
AM205: Assignment 3 (due 5 PM, October 28)

For this assignment, first complete problems 1, 2, 3, and 4, and then complete either problem 5 (on theory)
or problem 6 (on an application). If you submit answers for both, then your grade will be calculated using the
maximum score from the two.

1. Convergence rates of two integrals. Consider the function

f (x) =
1

5
4 − cos x

. (1)

(a) It can be shown that

IA =
∫ π/3

0
f (x)dx =

8π

9
. (2)

Write a program to numerically evaluate IA using the composite trapezoid rule with
n intervals of equal size h, for n = 1, 2, . . . , 50, and make a log–log plot of the absolute
error as a function h. On the same axes, overlay the composite trapezoid error bound
from the lectures, E(h) = h2π

36 ∥ f ′′∥∞, and show that your numerically computed results
are smaller than the bound.

(b) It can be shown that

IB =
∫ 2π

0
f (x)dx =

8π

3
. (3)

Write a program to numerically evaluate IB using the composite trapezoid rule with n
equally sized intervals, for n = 1, 2, . . . , 50. Make a log–log plot of the absolute error as a
function h. Does the absolute error scale like hm for some m?

(c) Optional. Use residue calculus to prove the integral in Eq. 3.

2. (a) Adaptive integration. Given that the cubic Legendre polynomial is P3(x) = 1
2 x(5x2 − 3),

derive the 3-point Gauss quadrature rule on the interval [−1, 1] by evaluating the relevant
integrals by hand. Demonstrate that this quadrature rule integrates all polynomials up
to the expected degree exactly.

(b) In the lectures we discussed a method of evaluating integrals
∫ b

a f (x)dx by adaptively
refining the calculation in regions where the function varies rapidly. To begin, a tolerance
level T is introduced, and the calculation starts using a single integration interval [a, b].
Let Ia,b be the integral of f over this interval using the three-point quadrature rule from
part (a). In addition, define c = a+b

2 and calculate Îa,b = Ia,c + Ic,b as a more refined
estimate of the integral. Then Ea,b = |Ia,b − Îa,b| is an estimate of the error of Ia,b. If
Ea,b < Tl, where l is the length of the interval, then the error is acceptable, and the
method can terminate. Otherwise this interval must be subdivided into [a, c] and [c, b],
and the above procedure must be applied to these two intervals. The procedure must be
applied recursively until the errors become smaller than the tolerance.
Write a function to implement this adaptive integration scheme. Using T = 10−6, apply
it to the integrals ∫ 9/4

−1
(xm − x2 + 1)dx (4)
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for m = 4, 5, 6, 7, 8. For each case, report the value of the integral, the total estimated
error (by summing the relevant Eα,β terms), and the total number of intervals that are
used.

(c) Use your adaptive integration routine from part (a) and T = 10−6 to evaluate the three
integrals ∫ 1

−1
|x|dx,

∫ 2

−1
|x|dx,

∫ 1

0
x4/5 sin

1
x

dx.

For each case, report the value of the integral, the total estimated error (by summing the
relevant Eα,β terms), and the total number of intervals that are used.

3. Integration of a family of functions. For a given parameter ϕ ∈ (0, 1), define a sequence
of functions recursively on the interval x ∈ [− 1

2 , 1
2 ] by putting f0(x; ϕ) = |x| and fk(x; ϕ) =

| fk−1(x; ϕ)− ϕk|. Let g be the limiting function, given by

g(x; ϕ) = lim
k→∞

fk(x; ϕ). (5)

For a given ϕ, the function g can be numerically approximated by fn, where n is taken to be
the smallest value such that ϕn < 10−16.

(a) Plot g(x; 1
3 ) on the interval [− 1

2 , 1
2 ].

