
AM205: Assignment 1 solutions*

Problem 1 – Interpolating polynomials for the gamma func-
tion

Part (a)

We consider finding a polynomial g(x) = ∑5
k=0 pkxk that fits the data points (j, Γ(j)) for j =

1, 2, 3, 4, 5, 6. Since there are a small number of data points, we can use the Vandermonde
matrix to find the coefficients of the interpolating polynomial g(x) = ∑5

k=0 gkxk. The linear
system is 

1 1 1 1 1 1
1 2 4 8 16 32
1 3 9 27 81 243
1 4 16 64 256 1024
1 5 25 125 625 3125
1 6 36 216 1296 7776





g0

g1

g2

g3

g4

g5


=



1
1
2
6

24
120


. (1)

The program gamma interp.py solves this system, and shows that the coefficients are

(g0, g1, g2, g3, g4, g5) = (−35.00, 83.89,−70.88, 27.75,−5.13, 0.37). (2)

Alternatively, in exact fractions, the solution is

(g0, g1, g2, g3, g4, g5) =

(
−35,

5033
60

,−567
8

,
111
4

,−41
8

,
11
30

)
. (3)

Part (b)

We now consider finding a polynomial p(x) = ∑4
k=0 pkxk that fits the transformed data

points (j, log(Γ(j))) for j = 1, 2, 3, 4, 5. The coefficients are given by

1 1 1 1 1 1
1 2 4 8 16 32
1 3 9 27 81 243
1 4 16 64 256 1024
1 5 25 125 625 3125
1 6 36 216 1296 7776





p0

p1

p2

p3

p4

p5


=



log 1
log 1
log 2
log 6

log 24
log 120


. (4)

The program gamma interp.py shows that the coefficients are

(p0, p1, p2, p3, p4, p5) = (1.267,−2.187, 1.101,−0.2014, 0.02166,−0.0009721). (5)
*Solutions were written Kevin Chen (TF, Fall 2014), Dustin Tran (TF, Fall 2014), and Chris H. Rycroft.

Edited by Chris H. Rycroft.

1

0

20

40

60

80

100

120

1 2 3 4 5 6

y

x

Γ(x)
g(x)
h(x)

Interpolation points

Figure 1: The gamma function Γ(x) and the two interpolating polynomials g(x) and h(x) considered
in problem 1.

Parts (c) and (d)

The program gamma interp.py also outputs the gamma function and the two interpolating
polynomials at 501 samples in the range 1 ≤ x ≤ 6. The three functions Γ(x), g(x), and
h(x) are shown in Fig. 1. The function h(x) is near-indistinguishable from the gamma
function, whereas the function g(x) is noticeably different, especially between x = 1
and x = 2. Since the gamma function grows rapidly, particularly near x = 6, its higher
derivatives will grow very large, meaning that Cauchy’s interpolation bound will be large.
By taking the logarithm of the function values, the interpolation in part (b) does not feature
such a large increase near x = 6. Hence, it should be expected that the interpolation will
be more accurate.

The program gamma interp.py also computes the maximum relative error by sampling
the functions at 5001 equally spaced points over 1 ≤ x ≤ 6. It reports that the maximum
relative error of g(x) is 1.21 and the maximum relative error of h(x) is 0.00802, which is
consistent with the curves in Fig. 1.

2

0
2
4
6
8

10
12
14
16
18
20
22

−1 −0.5 0 0.5 1

y

x

f (x)
p3(x)

Figure 2: The function f (x) = e−3x + e2x and the interpolating polynomial p3(x) considered in
problem 2.

Problem 2 – Error bounds with Lagrange Polynomials

Parts (a) and (b)

Figure 2 shows the Lagrange polynomial p3(x) over the true function f (x) using a slightly
modified version of the in-class code example. Running the code, the infinity norm of the
error is approximately 1.19249.

Part (c)

The difference between f (x) and and the interpolating polynomial pn−1(x) can be ex-
pressed as

f (x)− pn−1(x) =
f (n)(θ)

n!

n

∏
i=1

(x − xi), (6)

where θ is a specific value within the interval from −1 to 1. To obtain a bound on ∥ f −
pn−1∥∞, we consider the magnitude of the terms on the right hand side.

