
AM205: Assignment 0 solutions

For this assignment, solution codes in Python, MATLAB, and C++ are provided. The
Python and C++ codes1 each have identical filenames, although with .py and .cc suffixes,
respectively. The C++ codes output the results to files that can be read by the freeware
plotting program Gnuplot. The Python programs make use of Matplotlib. The MATLAB
programs2 are ordered by question number, and make use of MATLAB’s built-in graphics.

1. The program cheby 2d calculates the Chebyshev polynomials Tk(x) for k = 0, 1, . . . , 5.
Figure 1 shows a two-dimensional plot of the function T3(x)T5(y) in the region
(x, y) ∈ [−1, 1]2.

2. The program heron implements Heron’s formula for calculating the square root of
five. The first few iterations are

k xk
0 5
1 3
2 2.33333333333333
3 2.23809523809524
4 2.23606889564336
5 2.23606797749998

where the digits shown in purple match the exact decimal expansion for
√

5. As is
typical for Newton–Raphson iterations, the number of correct digits approximately
doubles for each iteration. Using the program, one can determine that four iterations
are needed to reduce the absolute error to less than 10−3 and five iterations are
needed to reduce the absolute error to less than 10−9.

3. (a) The program finite diff calculates the finite-difference approximation of
f (x) = tan x using the formula

fdiff,2(x; h) =
f (x + h)− f (x− h)

2h
. (1)

Figure 2 shows the relative error y of fdiff,2(x; h) as a function of h. The plot
is U-shaped, with discretization error dominating for h > 10−8 and rounding
error dominating for h < 10−8. Fitting the data over the range [10−6, 0.1] to

log y = α log(h) + β (2)

gives α = 2.02 and β = 1.15, and hence

y ≈ 3.17h2.02. (3)

1Written by Chris H. Rycroft.
2Written by Kevin Chen (Teaching Fellow, Fall 2014).

www.gnuplot.info
www.matplotlib.org
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Figure 1: Plot of the product of Chebyshev polynomials T3(x)T5(y) considered in question 1.

The relative error therefore scales quadratically with the grid spacing and hence
the finite-difference formula in Eq. 1 is second-order accurate.

(b) The program finite diff also calculates the finite-difference approximation of
f (x) = tan x using the formula

fdiff(x; h) =
−11 f (x) + 18 f (x + h)− 9 f (x + 2h) + 2 f (x + 3h)

6h
(4)

and the relative errors are plotted on Fig. 2. A similar U-shape is seen, and
fitting Eq. 2 in the regime [10−4, 0.1] where discretization error dominates gives
α = 3.15 and β = 4.50. Hence

y ≈ 89.63h3 (5)

and the finite-difference formula is third-order accurate.

4. (a) The inscribed triangle has vertices at (x, y) positions

x0 = (1, 0), x1 = (−1
2 ,
√

3
2 ), x2 = (−1

2 ,−
√

3
2 ).
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Figure 2: Plot of the relative errors of the two finite-difference approximations considered in
question 2.

The triangle’s area can be calculated using the three-dimensional vector product,

a0 =
|(x1 − x0)× (x2 − x0)|

2
=
|(−3

2 ,
√

3
2 , 0)× (−3

2 ,−
√

3
2 , 0)|

2

=
|(0, 0, 3

√
3

2 )|
2

=
3
√

3
4

. (6)

By symmetry, the superscribed triangle’s vertices must be an overall scaling of
the inscribed triangle’s vertices. The correct scaling factor is 2, giving vertices at

x3 = (2, 0), x4 = (−1,
√

3), x5 = (−1,−
√

3),

since the edge from x4 to x5 will exactly touch the circle at (−1, 0). The area is
given by

b0 =
|(x4 − x3)× (x5 − x3)|

2
=
|(−3,

√
3, 0)× (−3,−

√
3, 0)|

2

=
|(0, 0, 6

√
3)|

2
= 3
√

3. (7)

(b) Consider a regular inscribed polygon with k = 3× 2n sides. Then it can be
broken down into 2k right-angled triangles each with area 1

2 cos π
k sin π

k and



hence
an = k cos π

k sin π
k . (8)

The corresponding superscribed polygon can be broken down into 2k right-
angled triangles each with area 1

2 tan π
k , and hence

bn = k tan π
k . (9)

As a check, note that

a0 = 3 cos
π

3
sin

π

3
=

3
√

3
4

, (10)

and
b0 = 3 tan π

3 = 3
√

3 (11)

which agree with Eqs. 6 and 7 from part (a). Then

2
bn+1

=
1

k tan π
2k

=

(
1 + cos π

k
)

k sin π
k

=
1

k sin π
k
+

cos π
k

k sin π
k

=
1

2k sin π
2k cos π

2k
+

1
bn

=
1

an+1
+

1
bn

, (12)

where the half-angle trigonometric identity tan θ
2 = (1 + cos θ)/ sin θ and the

double angle identity sin 2θ = 2 sin θ cos θ are used. In a similar manner,

a2
n+1 = 4k2 cos2 π

2k sin2 π
2k = k2 sin2 π

k = k2 tan π
k sin π

k cos π
k = anbn. (13)

The program archimedes calculates the values of an and bn up to n = 40.

(c) Figure 3 shows a semi-log plot of the absolute errors Ea
n = |an − π| and Ec

n =
|cn − π| as a function of n. Fitting the data to

log Ea
n = αan + βa, log Ec

n = αcn + βc (14)

over the range n = 1, 2, . . . , 24 gives αa = −1.386, βa = 0.822, αc = −1.385,
βc = −0.596 and hence

Ea
n ≈ 2.275× 0.250n, Ec ≈ 0.551× 0.250n. (15)

While Ec is consistently more accurate, the rates of convergence of Ec and Ea are
approximately equal.
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Figure 3: Plot of the absolute errors of the sequences an and cn that converge to π. Note that there
are small breaks in the plots around n = 25 due to the absolute errors being identically zero.


