
AM205: Assignment 5 (due 5 PM, December 2nd)

1. Rosenbrock function. A well-known benchmark problem for optimization algorithms is
minimization of Rosenbrock’s function

f (x, y) = 100(y− x2)2 + (1− x)2, (1)

which has a global minimum of 0 at (x, y) = (1, 1). We shall apply three different optimization
algorithms for this function; in each case you should terminate the optimization algorithm
when the absolute step size falls below 10−8.

(a) Minimize Rosenbrock’s function using steepest descent. You should try the three starting
points [−1, 1]T, [0, 1]T, and [2, 1]T, and report the number of iterations required for
each starting point. Make a plot for each starting point that shows the contours of
Rosenbrock’s function, as well as the optimization path that is followed.
You may use a library function for the line search in steepest descent if you wish. Also,
note that steepest descent may require a large number of iterations, so you should
terminate the scheme when either the step size tolerance (indicated above) is satisfied,
or once 2000 iterations have been performed.

(b) Repeat part (a), but with Newton’s method (without line search) instead of steepest
descent.

(c) Repeat part (a), but with BFGS instead of steepest descent. In your implementation of
BFGS, set B0 to the identity matrix.

2. Shape determination. Consider an inextensible jump rope of length R that is initially in a
vertical xy plane, and hung between the points (0, 0) and (L, 0). Let the shape of the rope be
described by

y(x) =
20

∑
k=1

bk sin
πkx

L
. (2)

The jump rope is rotated around the x axis with angular velocity ω. If ρ is the mass per unit
unstretched length, its kinetic energy is

T =
∫ L

0
ρy2ω2

√
1 +

(
dy
dx

)2
dx. (3)

The length of the rope is given by

I =
∫ L

0

√
1 +

(
dy
dx

)2
dx. (4)

Since the rope is inextensible, the equilibrium shape of the rope will maximize T subject to
the constraint that I = R.

Consider finding the equilibrium position using Lagrange multipliers. Let the vector of
parameters be b = (b1, b2, . . . , b19, b20), and let the Lagrangian be L(b, λ) = T + λ(I − R),
where the integrals in Eqs. 3 and 4 are evaluated using a sufficiently accurate quadrature
rule1 of your choice.

1For example, you could use a composite trapezoid rule with 251 equally-spaced control points.
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(a) Determine integral expressions for the components of ∇bL and for ∂L/∂λ.

(b) Using your answers from part (a), write a program to find stationary points of L. You
may use a library function from Python, Matlab, or other software, although you will
need to write the Lagrangian function and its gradient. Use the parameters R = 3
ω = L = ρ = 1, and use an initial guess of b1 = 1.3 with all other components being
zero. On the same graph, plot the initial guess for y(x) and the optimized solution for
y(x).

(c) Run your optimization algorithm starting from b2 = 0.7 and all other components of b
being zero. On the same graph, plot the initial guess for y(x) and the optimized solution
for y(x).

(d) Optional. Find two friends and a rope. Ask the two friends to each hold one end of the
rope, and spin it between them. From a position perpendicular to the spinning axis, take
a photo of the rope, trying to catch it at the moment when it is in a vertical plane. By
choosing parameters appropriately, superpose one of your calculated curves from on
top of the photo, and check the level of agreement. In addition, see if the two friends can
recreate the curve from (c).

(e) Optional. For your solutions from part (b) and (c), compute the eigenvalue spectrum of
the Hessian of L when it is restricted to the feasible set.

3. Quantum eigenmodes. Consider the one-dimensional time-independent Schrödinger equa-
tion, which governs the behavior of a quantum particle in a potential well. In non-dimension-
alized units where h̄2

2m = 1, the equation is

− ∂2Ψ
∂x2 + v(x)Ψ(x) = EΨ(x), (5)

where v : R → R is a real-valued potential function, Ψ : R → R is the wavefunction, and
E ∈ R is an eigenvalue which corresponds to the energy of the system. In general, the wave
function is complex-valued, but for the time-independent case it is always possible to write it
as a real-valued function.

The Schrödinger equation is posed on the infinite domain (−∞, ∞), and the wavefunction
must satisfy Ψ(x) → 0 as x → ±∞ so that the norm of Ψ is bounded. In this question, we
shall consider the finite interval [−12, 12], which is large enough to impose zero Dirichlet
boundary conditions at the boundaries, Ψ(±12) = 0, without compromising the accuracy of
the results.

As an example of a solution of Eq. 5, in Figure 1 we show the first five eigenvalues and
eigenmodes on x ∈ [−12, 12] for the Schrödinger solution in the case that v(x) = x2/10.

(a) Compute the five lowest eigenvalues and corresponding eigenmodes for the potentials

i. v1(x) = |x|,
ii. v2(x) = 12

( x
10

)4 − x2

18 +
x
8 + 13

10 ,
iii. v3(x) = 7|||x| − 1| − 1|.

