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Motivation
Singular Value Decomposition (SVD) has been applied in a wide
range of fields:

� Computer vision: image compression and denoising

� Computer vision: steganography
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Motivation

� Scientific computing: 3D reconstruction

(a) Topography data (b) 3D reconstruction

image credits: http://www.columbia.edu/



Motivation

� Machine learning: feature extraction

image credits: https://mathematicaforprediction.wordpress.com/



Singular Value Decomposition

The SVD of a matrix A ∈ Rm×n is a factorization A = ÛΣ̂V T

where

I Σ̂ ∈ Rn×n is a diagonal matrix of singular values sorted in
descending order, σ1 ≥ σ2 ≥ ...σn

I Û ∈ Rm×n has orthonormal columns - left singular vectors

I V ∈ Rn×n has orthonormal columns - right singular vectors



Singular Value Decomposition

In applications, we will often think of A as a tall, thin matrix,
representing relatively few n samples in a high m-dimensional
space, though the SVD is defined for any matrix. For m > n, the
columns of Û can be padded with m − n arbitrary orthonormal
vectors to obtain a full m ×m matrix U, and Σ̂ padded with rows
of zeros to null the contribution of these columns.



Singular Value Decomposition
Reduced SVD of A:

Full SVD of A:



Singular Value Decomposition

In Python:

1 import numpy as np

2 A = np.random.rand(20, 5)

3 U, s, Vt = np.linalg.svd(A) # full SVD

4 U, s, Vt = np.linalg.svd(A, full_matrices=False) # reduced SVD

In MATLAB:

1 A = randn(20,5);

2 [U,S,V] = svd(A); % full SVD

3 [U,S,V] = svd(A,’econ’); % reduced SVD



SVD viewed under different lenses



Low-Rank Approximation

The SVD provides a natural hierarchy of approximations we can
make to A, expressed as a sum of rank-one matrices. If

A =
n∑

j=1

σjujv
T
j ,

where each ujv
T
j is a rank-one matrix whose columns are all scalar

multiples of each other, then a rank-r approximation Ar of A is

Ar =
r∑

j=1

σjujv
T
j .



Low-Rank Approximation
Reduced SVD of A:

Rank-r approximation of A:



Low-Rank Approximation

Note that by the orthogonality of the columns of u,

uTk A = uTk

(
n∑

j=1

σjujv
T
j

)
= σkv

T
k ,

so for a particular data point ai that is the i th column of A,

uTk ai = σkv
T
ki → (uTk ai )uk = σkukv

T
ki

is the projection of ai onto the kth left singular vector uk . So
another way to think about the low-rank approximation is that it is
a sum of projections onto a limited number of left singular vectors.



Image Compression

The low-rank approximation gives us a useful algorithm for
compressing data and images.



Image Compression

We factor the centered A = S − S̄ , where S̄ = 1
n

∑n
j=1 Sj .

Then, Sr = S̄ +
∑r

j=1 σjujv
T
j .



Image Compression

The following are two possible metrics we can use to quantify the
fraction of our image reconstructed by a rank-r approximation, as
well as the fraction of storage space required.

I Explained variance ratio:

p(r) =
Σr
j=1σ

2
j

Σn
j=1σ

2
j

I Compression ratio:

c(r) =
r(

σ,u,vT︷ ︸︸ ︷
1 + 3m + n) +

S̄︷︸︸︷
3m

3mn︸︷︷︸
S



Image Denoising

Retaining a low-rank approximation of an image can also be a
technique for denoising.

Consider the set of N = 22 stamps below, which all have similar
features, but are obscured by different black mail markings.



Image Denoising

In this example, we consider each m × n × p color image as a
single sample of length mnp, where p = 3, and assemble a matrix
S ∈ R3mn×N .



Image Denoising

The singular vectors can be used to construct a lower-dimensional
space that captures the most significant features of the data. This
forms the basis of PCA and can be used to uncover features such
as clustering in an unsupervised way.



Principal Component Analysis

The left singular vectors u1, u2, ..., un form a rotated, orthonormal
basis for the m-dimensional space occupied by the columns of A,
a1, a2, ..., an (data points).

This new basis is oriented such that u1 points in the direction
along which the data has the largest variance, u2 points along the
direction of next-largest variance orthogonal to u1, and so on.
How?

Consider the covariance matrix C = 1
nAA

T ∈ Rm×m, where

I the diagonals cii = 1
n

∑n
j=1 a

2
ij give the variance of the data

along the i th axis

I the off-diagonals cik = 1
n

∑n
j=1 aijajk give the covariance along

the i th and kth axes.



