
AM205: Assignment 2 solutions*

Problem 1 – norms and Newton root finding

Part (a)

Write b = (x, y). Then ∥b∥2 = 1 implies

x2 + y2 = 1 (1)

and ∥Ab∥2 = 1 implies that

(4x − y)2 + x2 = 17x2 − 8xy − y2 = 1. (2)

Subtracting Eq. 1 from Eq. 2 gives

0 = 16x2 − 8xy = 8x(2x − y) (3)

and hence either x = 0 or x = y
2 . If x = 0, then y = ±1. If x = y

2 , then substituting into
Eq. 1 gives

y2

4
+ y2 = 1 (4)

and hence y = ± 2√
5
. The four solutions to ∥b∥2 = 1 and ∥Ab∥2 = 1 are therefore

(0, 1), (0,−1), (1√
5
, 2√

5
), (− 1√

5
,− 2√

5
).

Figure 1(a) shows a plot of the loci of ∥b∥2 = 1 and ∥Ab∥2 = 1, with these four points
marked on the plot.

Part (b)

Write b = (x, y). Then ∥b∥∞ = 1 implies either

1. |x| = 1 and |y| ≤ 1,

2. |x| ≤ 1 and |y| = 1.

Consider case 1. Then

1 = ∥Ab∥∞ = max{|4x − y|, |x|} = max{|4x − y|, 1}. (5)

For this to have solutions, it is necessary for |4x − y| ≤ 1. However, using the reverse
triangle inequality shows that

|4x − y| ≥ |4x| − |y| = 3 − |y| ≥ 2

*Solutions written by Kevin Chen (TF, Fall 2014), Jordan Hoffmann (TF, Fall 2015), Raphaël Pestourie (TF,
Fall 2015), and Chris H. Rycroft.

1

and hence there are no solutions. Now consider case 2, and suppose that y = 1. Then

1 = ∥Ab∥∞ = max{|4x − 1|, |x|}, (6)

which will be satisfied if x = 0 or x = 1
2 . If y = −1, then Eq. 6 will be satisfied if x = 0 or

x = −1
2 . The four solutions are therefore

(0, 1), (0,−1), (1
2 , 1), (−1

2 ,−1).

Figure 1(b) shows a plot of the loci of ∥b∥∞ = 1 and ∥Ab∥∞ = 1, with these four points
marked on the plot.

Part (c)

The program newton.py finds the solutions of ∥b∥4 = 1 and ∥Ab∥4 = 1 using the vector
Newton–Raphson iteration. To find the four different solutions, the program uses the four
solutions from part (a) as initial starting points. The solutions are

(0, 1), (0,−1), (0.4924791, 0.9849581), (−0.4924791,−0.9849581).

Figure 1(c) shows a plot of the loci of ∥b∥4 = 1 and ∥Ab∥4 = 1, with these four points
marked on the plot.

Part (d)

The twelve points in Fig. 1 lie on the lines x = 0 and x = y
2 . To justify this, note that for

any p-norm for p < ∞, the unit circle ∥b∥p = 1 is given by an equation

f (x) + f (y) = 1 (7)

where f is some arbitrary even function. The unit circle ∥Ab∥p = 1 is given by

f (4x − y) + f (x) = 1 (8)

and subtracting Eq. 7 from Eq. 8 gives

f (4x − y) = f (y). (9)

This equation will be satisfied if 4x − y = y, which implies x = y
2 . Since f is even, Eq. 9 will

also be satisfied if 4x − y = −y, which implies x = 0. As p → ∞, the unit circle ∥b∥p = 1
approaches the unit circle of ∥b∥∞, and thus the solutions for the infinity norm should also
be colinear.

2

−4

−2

0

2

4

−1 −0.5 0 0.5 1

−4

−2

0

2

4

−1 −0.5 0 0.5 1

−4

−2

0

2

4

−1 −0.5 0 0.5 1

y

x

∥b∥2 = 1
∥Ab∥2 = 1

y

x

∥b∥∞ = 1
∥Ab∥∞ = 1

y

x

∥b∥4 = 1
∥Ab∥4 = 1

Figure 1: Loci of ∥x∥p = 1 and ∥Ax∥p = 1 for (a) p = 2, (b) p = ∞, and (c) p = 4. Intersection
points on each panel are shown as magenta circles.