Since the xi are at the roots of the nth Chebyshev polynomial Tn(x), it follows that the
product in Eq. 6 is a scalar multiple of this polynomial, i.e.,

n

∏
i=1

(x − xi) = λTn(x) (7)

3

where λ is some scaling constant. The coefficient in front of xn on the left hand side is 1.
Using properties of Chebyshev polynomials, the coefficient of xn in Tn(x) is 2n−1. Hence
λ = 2−(n−1). The Chebyshev polynomials satisfy |Tn(x)| ≤ 1 for x ∈ [−1, 1] and hence∣∣∣∣∣ n

∏
i=1

(x − xi)

∣∣∣∣∣ ≤ 1
2n−1 (8)

for x ∈ [−1, 1].
Now consider the nth derivative of f , which is given by

f (n)(θ) = (−3)ne−3θ + 2ne2θ. (9)

The maximum value of | f (n)(θ)| can occur at two places: (i) at an internal maximum, or (ii)
at one of the end points of the interval, θ = ±1. Consider case (i) first. If n is odd, then

f (n+1)(θ) = 3n+1e−3θ + 2n+1e2θ, (10)

and since both terms are positive, there is no value of θ where f (n+1)(θ) = 0. If n is even,
then

f (n+1)(θ) = −3n+1e−3θ + 2n+1e2θ (11)

Setting f (n+1) = 0 gives
3n+1e−3θ = 2n+1e2θ (12)

and hence (3/2)n+1 = e5θ, so

θ =
(n + 1) log 3/2

5
(13)

is a single solution. However, since

f (n+2)(θ) = |3n+2e−3θ + 2n+2e2θ| > 0 (14)

it follows that this must be a minimum of f (n). Since f (n) > 0, it must be a minimum of
| f (n)| also. Hence, for all values of n there is no possibility that the maximum of | f (n)|
occurs in the interior of the interval. Thus the only remaining possibilities are at the
endpoints. Since the factor of (−3)n grows more rapidly in magnitude, the maximum will
occur at θ = −1, and hence

| f (n)(θ)| ≤ |(−3)ne3 + 2ne−2|. (15)

Combining the results from Eqs. 8 & 15 establishes that

∥ f − pn−1∥∞ ≤ |(−3)ne3 + 2ne−2|
n! 2n−1 . (16)

4

Part (d)

There are many ways to find better control points, and this problem illustrates that while
the Chebyshev points are a good set of points at which to interpolate a general unknown
function, they are usually not optimal for a specific function.

One simple method is to examine where the maximum interpolation error is achieved.
This is happens near x = −1. Hence if we move the first control point to the left, it will
result in a better approximation of f (x) within this region. In this case, we shift the first
control point by −0.02, which leads to an infinity norm of 1.09283.

Problem 3 – The condition number

Part (a)

Throughout this equation, ∥ · ∥ is taken to mean the Euclidean norm. The first two parts of
this problem can be solved using diagonal matrices only. Consider first

B =

(
2 0
0 1

)
, C =

(
1 0
0 2

)
(17)

Then ∥B∥ = 2, ∥B−1∥ = 1 and hence κ(B) = 2. Similarly, κ(C) = 2. Adding the two
matrices together gives

B + C =

(
3 0
0 3

)
= 3I (18)

and hence κ(B + C) = ∥3I∥ ∥1
3 I∥ = 3 × 1

3 = 1. For these choices of matrices, κ(B + C) <
κ(B) + κ(C).

Part (b)

If

B =

(
4 0
0 2

)
, C =

(
1 0
0 −1

)
(19)

then κ(B) = 2 and κ(C) = 1. Adding the two matrices together gives

B + C =

(
5 0
0 1

)
(20)

and hence κ(B + C) = 5. Therefore κ(B + C) > κ(B) + κ(C).

5

Part (c)

Let A be an invertible 2 × 2 symmetric matrix. First, note that

∥2A∥ = max
v ̸=0

∥2Av∥
∥v∥ = max

v ̸=0

2∥Av∥
∥v∥ = 2 max

v ̸=0

∥Av∥
∥v∥ = 2∥A∥. (21)

Similarly, note that ∥(2A)−1∥ = ∥1
2 A−1∥ = 1

2∥A−1∥. Hence

κ(2A) = ∥2A∥ ∥(2A)−1∥ = 2∥A∥ × 1
2
∥A−1∥ = ∥A∥ ∥A−1∥ = κ(A). (22)

Now suppose that A is a symmetric invertible matrix. Then there exists an orthogonal
matrix Q and a diagonal matrix D such that

A = QTDQ. (23)