(b) Using your adaptive integration routine from question 2 and a tolerance of T = 10−6,
make a plot of

I(ϕ) =
∫ 1/2

−1/2
g(x; ϕ)dx (6)

for ϕ ∈ (0, 1). To do this, you should calculate I(ϕ) at 99 points ϕ = 0.01, 0.02, . . . , 0.99.
In addition, make a plot of the number of integration intervals used as a function of ϕ.
Approximately what range of values of ϕ require the most intervals?

4. Error analysis of a numerical integration rule. Applying the midpoint quadrature rule (i.e.
n = 0 Newton–Cotes with the quadrature point at the midpoint) on the interval [tk, tk+1] to
y(tk+1) = y(tk) +

∫ tk+1
tk

f (t, y(t))dt leads to the implicit midpoint method,

yk+1 = yk + h f (tk+1/2, (yk + yk+1)/2), (7)

where tk+1/2 = tk +
h
2 .

(a) Use Taylor series expansions to show that the order of accuracy of this method is 2.

(b) What is the stability region of the method for the equation y′ = λy? In other words, for
what values of h̄ = hλ ∈ C is the method stable?

5. (a) A multi-step method. Consider solving the differential equation y′ = f (t, y) at time-
points tk with corresponding numerical solutions yk. The multi-step Nyström numerical
method is based upon the integral relation

y(tk+1) = y(tk−1) +
∫ tk+1

tk−1

f (t, y)dt. (8)
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Derive an implicit multi-step numerical method by approximating the integrand f (t, y)
with the polynomial interpolant using the function values at tk−2, tk−1, tk, and tk+1. Your
method should have the form

yk+1 = yk−1 + h(α fk−2 + β fk−1 + γ fk + η fk+1) (9)

where α, β, γ, and η are constants to be determined, h is the timestep interval size, and
fl = f (tl , yl) for an arbitrary l.

(b) Find the exact solution to the second-order differential equation

y′′(t) + 2y′(t) + 17y(t) = 0. (10)

subject to the initial conditions y(0) = 1, y′(0) = 0.

(c) Write Eq. 10 as a coupled system of two first-order differential equations for y = (y, v) =
(y, y′). Solve the system over the interval 0 ≤ t ≤ 3 with a timestep of h = 0.02 using
your multi-step method from part (a).1

Before Eq. 9 can be applied, y1 and y2 must be calculated accurately. Use one of the
following two approaches:

i. set them based on the exact solution from part (b),
ii. calculate them using the classical fourth-order Runge–Kutta method.

Plot the exact and numerical solutions over the range 0 ≤ t ≤ 3.
Make a log–log plot of the absolute error between the numerical and exact values of y
at t = 3 as a function of h, over the range from h = 10−3 to h = 10−1. Show that your
method is fourth-order accurate.

(d) Suppose that instead of setting y1 and y2 accurately, you instead make use of forward
Euler steps. Create a log–log plot of the absolute error of y at t = 3 as a function of h.
Determine the order of accuracy, and discuss why this is the case.

6. Asteroid collision. An asteroid is detected near the Earth and the Moon in the plane of their
orbits. Use your ODE-solving skills to determine if there is danger of collision.

This problem can be treated as a circular restricted three-body problem, which considers the
motion of an object of negligible mass in the presence of two massive gravitating bodies that
circularly orbit each other. The motion of the object is assumed to be restricted to the 2D
plane of the circular orbit of the two massive bodies.

The Earth and Moon have circular orbits about each other. If we work in a co-rotating frame,
we can consider the Earth and Moon to be at fixed locations and then we only need to
determine the trajectory of the asteroid. In dimensionless units, fix the Earth at position
(x, y) = (0, 0) and the Moon at position (x, y) = (1, 0). The Earth has radius REarth = 0.02
and the Moon has radius RMoon = 0.005.