3

Problem 2 – binary LU factorization

Parts (a), (b), and (c)

This problem is very similiar to LU factorization on R except addition, subtraction, multi-
plication and division operations are altered. MATLAB and Python implementations of
the forward substitution, backward substitution, and the LU factorization are provided,
and follow the algorithms laid out on slides 7, 6, and 39 of the lecture 7 notes, respectively.

Part (d) – test cases

The test cases can be solved using the following steps:

1. Calculate matrices L, U, and P as the LU decomposition of A,

2. Solve the linear system Ly = Pb using the forward substitution,

3. Solve the linear system Ux = y using backward substitution.

The solution to the small test case is

x = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]T. (10)

The solution to the large test case is

x = [0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,

0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]T.
(11)

This sequence has the interesting property that the component xk is equal to one if k is
prime and 0 otherwise.

Part (e) – probability of an n × n binary matrix being singular

We can think of this problem as forming n linearly independent column vectors. For a
binary matrix of size n, the total number T of different matrices is given by

T = (2n)n = 2n2
. (12)

To construct a non-singular binary matrix, we consider building it up column by column,
so that the columns are linearly independent. The first column can have any vector except
the one with all zero entries, and hence the total number of available vectors is

C1 = 2n − 1. (13)

4

Figure 2: The five light patterns (top row) and the corresponding presses (bottom row) considered
in question 3. Lit lights are shown in yellow. Pressed lights are shown in green.

The second column cannot be a linear combination of the first column, and hence the total
number of available vectors for the second column is

C2 = 2n − 2. (14)

This pattern continues and for the ith column the total number of available vectors is

Ci = 2n − 2i−1. (15)

Hence, the probability of a binary matrix being singular is

P =
T − ∏n

i=1 Ci

T
= 1 − (2n − 1)(2n − 2)...(2n − 2n−1)

(2n)n . (16)

Problem 3 – the light game

The program lights.py takes a light pattern and calculates the presses required to make
it using the binary LU solver introduced in problem 2. The presses required to make the
five given patterns are shown in Fig. 2. Many interesting custom patterns were submitted,
including smileys, a triangle, letters, and the π symbol. In addition, several students found
eigenvectors of the matrix A, with eigenvalue 1, corresponding to cases where the button
presses and light pattern match.

The program lights2.py calculates the dimension of the null space of the matrix A
when constructed on on m × n. Due to the symmetry, the program only considers cases
where n ≤ m. Table 1 shows the dimensions for all cases of m, n ≤ 10, revealing a
complicated pattern.

This problem is based on Lights Out, an electronic toy released in 1995, originally
using a 5 × 5 grid. Detailed analyses of this game are available on the web and use more
sophisticated mathematical techniques that allow the dimension of the null space to be
calculated even for very large m and n.

5

http://en.wikipedia.org/wiki/Lights_Out_(game)
http://www.jaapsch.net/puzzles/lomath.htm

m, n 1 2 3 4 5 6 7 8 9 10
1 · 1 · · 1 · · 1 · ·
2 1 · 2 · 1 · 2 · 1 ·
3 · 2 · · 3 · · 2 · ·
4 · · · 4 · · · · 4 ·
5 1 1 3 · 2 · 4 1 1 ·
6 · · · · · · · 6 · ·
7 · 2 · · 4 · · 2 · ·
8 1 · 2 · 1 6 2 · 1 ·
9 · 1 · 4 1 · · 1 8 ·

10 · · · · · · · · · ·

Table 1: Dimensions of the null space of the matrix A representing the light game on an m × n grid.
A dot represents a null space of zero dimension. Due to symmetry, the null space of an m × n grid
is the same as for an n × m grid.

Problem 4 – difficult cases for LU factorization

A MATLAB code to generate Gn is provided. The MATLAB functions tic and toc were
used to record the CPU time required to generate Gn. Figure 3 illustrates time used versus
n on a log–log plot. Fitting this data to the function t(n) = αnβ gives

α = 10−7.9, β = 1.98.

