
AM205: Assignment 3 solutions*

Problem 1 – convergence rates of two integrals

Part (a)

As discussed in class, the trapezoidal integration method has the form

IA ≈ h
(

1
2

f (x0) + f (x1) + f (x2) + ... + f (xn−1) +
1
2

f (xn)

)
. (1)

To compute the error bound, we need to calculate the second derivative of f . We have

d2 f
dx2 =

cos x(5
4 − cos x)2 − 2 sin2 x(5

4 − cos x)
(5

4 − cos x)4
. (2)

The left panel of Fig. 1 shows the error bound and error versus h on a log–log scale. The
error bound is always larger than the error. In addition, the slope of error versus h is 2,
which verifies that the trapezoidal method is second-order accurate.

Part (b)

This part is analogous to part (a), except that the error decays exponentially with h. In this
case, we observe trapezoidal method has exponential convergence (faster than O(hm) for
any m). This is due to a special property of the trapezoidal rule when evaluating periodic
integrals. The right panel of Fig. 1 shows the error bound and error versus h on a log–log
scale.

Part (c)

Here, we show that

IB =
∫ 2π

0
f (x)dx =

∫ 2π

0

dx
5
4 − cos x

=
8π

3
(3)

using the residue theorem. If z = eiθ then cos θ = z+z−1

2 . The denominator of the integral
in Eq. 3 can be rewritten as

5
4
− cos θ =

5
4
− z + z−1

2
=

5
4
− z2 + 1

2z
=

−z2 + 2az − 1
2z

. (4)

Substituting this expression into the integral transforms it to∮
C

1
i

2dz
z2 − 5

2 z + 1
, (5)

*Solutions to problems 1, 2, and 4 were written by Kevin Chen. Solutions to problems 3, 5 and 6 were
written by Chris H. Rycroft. Edited by Chris H. Rycroft.
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Figure 1: Errors and error bounds as a function of the integration step size h for the two integrals
considered in problem 1. The left panel shows results for

∫ π/3
0 f (x)dx and the right panel shows

results for
∫ 2π

0 f (x)dx.

where the closed contour C represents unit circle in the complex plane. The integrand has
two poles at z = 2 and z = 1

2 , and only the pole inside the closed contour contributes to
the integral. Invoking the residual theorem yields the result

IB = 2πi Res

(
1
i

2dz
z2 − 5

2 z + 1
, z =

1
2

)
=

8π

3
. (6)

Problem 2 – adaptive integration

Part (a) – 3-point Gauss quadrature

The third Legendre polynomial is P3(x) = 1
2 x(5x2 − 3), which has roots at

x1 = −
√

3
5

, x2 = 0, x3 =

√
3
5

.

We now solve for the weights by integrating the Lagrange interpolation polynomials
through these three points. We have

w0 =
∫ 1

−1
Lo(x)dx =

∫ 1

−1

x − 0
−
√

3/5 − 0
× x −

√
3/5

−
√

3/5 −
√

3/5
dx

=
5
6

∫ 1

−1
(x2 −

√
3/5x)dx =

5
6

∫ 1

−1
(x2)dx

=
5
6

2
3
=

5
9

. (7)
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Similarly, we can do the integral for w1 to obtain

w1 =
∫ 1

−1
L1(x)dx =

∫ 1

−1

x +
√

3/5
+
√

3/5
× x −

√
3/5

−
√

3/5
dx

= −5
3

∫ 1

−1

(
x2 − 3

5

)
dx = −5

3

(
2
3
− 6

5

)
= −5

3

(
− 8

15

)
=

8
9

. (8)

Finally, w2 is given by

w2 =
∫ 1

−1
L2(x)dx =

∫ 1

−1

x − 0√
3/5 − 0

× x +
√

3/5√
3/5 +

√
3/5

dx

=
5
6

∫ 1

−1
(x2 +

√
3/5x)dx =

5
6

∫ 1

−1
(x2)dx

=
5
6

2
3
=

5
9

, (9)

and therefore [w0, w1, w2] = [5
9 , 8

9 , 5
9 ]. We now show that this quadrature rule integrates

polynomials of up to degree 5 exactly. We show this property on [−1, 1], and if it holds
there, it holds on any arbitray interval by performing an affine transformation. An arbitrary
fifth-order polynomial can be written as

p5(x) = a + bx + cx2 + dx3 + ex4 + f x5. (10)