The asteroid (which has negligible mass) will move according to the gravitational forces it
feels from the Earth and the Moon. The motion of the asteroid is described by its position

1Even though Eq. 9 is an implicit method and would be hard to solve in general, the linearity of the system in Eq. 10
means that for this case, the update equation for yk+1 can be derived analytically.
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x(t) = (x(t), y(t)), and velocity v(t) = (u(t), v(t)) as functions of time. Throughout the
asteroid’s movement, the Jacobi integral, J, is a constant of motion, and is given by

J(x, y, u, v) = (x − µ)2 + y2 +
2(1 − µ)√

x2 + y2
+

2µ√
(x − 1)2 + y2

− u2 − v2 (11)

where µ = 0.01 is the ratio of the Moon’s mass to the total mass of the Earth and Moon. The
asteroid’s equations of motion are given by the system of ODEs,

x′ = −1
2

∂J
∂u

, y′ = −1
2

∂J
∂v

,

u′ = v +
1
2

∂J
∂x

, v′ = −u +
1
2

∂J
∂y

. (12)

(a) Write the system of ODEs to be solved in terms of x, y, u, and v.

(b) In the subsequent analysis, we will need to determine if the computed asteroid trajectory
intersects the Earth or Moon. To aid with this, write a program that determines whether
a line segment from x0 = (x0, y0) to x1 = (x1, y1) intersects a circle of radius R centered
at (0, 0).

(c) Two observations of the asteroid’s position have been made:

xobs(0) = (1.0798, 0), xobs(0.02) = (1.0802,−0.0189). (13)

However, there is some uncertainty in these observations. The true position x(t) is
given by x(t) = xobs(t) + (Ex, Ey) where for each separate observation, Ex and Ey are
independent normal random variables with mean zero and standard deviation 0.002.
Assuming that the asteroid trajectory is linear between t = 0 and t = 0.02, calculate v(0)
in terms of x(0) and x(0.02).
Using your favorite ODE solver,2 integrate the system from part (a) over the range
0 ≤ t ≤ 10, for ten initial conditions for x(0) and v(0), sampled according to the
procedure described above. Make a figure showing the Earth and Moon as circles
with the given radii, and the ten computed trajectories overlaid. Use axis ranges of
−1.4 ≤ x ≤ 2 and −1.2 ≤ y ≤ 1.2.

(d) Now simulate 2,500 or more trajectories over the range 0 ≤ t ≤ 10 using initial conditions
from part (c). For each trajectory, determine whether

i. it first collides with the Moon,
ii. it first collides with the Earth,

iii. it collides with neither.

To determine collisions for a given trajectory, take the numerically computed asteroid
positions x0, x1, . . ., and use your program from part (b) to find whether each line
segment from xk to xk+1 intersects with either the Moon or Earth.
Based on the trajectories, calculate the probability that asteroid will collide with the
Moon, and the probability that the asteroid will collide with the Earth. Plot one or more
trajectories that collide with the Earth, and one or more that collide with the Moon.

2In Python, a good choice would be the odeint routine. In MATLAB, the ode45 routine could be used, using the
additional command odeset(’RelTol’,1e-10,’AbsTol’,1e-10) to improve accuracy.
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(e) Optional. If this ODE system were solved exactly, the Jacobi integral would be exactly
constant as a function of time, since it is a conserved quantity of the system. We can
therefore use the value of the Jacobi integral to check the robustness of our numerical
approximation. For the initial conditions x(0) = (1.08, 0) and v(0) = (0,−0.49), plot the
relative error in the Jacobi integral, |J(t)− J(0)|/J(0), for t ∈ [0, 10] and explain what
you observe.

(f) Optional. Find trajectories over the interval 0 ≤ t ≤ 200 that neither undergo a collision,
nor escape the Earth–Moon system. You should find several different types of trajectory.
Estimate the probability of each type occurring.

(g) Optional. In part (c), we assumed that the trajectory was linear from t = 0 to t = 0.02,
but it will actually follow a curved path due to the gravitational interaction. Improve
your analysis in part (d) to handle this, and determine the alteration in the collision
probabilities.
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