Since QTQ = QQT = I, it follows that

A2 = QTDQQTDQ = QTD2Q. (24)

The matrix norm of ∥A∥ is

∥A∥ = max
v ̸=0

∥QTDQv∥
∥v∥ . (25)

Since Q corresponds to a rotation or reflection, it preserves distances under the Euclidean
norm and hence ∥Qw∥ = ∥w∥ = ∥QTw∥ for an arbitrary vector w. Therefore

∥A∥ = max
v ̸=0

∥DQv∥
∥Qv∥ = max

u ̸=0

∥Du∥
∥u∥ = ∥D∥ (26)

where u = Qv. Similarly ∥A−1∥ = ∥QTD−1Q∥, and since D−1 is also diagonal it follows
that ∥A−1∥ = ∥D−1∥, so κ(A) = κ(D). With reference to the condition number notes,
κ(A) = |αβ−1| where α is the diagonal entry with largest magnitude and |β| is the diagonal
entry with the smallest entry with smallest magnitude.

Since D2 is also diagonal, it follows that ∥A2∥ = ∥D2∥. The diagonal entry of D2 with
the largest amplitude will be α2, and the diagonal entry of D2 with the smallest amplitude
will be β−2. Hence

κ(A2) = |α2β−2| = (κ(A))2 . (27)

Part (d)

The result for that κ(2A) = κ(A) is true for arbitrary 2 × 2 invertible matrices. The
derivation that was considered in part (c) did not rely on the matrix being symmetric.

6

The result about κ(A2) does not generalize to arbitrary matrices. If

A =

(
1 1
0 1

)
(28)

then

A2 =

(
1 2
0 1

)
. (29)

One can numerically verify that κ(A2) = 5.828 but (κ(A))2 = 6.854, so the two do not
agree.

Problem 4 – Periodic cubic splines

Parts (a), (b), and (c)

We aim to construct a cubic spline sx(t) of sin πt
2 over the periodic interval t ∈ [0, 4), using

four cubic representations over the ranges [0, 1), [1, 2), [2, 3), and [3, 4). This gives sixteen
degrees of freedom. Each cubic must match the function value at either end of its range
(giving eight constraints). The first and second derivatives must also be continuous at the
interface between each cubic, giving another eight constraints. Hence, the number of free
parameters and the number of constraints agree, so there should be a unique solution.

A possible pitfall is to try and find the solution using a library routine, such as SciPy’s
interp1d. However, the boundary conditions considered here are distinctly different from
the defaults usually used by these routines. A standard (non-periodic) spline uses the
conditions s′′x (0) = 0 and s′′x (4) = 0. On the other hand, to make the spline periodic, this
problem uses the conditions s′′x (0) = s′′x (4) and s′x(0) = s′x(4). The different conditions
fundamentally alter the solution.

To construct the spline, we make use of basis of cubics

c0(t) = t2(3 − 2t), c1(t) = −t2(1 − t),

c2(t) = (t − 1)2t, c3(t) = 2t3 − 3t2 + 1, (30)

which are chosen because of their favorable properties at t = 0 and t = 1 that are
summarized in Table 1. Using these functions, the spline can be written as

sx(t) =


c0(t) + αc1(t) + δc2(t) for t ∈ [0, 1),
c3(t − 1) + βc1(t − 1) + αc2(t − 1) for t ∈ [1, 2),
−c0(t − 2) + γc1(t − 2) + βc2(t − 2) for t ∈ [2, 3),
−c3(t − 3) + δc1(t − 3) + γc2(t − 3) for t ∈ [3, 4),

(31)

where α, β, γ, and δ are unknown constants. The contributions of c0 and c3 are chosen
to ensure each cubic matches sin πt

2 at the end points. The pairwise occurences of each
constant are chosen to ensure that the first derivative is continuous.

7

http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html

Function ci(1) c′i(1) c′i(0) ci(0) c′′i (1) c′′i (0)
c0(t) = t2(3 − 2t) 1 0 0 0 −6 6
c1(t) = −t2(1 − t) 0 1 0 0 4 −2
c2(t) = (t − 1)2t 0 0 1 0 2 −4
c3(t) = 2t3 − 3t2 + 1 0 0 0 1 6 −6

Table 1: Properties of the four cubics used as a basis to compute the cubic spline.