We can integrate p5(x) on [−1, 1] and obtain∫ 1

−1
p5(x)dx = a

∫ 1

−1
dx + b

∫ 1

−1
xdx + c

∫ 1

−1
x2dx

+ d
∫ 1

−1
x3dx + e

∫ 1

−1
x4dx + f

∫ 1

−1
x5dx. (11)

We can evaluate the simple integrals and arrive at∫ 1

−1
p5(x)dx = 2a +

2c
3
+

2e
5

. (12)

Evaluating the integral using the weights and quadrature points we obtained gives∫ 1

−1
p5(x)dx = 5

9(a − (3
5)

1/2b + 3
5 c − (3

5)
3/2d + 9

25 e − (3
5)

5/2 f ) + 8
9(a)

+ 5
9(a + (3

5)
1/2b + 3

5 c + (3
5)

3/2d + 9
25 e + (3

5)
5/2 f ). (13)

We can sum the fractions and obtain∫ 1

−1
p5(x)dx = 8

9 a + 2 × 5
9(a + 3

5 c + 9
25 e) = 2a + 2

3 c + 2
5 e. (14)

Hence, the expressions from using quadrature points and weights and from direct integra-
tion are identical, so the method is correct for all polynomials up to the fifth order.
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m Integral value Estimated error Num. of intervals
4 10.8528 1.78 × 10−15 1
5 20.5775 2.22 × 10−14 1
6 40.9668 8.03 × 10−8 16
7 81.0999 5.87 × 10−7 15
8 163.441 7.38 × 10−7 20

Table 1: Integral values, estimated error, and number of intervals for the 3-point adaptive Gauss
quadrature scheme applied to the integral

∫ 9/4
−1 (xm − x2 + 1)dx for various values of m.

Integral Integral value Estimated error Num. of intervals∫ 1
−1 |x|dx 1 0 2∫ 2
−1 |x|dx 2.50000 7.2055 × 10−11 16∫ 1

0 x4/5 sin 1
x dx 0.40115 2.2733 × 10−7 91426

Table 2: Integral values, estimated error, and number of intervals for four sample integrals, using
the 3-point adaptive Gauss quadrature scheme.

Part (b) – adaptive integration through 3 point Gauss quadrature

We now implement the adaptive scheme using 3-point Gauss quadrature as discussed in
part (a)—see the attached code examples for details. For the integrals of the form∫ 9/4

−1
(xm − x2 + 1)dx, (15)

the computed values, estimated error, and number of intervals are given in Table 1. As
expected from part (a), the integrals for m = 4 and m = 5 are computed exactly with a
single integration step. The integrals for m ≥ 6 are determined to high accuracy with a
small number of subdivisions of the interval.

Part (c) – sample integrals

We use the same integration routine to compute the integrals given in this problem. The
answers are tabulated in Table 2.

Problem 3 – integration of a family of functions

Figure 2(a) shows a plot of the function g(x; 1
3). The recursive construction of g results

in a function with many peaks in a fractal arrangement that is reminiscent of the Koch
curve.† Figure 2(b) shows a plot of g(x, ϕ) for twenty six different values of ϕ in the range
from 0 to 1

2 . For ϕ = 0, g(x; ϕ) = |x| since all of the ϕk terms vanish. For ϕ = 1
2 , the graph

†https://en.wikipedia.org/wiki/Koch_snowflake
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Figure 2: (a) Plot of g(x; 1
3 ). (b) Plot of g(x, ϕ) for a range of values of ϕ, using a gradation of colors

from ϕ = 0 to ϕ = 1
2 .
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Figure 3: (a) Plot of the integral
∫ 1/2
−1/2 g(x; ϕ)dx as a function of ϕ. (b) Plot of the number of

integration intervals required to compute the integral to the desired tolerance of 10−6.