You should use a second-order accurate finite-difference apporoximation of Schrödinger
equation with n = 1921 grid points on the interval [−12, 12], and then employ an
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E5 2.8460499
E4 2.2135944
E3 1.5811388
E2 0.9486833
E1 0.3162278

Figure 1: The five lowest eigenvalues, and the corresponding eigenmodes, for v(x) = x2/10. To
show the eigenmodes in a visually appealing way here we have plotted yi(x) = 3Ψi(x) + Ei for
i = 1, . . . , 5. Here, the energies listed are based on an analytical calculation by substituting in
solutions of the form Ψ(x) = p(x)e−λx2

into Eq. 5 where p is a polynomial.

eigensolve such as the Python/MATLAB eig/eigs routines. Impose zero boundary
conditions at x = ±12 as described above. Present your results using a figure and a
table in the same way as in Figure 1.

(b) Quantum mechanics tells us that if a particle has a wavefunction Ψ(x), then the proba-
bility of finding it in a region [a, b] is given by∫ b

a |Ψ(x)|2dx∫ ∞
−∞ |Ψ(x)|2dx

. (6)

For [a, b] ⊂ [−12, 12] this can be approximated on the finite grid as∫ b
a |Ψ(x)|2dx∫ 12
−12 |Ψ(x)|2dx

. (7)

For each of the first five eigenmodes for the potential v2, use the composite Simpson
rule and Eq. 7 to compute the probability that the particle is in the region x ∈ [0, 6] (i.e.
specify five different probabilities, one corresponding to each eigenmode). When you
use the composite Simpson rule here, you should use all grid points from (a) that are
inside the interval of interest as quadrature points.

(c) Optional. Modify your program from part (a) to use fourth-order accurate finite differ-
ences, using the stencils described on the web, with suitable modifications at the end
points.

4. Pollution scenarios near two factories. (Optional.) Suppose that there is a school near two
industrial factories. In order to develop evacuation procedures for the school, we aim to
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simulate what happens to pollution that is emitted by the factories. Suppose that plumes of
pollution are released simultaneously by the two factories. The concentration of the pollution
as a function of position and time, u(x, t), is then governed by the convection–diffusion
partial differential equation

∂u(x, t)
∂t

+ [W cos(θ), W sin(θ)] · ∇u(x, t)− 0.05∆u(x, t) = 0, (8)

where θ and W are the direction and strength of the wind, respectively. We will model the
pollution inside the domain Ω = [0, 1]2, for the time interval t ∈ [0, t f ] where t f = 0.25. The
plumes of pollution at t = 0 are described by the initial condition,

u(x, 0) = 2 exp
(
−150[(x1 − 0.25)2 + (x2 − 0.25)2]

)
+ exp

(
−200[(x1 − 0.65)2 + (x2 − 0.4)2]

)
, (9)

and the pollution is subject to zero Dirichlet boundary conditions,

u(x, t) = 0, x ∈ ∂Ω, (10)

for all t ∈ [0, t f ].

(a) Write a program to solve the convection–diffusion equation using a finite difference
method, with a backward Euler discretization in time, and second-order accurate central
differences for the spatial derivatives. Throughout this question, use a uniform grid
with 81 points in each spatial direction in Ω, and use a time-step ∆t = 0.005.
For the case when W = 1 and θ = π/2, make contour plots of the pollution concentration
profiles at t = 0, t = 0.125 and t = 0.25.

(b) Suppose that the school is at the position xK = (0.5, 0.5). Let k(t; W, θ) ≡ u(xK, t; W, θ) be
the pollution level at the school as a function in time, and let K(W, θ) ≡

∫ t f
0 k(t; W, θ)dt

be the total pollution that arrives at the school. From your solution in (a), plot your
approximation to k(t; 1, π/2) for t ∈ [0, t f ], and use a composite trapezoid rule to
determine K(1, π/2).

(c) Determine which wind parameters, W and θ, are maximize K(W, θ) and are hence the
most dangerous for the school.
Suppose that W ∈ [0, 3] and θ ∈ [0, π]. Use your finite difference approximation along
with an optimization routine, using an initial guess of (W0, θ0) = (1, π/2), to find the
most dangerous wind parameters, W∗ and θ∗. What are W∗ and θ∗, and what is the
corresponding value for K(W∗, θ∗)? Plot k(t; W∗, θ∗) as a function of time.

(d) Now suppose that the wind speed is fixed to W = 0.5, but that the wind direction varies.
Suppose that

θ(t) =
N

∑
j=0

λjTj

(
2t
t f
− 1
)

(11)

where Tj is the jth Chebyshev polynomial, and λ = (λ0, λ1, . . . , λN) is a vector of
parameters. To begin, use N = 4. Use a starting guess of λ0 = π/2 setting all other λk
equal to zero. Report your value for the total pollution level, K(λ∗), and plot k(t; λ∗) as
a function of time.

(e) Repeat part (d) and try increasing the value of N to examine how the optimal θ(t)
changes.
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