To set the free parameters, the second derivatives must be made continuous at each
interface. At t = 1, 2, 3, 4, by reference to Tab. 1, this gives

−6 + 4α + 2δ = −6 − 2β − 4α, (32)
6 + 4β + 2α = −6 − 2γ − 4β, (33)
6 + 4γ + 2β = 6 − 2δ − 4γ, (34)

−6 + 4δ + 2γ = 6 − 2α − 4δ, (35)

respectively. In matrix form, this is
8 2 0 2
2 8 2 0
0 2 8 2
2 0 2 8




α

β

γ

δ

 =


0

−12
0

12

 , (36)

which has the unique solution (α, β, γ, δ) = (0,−3
2 , 0, 3

2). Hence

sx(t) =


c0(t) + 3

2 c2(t) for t ∈ [0, 1),
c3(t − 1)− 3

2 c1(t − 1) for t ∈ [1, 2),
−c0(t − 2)− 3

2 c2(t − 2) for t ∈ [2, 3),
−c3(t − 3) + 3

2 c1(t − 3) for t ∈ [3, 4).

(37)

Figure 3(a) shows a plot of sx(t) in comparison to sin πt
2 . There is a high level of agreement

between the two functions.
Since cos πt

2 is the same as sin πt
2 , but shifted by −1, it follows that it can be approxi-

mated by the spline

sy(t) =


c3(t)− 3

2 c1(t) for t ∈ [0, 1),
−c0(t − 1)− 3

2 c2(t − 1) for t ∈ [1, 2),
−c3(t − 2) + 3

2 c1(t − 2) for t ∈ [2, 3),
c0(t − 3) + 3

2 c2(t − 3) for t ∈ [3, 4).

(38)

Figure 3(b) shows a plot of sy(t) in comparison to cos πt
2 .

8

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

(b)

x

t

Sine
Spline

Control points

t

Cosine
Spline

Control points

Figure 3: Comparison of (a) sin tπ
2 and the spline approximation sx(t), and (b) cos tπ

2 and the spline
approximation sy(t).

Part (d)

Figure 4(a) shows a plot of the parametric curve s(t) = (sx(t), sy(t)) compared to a true
circle. The am205 sol1 ex3.py code integrates the area enclosed by the this curve by
dividing it into a large number of triangles. Recall that if a a and b are vectors along two
sides of a triangle, then the area is given by 1

2 |a × b|. For the given problem, consider the
triangle with vertices at the origin, s(t), and s(t+∆t). Then for ∆t small, vectors along two
sides are given by s(t) and s′(t)∆t. Hence the total enclosed area is the sum of triangles
such as this, and is hence given by the integral

A =
1
2

∫ 4

0
|s(t)× s′(t)| dt. (39)

The program shows that A = 3.05000 to five decimal places using Python’s integration
routine. The integrand is a fifth order polynomial, and hence it can also be evaluated
exactly using alternative means to determine that A = 61

20 . This differs from π by 3%.

9

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

(a)

−1 −0.5 0 0.5 1

(b)

y

x

Circle
Spline

Control points

x

Circle
Spline

Control points

Figure 4: The parametric curve s(t) = (sx(t), sy(t)) compared to a circle, for (a) four control points
and (b) seven control points.

Part (e)

Consider calculating a spline sn
x(t) of sin πt

2 on the periodic interval [0, 4) using n control
points at t = t0, t1, . . . , tn−1 where tk =

4k
n . By extending the argument from part (a), one

can determine that in the interval [tk, tk+1), the spline is given by

sn
x(t) =

(
sin

2kπ

n

)
c3(t∗) +

(
sin

2(k + 1)π
n

)
c0(t∗) + αk+1c1(t∗) + αkc2(t∗) (40)

where t∗ = n
4 (t − tk) and the αk are constants for k = 0, . . . , n − 1. Due to the periodicity,

αn+k is treated as equivalent to αk. As in part (a), this form will satisfy that sn
x(t) match the

function values at the end of each interval, and will have continuous first derivative. To
set the αk, the second derivatives must be considered. Ensuring continuity of the second
derivative at tk yields

−6 sin
2kπ

n
+ 6 sin

2(k + 1)π
n

− 2αk+1 − 4αk = 6 sin
2(k − 1)π

n
− 6 sin

2kπ

n
+ 4αk + 2αk−1.