shows that g(x; ϕ) = 0, which can be verified by induction. Suppose that x ∈ [−1
2 , 1

2 ].
Then 0 ≤ f0(x) ≤ 1

2 . Hence −1
2 ≤ f0(x)− 1

2 ≤ 0 and thus f1(x) = | f0(x)− 1
2 | ≤

1
2 . Now

consider the induction step, and suppose that 0 ≤ fk−1(x) ≤ 2−k−1. Then subtracting 2−k

from the inequalities yields

− 1
2k ≤ fk−1(x)− 1

2k ≤ 1
2k (16)

and hence

0 ≤ fk(x) =
∣∣∣∣ fk−1(x)− 1

2k

∣∣∣∣ ≤ 1
2k . (17)

Therefore by induction this must hold for every k and thus g(x) = limk→∞ | fk(x)| = 0.
Figure 3(a) shows a plot of the integral value as a function of ϕ. As expected the

integral decreases to zero at ϕ = 1
2 . Figure 3(b) shows the number of intervals needed to

compute the integral to the given tolerance level, which highlights that the most intervals
are needed for ϕ in the range [0.4, 0.5]. Comparing with Fig. 2 shows that this range has a
large number of peaks, which require many interval subdivisions in order to achieve the
desired level of accuracy.
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Problem 4 – error analysis of a numerical integration rule

Part (a)

We want to use Taylor series to prove the midpoint method

yk+1 = yk + h f
(

tk+1/2,
yk + yk+1

2

)
(18)

converges as a function of h2, where h = tk+1 − tk. We expand y(tk+1) and y(tk) around
tk+1/2 and obtain

y(tk+1) = y(tk+1/2) +
h
2

y′(tk+1/2) +
h2

8
y′′(tk+1/2) + O(h3)y′′′(tk+1/2),

y(tk) = y(tk+1/2)−
h
2

y′(tk+1/2) +
h2

8
y′′(tk+1/2) + O(h3)y′′′(tk+1/2) (19)

We arrive at
y(tk+1)− y(tk)

h
= y′(tk+1/2) + O(h2)y′′′(tk+1/2). (20)

We can also expand f (tk+1/2, y(tk)+y(tk+1)
2 ) around tk+1/2 and obtain

f
(

tk+1/2, y(tk)+y(tk+1)
2

)
= f

(
tk+1/2, y(tk+1/2) +

y(tk)+y(tk+1)
2 − y(tk+1/2)

)
= y′(tk+1/2) +

(
y(tk) + y(tk+1)

2
− y(tk+1/2)

)
∂ f
∂y

∣∣∣∣
y(tk+1/2)

+ O
(

y(tk) + y(tk+1)

2
− y(tk+1/2)

)2 ∂2 f
∂y2

∣∣∣∣
y(tk+1/2)

. (21)

We can plug in the Taylor expansion of y(tk) and y(tk+1) around y(tk+1/2) to obtain

y(tk) + y(tk+1)

2
− y(tk+1/2) =

h2

8
y′′(tk+1/2) + O(h3)y′′′(tk+1/2). (22)

As a result, we arrive at the expression

f
(

tk+1/2, y(tk)+y(tk+1)
2

)
= y′(tk+1/2) +

∂ f
∂y

∣∣∣∣
y(tk+1/2)

(
h2

4
y′′(tk+1/2) + O(h3)y′′′(tk+1/2)).

(23)
Using Eqs. 20 and 23, we aim to compute the truncation error Tk, which gives the conver-
gence rate of the method as we invoke the theorem discussed in lecture. The truncation
error is given by

Tk =
y(tk+1)− y(tk)

h
− f

(
tk+1/2,

y(tk) + y(tk+1)

2

)
(24)
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and hence

Tk = y′(tk+1/2) + O(h3)y′′′(tk+1/2)− y′(tk+1/2)

− ∂ f
∂y

∣∣∣∣
y(tk+1/2)

(
h2

4
y′′(tk+1/2) + O(h3)y′′′(tk+1/2)

)
. (25)

Therefore Tk is O(h2) and the method is second-order accurate.

