five lowest eigenmodes of potential v2 are

E1 : p(xparticle ∈ [0, 6]) = 0.0003152,
E2 : p(xparticle ∈ [0, 6]) = 0.03036,
E3 : p(xparticle ∈ [0, 6]) = 0.7873,
E4 : p(xparticle ∈ [0, 6]) = 0.3999,
E5 : p(xparticle ∈ [0, 6]) = 0.5325.

Part (c) – fourth-order accurate method

At an interior point, the fourth-order accurate stencil is

(∆x)2 ∂2Ψi

∂x2 ≈ − 1
12

Ψi−2 +
4
3

Ψi−1 −
5
2

Ψi +
4
3

Ψi+1 −
1

12
Ψi+2. (26)

At the left end point, the fourth-order accurate one-sided stencil,

(∆x)2 ∂2Ψ1

∂x2 ≈ 15
4

Ψ1 −
77
6

Ψ2 +
107

6
Ψ3 − 13Ψ4 +

61
12

Ψ5 −
5
6

Ψ6, (27)

can be used. At the right end point, the same formula can be used but with the grid point
ordering reversed to give

(∆x)2 ∂2Ψn

∂x2 ≈ 15
4

Ψn −
77
6

Ψn−1 +
107
6

Ψn−2 − 13Ψn−3 +
61
12

Ψn−4 −
5
6

Ψn−5. (28)

10