(41)

10

and hence

2αk−1 + 8αk + 2αk+1 = −6 sin
(k − 1)π

2n
+ 6 sin

(k + 1)π
2n

. (42)

By considering Eq. 42 for k = 0, 1, . . . , n − 1, a linear system is obtained for the αk, which is
the generalization of Eq. 36. The matrix is a circulant matrix, where the only entries are
(2, 8, 2) on diagonal lines that wrap around. Linear systems involving such matrices can
be solved very rapidly in principle, by employing the fast Fourier transform. Once the αk
are determined, Eq. 40 gives the explicit form of the spline.

In a similar manner, a spline sn
y(t) of cos πt

2 can be constructed. In part (c), this spline
was constructed by noting that this function is the same as sine, but shifted by −1, which
permitted the form of sn

y(t) to be written down immediately. However, here the same
approach will not always work, since for a general n the positions of the control points may
not precisely match when shifted by −1. It is therefore necessary to explicitly construct
this spline, by using Eqs. 40 and 42 again, and replacing all instances of sine by cosine.

The program am205 sol1 ex3e.py constructs the two splines for an arbitrary number
of control points n, when n ≥ 3. Figure 4(b) shows a plot of the resultant circle approxi-
mation using seven points, which becomes near-indistinguishable from a true circle. The
program also considers a range of different n and computes the approximation to π. The
area integration is performed using three-point Gaussian quadrature† on each subinterval,
which results in an exact answer up to truncation error. Figure 5 shows a plot of the relative
error Erel in the approximation of π as a function of n. The relative error is well-fit by the
line Erel = 4.547n−4.007 over the range 10 < x < 2000. It is reasonable for the error to scale
like fourth power of n. If sine and cosine are being well-fit by cubic polynomials, then the
leading term in the approximation error will be quartic in size. For x > 2000, truncation
error becomes visible, as expected.

Problem 5 – Image reconstruction using low light

Part (a)

In this question we are given a regular M× N photo of a still-life scene, plus three low-light
photos of the same scene that are illuminated in red, green, and blue. Each pixel in the
images can be represented as a three-component vector p = (R, G, B) for the red, green,
and blue components. Let pA

k be the kth pixel of the regular photo, and let pB
k , pC

k , and pD
k

be the kth pixel of the three low-light photos. Here, k is indexed from 0 up to MN − 1.
The question requires fitting a model for a regular photo pixel pk in terms of the

corresponding low-light pixels by minimizing

S =
1

MN

MN−1

∑
k=0

∥FBpB
k + FCpC

k + FDpD
k + pconst − pA

k ∥2
2. (43)

†This will be explained in detail in Unit 3.

11

https://en.wikipedia.org/wiki/Circulant_matrix

10−14

10−12

10−10

10−8

10−6

10−4

10−2

1

10 100 1000 10000

R
el

at
iv

e
er

ro
r

E r
el

Number of control points n

Numerical results
Linear fit

Figure 5: Relative error Erel in the approximation of π using cubic splines as a function of the
number of control points.

where FB, FC, and FD are 3 × 3 matrices and pconst is a vector. Note that this is equivalent
to minimizing three separate quantities in each of the channels,

S = SR + SG + SB. (44)

Here

SR =
1

MN

MN−1

∑
k=0

(
FBRpB

k + FCRpC
k + FDRpD

k + Rconst − RA
k

)2
. (45)

where FBR, FCR, and FDR are the rows of the F matrices corresponding to the red channel.
Analogous expressions exist for the green and blue channels. Equation 45 is now a standard
linear least squares problem for the ten parameters making up FBR, FCR, FDR, and Rconst.
The program pho recons.py solves this least squares problem, along with the analogus
problems for the green and blue channels. It then uses the fitted parameters to make a
reconstruction of the original photo using the three low light images.

Figure 6 shows a comparison between the original photo, and the one that is recon-
structed using the low light images. Assume that the pixel values cover the range from 0 to
1. To properly visualize the reconstructed image, the pixel colors are truncated according

12

to (R, G, B) → (T(R), T(G), T(B)) where T is defined by

T(x) =


0 if x < 0,
x if 0 ≤ x < 1,
1 if x ≥ 1.

(46)

Overall, the general match of colors in the scene is very good. There are some discrepan-
cies due to differences in lighting. To visualize the differences in more detail, the pixel
differences ∆pk = pA∗

k − pA
k are computed. These values have both negative and positive

components, and to visualize them, the negative parts and positive parts are plotted
separately in Fig. 7. The square error per pixel is

S =


0.00405 for (M, N) = (400, 300),
0.00449 for (M, N) = (800, 600),
0.00485 for (M, N) = (1600, 1200).

(47)

Overall, these square errors are very small.