Stability region of midpoint method

We want to find the stability region of the midpoint method for the ode y′ = λy. We plug
the differential equation into the midpoint method and obtain

yk+1 = yk + hλ

(
yk + yk+1

2

)
. (26)

Rearranging the equation leads to

yk+1

(
1 − hλ

2

)
= yk

(
1 +

hλ

2

)
, (27)

which can be rewritten as

yk+1 =

(
1 + h̄/2
1 − h̄/2

)
yk, (28)

where h̄ = hλ ∈ C. This equation is stable if and only if∣∣∣∣1 + h̄/2
1 − h̄/2

∣∣∣∣ ≤ 1. (29)

If h̄ is written in terms of real and imaginary parts as h̄ = a + ib then(
1 + a

2

)2
+ b2 ≤

(
1 − a

2

)2
+ b2 (30)

and hence
a ≤ −a, (31)

which implies a ≤ 0 and b ∈ R. Hence, the asymptotically stable case is when h̄ is
the imaginary axis. Anywhere left of the imaginary axis gives strictly converging case.
Hence, to have convergence, the discretization of the differential equation must satisfy the
Re h̄ ≤ 0. Figure 4 shows the stability region.
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Figure 4: Stability region of midpoint method.

Problem 5 – a multi-step method

Part (a)

The numerical method is based on approximating f (t, y) using the four-point Lagrange
interpolation

fapprox(t, y) = fk−2Lk−2(t) + fk−1Lk−1(t) + fkLk(t) + fk+1Lk+1(t). (32)

where the Ll are (cubic) Lagrange polynomials that are one at corresponding tl and zero at
the other control points. If a new time variable s is introduced so that t = tk + hs, then the
numerical scheme becomes

yk+1 = yk−1 + h
∫ 1

−1
fapprox(tk + hs, y)ds. (33)

9



To proceed, consider the integrals of the Lagrange polynomials:∫ 1

−1
Lk−2(tk + hs)ds =

1
−6

∫ 1

−1
(s − 1)s(s + 1)ds = 0, (34)∫ 1

−1
Lk−1(tk + hs)ds =

1
2

∫ 1

−1
(s − 1)s(s + 2)ds =

1
3

, (35)∫ 1

−1
Lk(tk + hs)ds =

1
−2

∫ 1

−1
(s − 1)(s + 1)(s + 2)ds =

4
3

, (36)∫ 1

−1
Lk+1(tk + hs)ds =

1
6

∫ 1

−1
s(s + 1)(s + 2)ds =

1
3

. (37)

Note that the integral of Lk−2 vanishes because of symmetry. This is an advantage, since it
ensures that the numerical scheme will achieve a higher order of accuracy, with one fewer
function evaluation. Hence Eq. 33 becomes

yk+1 = yk−1 +
h
3
( fk−1 + 4 fk + fk+1) . (38)

Part (b)

To solve the differential equation

y′′(t) + 2y′(t) + 17y(t) = 0. (39)

with initial conditions y(0) = 1, y′(0) = 0, consider a possible solution of y = emt. To be a
solution, the parameter m must satisfy

m2 + 2m + 17 = 0, (40)

which can also be written as
(m + 1)2 = −16. (41)

This has two solutions, m = −1 ± 4i. Hence, the general solution has the form

y(t) = e−t(A cos 4t + B sin 4t) (42)

where A and B are constants. The first derivative is

y′(t) = e−t((4B − A) cos 4t − (4A + B) sin 4t) (43)

and hence
y(0) = A, y′(0) = 4B − A. (44)

Hence A = 1 and B = 1
4 to satisfy the initial conditions.
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Figure 5: Comparison between the exact solution and the numerical solution using the Nyström
method, for the ODE considered in problem 5.