We can interpret α as a constant overhead factor and β as the order of complexity. In this
case β ≈ 2, which implies the computation time grows proportional to n2. This is expected,
since the size of the matrix is n2 and the number of negative entries is n(n−1)

2 , both of which
grow quadratically.

Part (c) – LU error

Performing the LU decomposition on Gn yields Gn = Ln × Un, where

Ln =


1 0
−1 1
..
−1 −1 −1 1

 , Un =


1 0 .. 1
0 1 .. 2
..
0 0 0 2n−1

 (17)

The permutation matrix P is simply an identity matrix. since x = [1, 1, 1, 1, . . . , 1]T, we
have b = Gn × x = [2, 1, 0,−1,−2, . . . ,−n + 5,−n + 4,−n + 3,−n + 2]T. The forward
substitution gives Ly = b gives y = [2, 3, 5, . . . , 2n−2 + 1, 2n−1]. Finally, the backward

6

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

time elapsed vs n

n

tim
e

time elapsed
fitting

Figure 3: CPU time spent to generate Gn as a function of n.

substitution gives x̂ = [1, 1, 1, 1, . . . , 1]T if there is no rounding error. However, since the
last column of U and y both scale with 2n−1, rounding error becomes significant for large
n. In backward substitution step, we have x̂i = 2i−1 + 1 − 2i−1 = 1 for all i ̸= n. For i = n,
there is no rounding error and x̂n = 1. However, due to rounding, if i > 52, we have
xi = 2i−1 + 1 − 2i−1 = 0. Hence, computationally, we have

x̂ = [1, 1, 1, 1, . . . , 0, 0, 0, . . . , 0, 1]T. (18)

The first 52 entries of x̂ are one, and the last entry is one, and all entries in the middle are
zero. Hence to compute relative error, we have

∥x − x̂∥
∥x̂∥2

= 0 (19)

for n ≤ 53, and
∥x − x̂∥
∥x̂∥2

=

√
n − 53√

53
(20)

for n > 53. Figure 4(a) shows the relative error and also shows that the inequality

∥x − x̂∥2

∥x̂∥2
≤ κ(Gn, 2))

∥r(x̂)∥2

∥A∥2∥x̂∥2
(21)

is satisfied, where κ(Gn, 2) is the condition number Gn with respect to the 2-norm. Note
that problem considered in this question is well-conditioned, since κ(Gn, 2) grows slowly.

7

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100
inequality

n

||x−x

h
||

2
/||x

h
||

2

||r||
2
/(||A||||x

h
||)*cond(A)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
inequality

n

LU error
QR error

Figure 4: (a) Relative error using the LU decomposition. (b) Relative error comparison between the
LU and QR factorizations.

Part (d) – comparison with QR

We can also solve this problem using the QR factorization. Since Q is an orthogonal matrix,
the rounding error issue observed in (c) is mitigated. As a result, the relative error is much
smaller. Figure 4b) shows the comparison.

Problem 5 – QR factorization using Givens rotations, applied
to a bouncing ball

Part (a)

A Python program that performs Givens rotations can be found in givens.py. We are
asked to test the program by performing 10 trials with random matrices. We are asked to
calculate the Frobenius norm, ∥A − QR∥F. In doing so, we find:

The Frobenius norm is 1.71989412511e-15

The Frobenius norm is 2.4801876374e-15

The Frobenius norm is 1.86327735126e-15

The Frobenius norm is 2.11357387049e-15

The Frobenius norm is 3.02748958682e-15

The Frobenius norm is 1.54630262435e-15

The Frobenius norm is 2.03689632033e-15

The Frobenius norm is 1.5253773799e-15

The Frobenius norm is 2.53880321844e-15

The Frobenius norm is 1.86737483043e-15

It is reassuring to see errors of this magnitude. Because in principle, we should get an
exact solution we only expect errors due to the inaccuracies of arithmetic. As a further

8

−15.0 −14.8 −14.6 −14.4 −14.2

log10(error)

0

500

1000

1500

2000

2500

3000

3500

co
u
n
ts

error

Figure 5: A histogram of the Frobenius Norm for Givens rotations where the decomposed matrix
is made up of elements using Python’s np.random.rand() function. The error is reported using
log10(error).

sanity check, we can perform many simulations and consider log10(error). The results are
shown in Fig. 5.