Part (b)

The program pho recons.py also uses the fitted model from part (a) to perform a recon-
struction of a regular image of the still-life bear scene room using three low-light photos.
Figure 8 shows a comparison between the original image and the reconstructed one. Again,
the colors across the scene look realistic, which is remarkable given that it is based on a
previously fitted model, and three images with very different lighting characteristics. The
square error per pixel between the original image and the reconstruction is

T =


0.00540 for (M, N) = (400, 300),
0.00517 for (M, N) = (800, 600),
0.00532 for (M, N) = (1600, 1200).

(48)

As expected, the square errors are larger than those from part (a), because the previous
model is used, instead of finding the least squares fit for this new set of images. Given
small variations in lighting and color, it is not surprising that the previous model is slightly
more inaccurate when applied to this set of images. Nevertheless, the square error is still
very small.

13

Figure 6: Comparison between the regular photo of the still-life scene (top), and the reconstructed
image based on the best fit of the three low-light photos (bottom).

14

Figure 7: Differences between the reconstructed image and the regular image, given with pixel
values ∆pk = pA∗

k − pA
k . Positive and negative color channel components are shown in the top and

bottom images, respectively. Channels are scaled up by a factor of 10 to enhance the differences.

15

Figure 8: Comparison between the regular photo of two bears (top), and the reconstructed image
based on three low-light photos and the previously fitted model (bottom).

16

Problem 6 – Determining hidden chemical sources

Part (a)

The time derivative of ρc is

∂ρc

∂t
=

1
4πb

(
−1
t2 +

−(x2 + y2)

4bt

(
−1
t2

))
exp

(
−x2 + y2

4bt

)
=

x2 + y2 − 4bt
16πb2t3 exp

(
−x2 + y2

4bt

)
. (49)

The x derivative of ρc is
∂ρc

∂x
=

−2x
16πb2t2 exp

(
−x2 + y2

4bt

)
(50)

and the second x derivative is

∂2ρc

∂x2 =
x2 − 2bt
16πb3t3 exp

(
−x2 + y2

4bt

)
. (51)

By symmetry the second y derivative is

∂2ρc

∂y2 =
y2 − 2bt
16πb3t3 exp

(
−x2 + y2

4bt

)
(52)

and hence

∇2ρc =
x2 + y2 − 4bt

16πb3t3 exp
(
−x2 + y2

4bt

)
. (53)

Comparing Eqs. 49 and 53 shows that ∂tρc = b∇2ρc as required.

Part (b)

We now consider the case when b = 1 and 49 point sources of chemicals are introduced
at t = 0 with different strengths, on a 7 × 7 regular lattice covering the coordinates
x = −3,−2, . . . , 3 and y = −3,−2, . . . , 3. The concentration satisfies

ρ(x, t) =
48

∑
k=0

λkρc(x − vk, t), (54)

Lattice site (0, 0) (1, 1) (2, 2) (3, 3)
St. Dev. of λk 21615 13609 2800 115

Table 2: Standard deviations in the λk when the measured concentrations are perturbed by a small
normally distributed shift with mean 0 and variance 10−8. The values are computed based on
N = 106 random samples.

17

where vk is the kth lattice site and λk is the strength of the chemical introduced at that site.
Two hundred measurements, ρM(xi, t), at locations xi and at t = 4 are provided.

Estimating the concentrations can be viewed as a linear least squares problem, finding the
λk such that

S =
199

∑
i=0

∣∣∣∣∣ρM(xi, t)−
48

∑
k=0

λkρc(xi − vk, t)

∣∣∣∣∣ . (55)

Even though Eq. 55 is quite complicated and involves the the expression for ρc, the
parameters λk still enter linearly, and hence it can be solved using the linear least squares
approach. The program solve cons.py computes the λk and prints them. They are all
positive, with a maximum value of approximately 252.

Part (c)

The program stdev cons.py performs a sample of N computations of the λk when each
of the ρM are perturbed by a small normally distributed shift with mean 0 and variance
10−8. For each λk, the standard deviation is computed. Due to the sensitivity of the fitting
procedure, these small differences in the measurements cause large alterations in the λk.
Table 2 shows the standard deviations for the λk for four lattice sites, which show much
larger variations than the actual λk values that were measured in part (b). The largest
errors are at the central (0, 0) lattice site, which is reasonable since it is furthest away from
any of the measurements in the file, thus making it most difficult to estimate.

18