Part (c)

By defining y′ = v, the differential equation in Eq. 39 becomes a first-order system,

y′ = v, v′ = −2v − 17y (45)

Equivalently, this is (
y′

v′

)
=

(
0 1

−17 −2

)(
y
v

)
, (46)

or y′ = Ay where y = (y, v) and

A =

(
0 1

−17 −2

)
. (47)

Hence, for this system, the Nyström method of Eq. 38 is

yk+1 = yk−1 +
h
3
(Ayk−1 + 4Ayk + Ayk+1) . (48)

Collecting the terms involving yk+1 yields

yk+1 −
hA
3

yk+1 = yk−1 +
h
3
(Ayk−1 + 4Ayk) , (49)
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Figure 6: Graph showing the absolute error between the exact and numerical solutions at t = 3 a
function of the step size h, for the ODE considered in problem 5. The graph shows the absolute
errors for the case when the first two steps are set using the exact solution, and for the case when
they are set using Euler steps. In each case a line of best fit, fitted over the range 10−3 ≤ h ≤ 10−2,
is shown.

and hence

yk+1 =

(
1 − hA

3

)−1 ((
1 +

Ah
3

)
yk−1 +

4Ah
3

yk

)
. (50)

This is now an explicit formula for yk+1 in terms of the previous values of y. The program
q5.py implements this numerical scheme. Figure shows the exact and numerical solutions
and demonstrates that they are near-identical.

Figure 6 shows a log–log plot of the absolute error between the exact and numerical y
for a variety of step sizes between h = 10−1 and h = 10−3. The plot also contains a line of
best fit, which has a slope of 3.995, confirming that the method is fourth-order accurate.
It is worth noting that the method is a remarkably efficient way to achieve fourth-order
accuracy, since it only requires considering the previous two values at each step.

Part (d)

Figure 6 also shows the absolute error between the exact and numerical solutions when y1
and y2 are set using an Euler step. Second-order accuracy is observed, with the best-fit
line having slope of 2.009. This should be expected since the truncation error of the Euler
method is O(h). Since two steps of size h are taken to determine y1 and y2, the local error
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incurred is O(h2). The error on these first two steps will dominate the global error at t = 3.

Problem 6 – asteroid collision

Part (a)

The Jacobi integral is

J(x, y, u, v) = (x + µ)2 + y2 +
2(1 − µ)√

x2 + y2
+

2µ√
(x − 1)2 + y2

− u2 − v2. (51)

The asteroid’s equations of motion are given by the partial derivatives of J,

x′ = u,

y′ = v,

u′ = v + (x − µ)− (1 − µ)x
(x2 + y2)3/2 − µ(x − 1)

((x − 1)2 + y2)3/2 ,

v′ = −u + y − (1 − µ)y
(x2 + y2)3/2 − µy

((x − 1)2 + y2)3/2 . (52)

Part (b)

Consider a line segment between two points x1 and x2, and define ∆x = x2 − x1. Consider
the infinite line

x = x1 + λ∆x (53)

where λ ∈ R. The value of λ that minimizes the distance of x from the origin is given by
projecting out part of x1 in the direction of ∆x. This is given in terms of scalar products as

λ = − x1 · ∆x
∆x · ∆x

. (54)

If λ ∈ [0, 1], then this point will on the line segment between x1 and x2. If λ < 0, then the
closest point on the segment to the origin will be x1. If λ > 1, then the closest point on the
segment to the origin will be x2.

Define this closest point is xmin. If |xmin| < R then the line segment intersects the circle
of radius R at the origin. Otherwise, it does not intersect. This calculation is incorporated in
the detect function in the program threebody.py that is used in the subsequent sections.

Parts (c) and (d)

If the trajectory is assumed to be linear from t = 0 to t = 0.02, then the velocity at t = 0 is

v(0) =
x(0.02)− x(0)

0.02
. (55)
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Figure 7: Fifty possible asteroid trajectories. The Earth is the circle at the origin, and the Moon is
the circle at (1, 0).

The program threebody.py performs integrations of the asteroid trajectory using samples
drawn from the given initial conditions. Figure 7 shows fifty example trajectories. Of these
fifty trajectories, the majority quickly escape the Earth–Moon system, suggesting that this
is the most likely scenario.