Part (b)(i)

We are asked to fit each of the three arcs to an equation of the form

y(f) = α f 2 + β f + γ.

The code used to do this can be found in the associated files with the name P5.py. Note
that due to the format of the data, the arcs face upward rather than downward. Rather
than invert the data, we choose to leave the data as is and will remember our final value
for g will be off by a factor of −1. This is because of the choice of coordinate system. The
plot is shown in Figure 6. When calculating the different constants, depending on the data
you use, you may get different values. In this case, we convert both the x and y axis to
more useful units. We are told that each frame is 7/120 seconds apart. To start at t = 0, we
can write

time [sec] = (frame − 1)
7

120
.

9

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t [sec]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
 [

m
]

Figure 6: This plot shows the three different arcs and their associated parabolic fits.

To get the distance conversion, we are told that 43.5 pixels corresponds to 42.5 mm. We
divide to find that each pixel correspond to 0.00097 meters.

Arc 1 Arc 2 Arc 3
α 4.90935 4.83274 4.86478
β 0.0599324 −4.78178 −9.00079
γ 0.0306795 1.31106 4.35779


As expected, β and γ are not very constant over the different parabolas. However, α is
quite similar for all three. This makes sense (and gives us useful information!) as we will
see later.

Part (b)(ii)

Now, using our fits we are asked to calculate a few different quantities.

(A)

We want to calculate the gravitational acceleration. Recall from an introductory physics
class that

a =
d2y
dt2 ,

where y gives us the position. In this case, we find that

d2y
dt2 = 2α.

10

Thus, we find that
2α = {9.8186, 9.6654, 9.7295}.

Thus, we find (introducing the negative sign to make the value seem more familiar)

g = −9.7379 ± 0.07694.

(B)

Now we want the height from which the ball was dropped. Notice that we don’t have any
data about exactly where the ball hits the table. Thus, we need to figure out where the
table is. We can do this by finding where parabola 1 and 2 are equal as well as parabola 2
and 3. Therefore, we need to solve the equation

4.909349024546918t2 + 0.05993241246429129t + 0.030679536970813857 =

= 4.8327406816693852t2 − 4.7817810565214023t + 1.3110642433077426 (22)

for t. This can easier be done by hand, numerically, or by using the software package of
your choice. In this case, we find that t = 0.263351317. Next, we want to evaluate the
parabolas at this t to get the value of y corresponding to their intersection (and hopefully
the table). We find that

y1 = 0.386945397.

Doing an identical procedure for the second and third parabolas, we find that

y2 = 0.387043488.

Now, we can take the average of the two values to get the approximate height of the table.
We obtain

ytable ≈ 0.386994.

Now, we need to get the position that the ball was originally released from. To do this, we
will want to focus on the first arc. Recall that for the first arc, we have calculated

y(t) = 4.90935t2 + 0.0599324t + 0.03067.

To find when the ball was released, we want to find when the first derivative (velocity)
equals 0. Doing that calculation, we find that that the ball was released at

t0 = −0.00610390626.

This makes sense: the ball starts almost exactly from rest. Plugging this time into the
parabola, we find a modified release height of

ystart = 0.030496626.

11

By subtracting the two heights, we get that the ball was dropped

height ≈ 0.356448 [m].

However, this is presumably from the middle of the ball. Thus, we need to subtract half
the height of the ball to get the height from the bottom of the ball to the table. We get a
final answer of

height ≈ 0.3352 [m].

(C)

The coefficient of restitution e is given by

e =
Relative speed after collision

Relative speed before collision
.

To get this ratios, we can consider the derivative near the points of contact with the
table. As does to compute where the table is located, we find that a collision will occur at
t = 0.263 seconds. Then we can take the derivative:

y′(t) = v(t) = 2αt + β.

We can compute this value for both sides using the corresponding α and β values. We find

e =
2.23636 m/s
2.64570 m/s

≈ 0.845282631.