Figure 8(a) shows 36 trajectories that collide with the Earth. All but one of the trajec-
tories collides with the Earth after a single arc. However, a single trajectory collides by
first orbiting around the Moon, demonstrating the possibility of complex interactions in
the three-body system. Figure 8(b) shows 36 trajectories that collide with the Moon. The
majority undergo several close passes around the Earth, before colliding with the Moon.

Table 3 shows the estimated probabilities of the different scenarios, based on 5 × 108

trials. A trajectory is classified as escaping the Earth–Moon system if |x| > 20. This does
not rigorously guarantee that a trajectory will escape, but in practice it is a very good
indication. Over the interval t ∈ [0, 10], one finds that 67.69% of trajectories escape, 25.60%
of trajectories collide with the Earth, and 0.1878% of trajectories collide with the Moon.
The remaining 6.521% of trajectories persist until t = 10, and are analyzed in more detail
in part (f).
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Figure 8: 36 asteroid trajectories that (a) collide with Earth and (b) collide with the Moon. The Earth
is the circle at the origin, and the Moon is the circle at (1, 0).

Type Cases (linear) Percent SE Cases (exact) Percent SE
Escape, t ∈ [0, 10] 338,440,422 67.69 0.0021 346,954,316 69.39 0.0021
Earth, t ∈ [0, 10] 128,014,461 25.60 0.0020 118,983,556 23.80 0.0019
Moon, t ∈ [0, 10] 939,012 0.1878 0.00019 942,510 0.1885 0.00019
Escape, t ∈ (10, 200] 32,457,022 6.491 0.0011 32,968,484 6.594 0.0011
Earth, t ∈ (10, 200] 42,920 0.008584 4.1 × 10−5 46,508 0.009302 4.3 × 10−5

Moon, t ∈ (10, 200] 52,035 0.01041 4.6 × 10−5 52,782 0.01056 4.6 × 10−5

Persistent, t > 200 54,128 0.01083 4.7 × 10−5 51,844 0.01037 4.6 × 10−5

Total 500,000,000 100 0 500,000,000 100 0

Table 3: Total occurrences of each type of trajectory, based on two sets of 5× 108 trials. Columns 2–4
contain results for when the asteroid velocity is assumed to be linear between the two observations,
and columns 5–7 contain results for when the asteroid velocity is precisely fit so that the trajectory
goes through the two observations. For each set of results, the probability of each type of trajectory
is reported, along with a measure of standard error (SE) of the measurement. The SE is calculated
by assuming the counts follow a binomial distribution.
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Figure 9: Relative deviation the Jacobi integral for the trajectory where x(0) = (1.08, 0) and
v(0) = (0,−0.49).

Part (e)

Figure 9 shows a plot of the relative deviation in the Jacobi integral over the time interval
from 0 to 10 for the given initial conditions. The relative deviation remains smaller than
10−6 throughout the calculation.

Part (f)

For any trajectory that persists until t = 10, the threebody.py program performs a second
integration up to t = 200. Over this extended time window, 6.491% escape, 0.008584%
collide with the Earth, and 0.01041% collide with the Moon. Interestingly, over this
extended time window the probability of colliding with the Moon is higher than colliding
with the Earth, which is the opposite of the behavior for t ∈ [0, 10].

The remaining 0.01083% of trajectories neither escape, nor collide with either body, and
are classified as “persistent” in Table 3. To examine the structure of these trajectories in
more detail, several different statistics are also stored about them, using the time interval
t ∈ [10, 190]. Figure 10 shows a scatter plot of the persistent trajectories in terms of their
Jacobi integral, J, and their mean squared distance from the Earth, RE. Three distinct
clusters of trajectory occur, and substantial fine structure is seen the clusters.

One cluster is observed for J < 2.6, corresponding to trajectories with a relatively high
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Figure 10: Scatter plot showing all of the asteroid trajectories that persist until t = 200, arranged
according to their Jacobi integral and root mean squared distance from Earth. 54,128 trajectories are
shown, out of the total of 5 × 108 that were simulated.

speed. Figure 11 shows six examples of persistent trajectories in this cluster, indicating
that they are Earth orbits, configured in such a way that the Moon does not perturb them.
Figs. 11(a) and 11(b) are within a range [Rlo, Rhi] of Earth, where Rhi is small enough that
the Moon has limited influence. The remaining four examples have a slightly different
structure, where the Earth–Moon rotation time is approximately a multiple of the period of
the asteroid orbit, meaning that the trajectory appears concentrated in specific broad tracks
in the co-rotating frame. Figs. 11(c) and 11(d) show examples of one-lobe and two-lobe
tracks, respectively, which are arranged in such a way that the asteroid largely avoids
getting close to the Moon, which would likely perturb it. Figs. 11(e) and 11(f) are more
random, but weak three-lobe and four-lobe structures, respectively, are visible.

A very tight second cluster is visible in Fig. 10 for J > 2.6 and RE > 1. This cluster
corresponds to lunar orbits, and two examples are shown in Fig. 12. In the co-rotating
frame the orbits appear to precess. In some cases like Fig. 12(a) the orbit traces out a broad
swath of space in the co-rotating frame, but in others like Fig. 12(b) the orbit appears
locked into a small number of distinct tracks. It is not clear whether Fig. 12(b) is purely
coincidental or if resonances due to the Earth cause this behavior.

The final cluster visible in Fig. 10 has J > 2.6 and RE < 1 and corresponds to trajectories
with complex Earth–Moon interactions. Figure 13 shows six examples. Fig. 13(a) shows
an example with a high RE, where the asteroid first orbits the Moon but is eventually
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perturbed and enters an Earth orbit. Figs. 13(b–e) show other examples, where the asteroid
orbits the Earth, but occasionally encounters the Moon, often perturbing it into a different
orbital configuration. Figure 13(f) shows a very special extreme example at (RE, J) =
(0.8031, 2.986), which is visible as an isolated point outside of the cluster in Fig. 10. This
trajectory undergoes a very large elliptical orbit that forms a six-fold pattern in the co-
rotating frame, which is arranged in such a way that it avoids getting too close to the
Moon.

It is likely that most of the trajectories shown in Fig. 10 are not truly stable, but take
advantage of very special coincidences—it is worth recalling that only 0.01% of the total
trajectories fall into this category. The trajectories in Fig. 13 are particularly likely to be
perturbed, since at some point an interaction with the Moon may cause the asteroid to
escape, or set it on a collision course.

Part (g)

The previous results all calculate the asteroid’s initial velocity v(0) assuming that it is
linear between the two observations. However, in reality, it will follow a curved path. The
threebody.py program has an option to take this into account, so that v(0) is chosen to
ensure that the real trajectory precisely passes through x(0.02). This is done by introducing
a functional

F(v) = x(0.02)− xtest(v, 0.02), (56)

where xtest(v, 0.02) is the numerically computed position at t = 0.02 using v is the initial
velocity. Given two observations x(0) and x(0.02), the Python routine root is used to find
the appropriate v such that F(v) = 0. It uses Eq. 55 is the initial guess for v, which is
usually close to the exact solution.

A second set of five hundred million trials was performed with the improved set-up
routine. In these tests, it was found that the root algorithm works very reliably and quickly.
However, in 540 out of 5 × 108 cases, the algorithm fails to find a solution. In those cases,
the initial velocity is chosen using Eq. 55 as a fall-back option.

Table 3 also shows the probabilities of each scenario for this second set. The probabilities
shift by small amounts, with the probability of escape increasing from 67.69% to 69.39%.
Given the large number of trials the standard errors of these statistics are much smaller
than the sizes of the shifts. Hence, the shifts are statistically significant.
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Figure 11: Examples of the first class of persistent trajectories that last until t = 200. This class
broadly contains trajectories that orbit the Earth with minimal influence from the Moon.
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Figure 12: Examples of the second class of persistent trajectories that last until t = 200. This class
broadly contains trajectories that orbit the Moon.
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Figure 13: Examples of the third class of persistent trajectories that last until t = 200. This class
broadly contains trajectories that undergo complex Earth–Moon interactions.
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