Part (b)(iii)

Recall from physics that

x = v0t +
1
2

at2

where x in this case is the height of the drop, h and a is the acceleration due to gravity.
Because the ball was dropped, we know that when it was released v0 = 0. Therefore, we
can rewrite this equation as

h =
1
2

gt2.

Rearranging this equation, we get that the time for the first drop is given by

t =

√
2h
g

.

From the conservation of energy we also know that mgh = 1/2mv2. This gets us that

v =
√

2gh.

12

From the coefficient of restitution, we know that the velocity after the nth bounce is given
by

vn = env0 = evn−1.

The time between bounces will be given by

tn =
2vn

g
.

This can be rewritten using our expression for v0 and vn as

tn =
2en

g

√
2gh.

We wa want to sum up all of these terms. We have that

total time = first fall + time for all bounces.

This can be written as

total time =

√
2h
g

+
∞

∑
n=1

2en

g

√
2gh.

Recall that for |r| < 1 we can write

∞

∑
n=1

rn =
r

1 − r
.

Using this trick (and noting that e < 1) we can write our sum as

total time =

√
2h
g

+
2
g

√
2gh

∞

∑
n=1

en.

This gets us a final answer of

total time =

√
2h
g

+

(
2
g

√
2gh

)(
e

1 − e

)
.

Plugging in our values we find

total time ≈ 0.262 sec + 2.975 sec = 3.24 sec.

Note that this value is quite sensitive to different e and h values (see 7). Using reasonable e
and h values for the parameter regime we are interested in rest times tend to be between
3.1 and 3.5 seconds.

13

0.301 sec

0.407 sec 0.549 sec

0.741 sec

1 sec

1.22 sec
1.65 sec

2.23 sec
3. sec

4.06 sec

0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.2

0.4

0.6

0.8

h [m]

e

Time to Come to Rest

0.0273 sec

0.0408 sec

0.0672 sec

0.1 sec

0.165 sec

0.247 sec

0.407 sec

0.607 sec

1 sec

1.49 sec

2.46 sec

3.67 sec

6.05 sec

9.03 sec

14.9 sec

-3 -2 -1 0 1

0.2

0.4

0.6

0.8

Log10[h] [m]

e

Time to Come to Rest

Figure 7: Contour/color plots showing the time for the bouncing ball with coefficient of restitution
e to come to rest when dropped from a height h. The left plot shows a range of heights similar to
those considered in problem 5. The right plot shows a larger range of heights, using a logarithmic
axis. Logarithmic contour spacings are used to help them appear evenly spaced.

Problem 6 – New Hampshire leaf identification with the SVD

Throughout this question the differences in the results between the three resolutions of
images, (m, n) = (712, 560), (m, n) = (538, 420), and (m, n) = (356, 280) are negligible.

Part (a)

The program gen svd.py reads in all of the 143 leaf images, and saves an image of the aver-
age leaf s̄ as shown in Fig. 8. The program also saves the average leaf vector components to
a file, as well as the first sixteen left singular vectors uj as described in the question. These
files are then read in by subsequent programs for solving the later parts of the question.

Part (b)

The program plot svd vecs.py plots the positive and negative components to the first
three left singular vectors, u1, u2, and u3. They are shown in Fig. 9. The form of u1 is
reasonable, since the data set contains a large number of elliptical shaped leaves, plus a
large number of maple leaves. For some constant λ > 0, the image of S̄ − λu1 will look
like a maple leaf, while the image of S̄ + λu1 will look like a leaf with an elliptical shape.
Hence this vector will likely explain a large amount of the variance in the data set.

14

Figure 8: The average leaf at the (m, n) = (712, 560) resolution.

u
P j

u
N j

j = 1 j = 2 j = 3

Figure 9: The positive (uP
j) and negative (uN

j) components of the three left singular vectors u1, u2,
and u3. Note that the positive component of u1 is localized to a small point near the leaf tip.

15

Part (c)

The program leaf proj image.py can plot the projection P(T, k) of any leaf T onto the
subspace centered on S̄ and spanned by the first k left singular vectors. Figure 10 shows
the projections of leaves 14, 33, 87, and 140 using k = 1, 2, 4, 8, 16. As expected, the clarity
of each leaf improves as k increases. By k = 16, all the leaf shapes and colors are matched
reasonably well, although fine details in the leaf edges are not captured.

Of these four leaves, leaf 87 has the poorest match. Since the green–red color mix is
rather unique to this leaf, the set of the first sixteen SVD vectors have a difficult time
recovering this feature. The hole in leaf 140 is also not well-captured, although it becomes
somewhat visible by k = 16.

Part (d)

The program proj sizes.py computes the measure

dis(Sj) =
1

mn
∥Sj − P(Sj, 8)∥2

2, (23)

for each leaf j. The program determines that

arg min
j

dis(Sj) = 57, arg max
j

dis(Sj) = 120. (24)

These results are true for all three resolutions. Specifically,

dis(S57) =


0.00967 for (m, n) = (712, 560),
0.00956 for (m, n) = (534, 420),
0.00937 for (m, n) = (356, 230)

(25)

and

dis(S120) =


0.07692 for (m, n) = (712, 560),
0.07648 for (m, n) = (534, 420),
0.07561 for (m, n) = (356, 230).

(26)

Figure 11 shows the original images Sj and their projections P(Sj, 8) for these two cases.
Leaf 57 is very well matched by its projection. Leaf 120 is dark and has an unusual shape,
and thus dis(S120) is large, due to many pixels near its boundary not being captured well.

Part (e)

The program proj sizes.py also computes the projection distance measure for the extra
eight leaves, which are numbered from 143 to 150 in the provided data files. The values
are shown in Table 2 for the three different resolutions. The three lowest projections
correspond to leaves 143, 147, and 148.

16

k
=

1
k
=

2
k
=

4
k
=

8
k
=

16
O

ri
gi

na
l

Leaf 13 Leaf 33 Leaf 87 Leaf 140

Figure 10: Example projections P(Sj, k) for four different leaves and different values of k. The
original leaf images are shown in the bottom row for comparison.

17

O
ri

gi
na

l
8D

pr
oj

ec
ti

on

Leaf 57 Leaf 120

Figure 11: The original image Sj and its eight-dimensional projection for the case of the
best represented leaf (j = 57) and the poorest represented leaf (j = 120), as measured by
dis(Sj) =

1
mn∥Sj − P(Sj, 8)∥2

2.

In reality, leaves 144, 145, and 147 were collected in New Hampshire while the rest
are from Harvard Yard, and thus the method only correctly identifies a single leaf. Note
however that leaf 144 is ranked fourth and is close behind the third-placed leaf 148. It also
looks reasonable that leaf 143 would be identified as a New Hampshire leaf, since it is very
similar to several in the main data set.

It is surprising that leaf 145 is not identified, since it looks like a typical maple leaf and
there are many similar ones in the main data set. There are two possible reasons for this.
First, the boundary of this leaf is somewhat different to other maple leaves, and thus the
projection can only do so well with matching the boundary, incurring a substantial penalty
in dis(Sj) for boundary pixels that are not recovered well.

Second, it appears that the large values in Table 2 are predominantly weighted toward
leaves that take up a large amount of the image. This suggests that normalizing dis(Sj) by

1
mn∥Sj∥2

2 may be appropriate. If this is normalization is performed, then leaves 147, 145,
and 143 have the three smallest values, and so two out of three of the New Hampshire
leaves are identified.

18

(m, n) 143 144 145 146 147 148 149 150
(712, 560) 0.01955 0.02799 0.03699 0.04009 0.02519 0.02724 0.04259 0.05453
(534, 420) 0.01938 0.02767 0.03659 0.03975 0.02493 0.02695 0.04224 0.05416
(356, 280) 0.01902 0.02702 0.03577 0.03915 0.02442 0.02636 0.04156 0.05339
Rank 1 4 5 6 2 3 7 8

Table 2: Projection distances dis(Sj) for the eight extra leaves (numbered from 143 to 150), for the
three different image resolutions. The ranking of the distances is also shown from lowest (1) to
highest (8). The ranking is consistent for all three image resolutions.

19