Principal Component Analysis

If A = ÛΣ̂V T , then

C =
1

n

(
ÛΣ̂V T

)(
ÛΣ̂V T

)T
=

1

n
ÛΣ̂
(
V TV

)
Σ̂T ÛT

=
1

n
ÛΣ̂Σ̂T ÛT = Û

(
Σ̂2

n

)
ÛT

Since Cuj = 1
nσ

2
j uj for any uj , the columns of Û are the

eigenvectors and the diagonals of Σ2/n the eigenvalues of the
covariance matrix.

The eigenvalues once again represent the variance of the data, now
along the rotated axes u1, ...un. These axes are called principal
components in PCA, but they are the same as left singular vectors!



Steganography

Steganography is the art of concealing hidden messages within
non-secret data. The first exercise will feature decoding a hidden
message encoded in the singular values of an image.

Key idea: Since the information contained in later singular vectors,
which have correspondingly smaller singular values, is less
important, this part of the decomposition can be manipulated to
encode hidden messages in plain sight!



3D Reconstruction

SVD can also be used to perform 3D reconstruction from a
sequence of 2D projections1.

Here we will consider a rotating object characterized by N control
points on its surface.

1Reference: Muller, N. et al. (2004). Singular value decomposition,
eigenfaces, and 3D reconstructions. SIAM review, 46(3), 518-545.



3D Reconstruction

The object’s state in 3D can be expressed as an object matrix:

O ∈ R3×N =

x (1) x (2) · · · x (N)

y (1) y (2) · · · y (N)

z(1) z(2) · · · z(N)


Its tracked motion is captured by the product of a time-varying
rotation Rt and the orthographic projection Pz in the motion
matrix:

Mt ∈ R2×3 = PzRt =

[
1 0 0
0 1 0

]
Rt

The coordinates of the control points in the 2D projected space are
thereby captured by the measurement matrix:

At ∈ R2×N = MtO =

[
q

(1)
t q

(2)
t · · · q

(N)
t

p
(1)
t p

(2)
t · · · p

(N)
t

]



3D Reconstruction

Measurements across T rotations can be stacked to form a
combined measurement matrix:

A ∈ R2T×N = MO =



q
(1)
0 q

(2)
0 · · · q

(N)
0

p
(1)
0 p

(2)
0 · · · p

(N)
0

q
(1)
1 q

(2)
1 · · · q

(N)
1

p
(1)
1 p

(2)
1 · · · p

(N)
1

...

q
(1)
T−1 q

(2)
T−1 · · · q

(N)
T−1

p
(1)
T−1 p

(2)
T−1 · · · p

(N)
T−1


where M ∈ R2T×3 is a stacked series of motion matrices.



3D Reconstruction

� Our objective is to deduce the object matrix O given only A.
Since rank(O) = 3, we expect for a general 3D rotation that
rank(A) = 3.

� This means that we can represent A by a truncated SVD
A = ÛΣ̂V̂ T , where Û ∈ R2T×3, Σ̂ ∈ R3×3, and V̂ T ∈ R3×N .



3D Reconstruction

� How can we obtain the factorization A = MO? Naively, we
can propose M = Û, O = Σ̂V̂ T :



3D Reconstruction

� However, this is not a unique factorization; we could just as
easily introduce M = ÛB , O = B−1Σ̂V̂ T , to obtain
MO = ÛBB−1Σ̂V̂ T = ÛΣ̂V̂ T for some matrix B ∈ R3×3.

� We’d like to use this additional freedom with B to impose
constraints in our factorization.



3D Reconstruction

I Recall that each pair of rows in M is given by

Mt = PzRt =

[
1 0 0
0 1 0

]
Rt .

I The two rows of Pz pick out the first two rows of Rt , which is
orthogonal as required for rotation matrices. Thus, we expect
that the pairs of rows in M = ÛB to be orthogonal. If mi and
ui denote the i th row of M and Û, respectively,

mT
2im2i = (uT2iB)(BTu2i ) = 1

mT
2i+1m2i+1 = (uT2i+1B)(BTu2i+1) = 1

mT
2im2i+1 = (uT2iB)(BTu2i+1) = 0

for i = 0, 1, ...T − 1.



3D Reconstruction

� The 6 unknowns in the symmetric matrix S = BBT can be
solved for by setting up a least squares problem from these
orthogonality relations.



3D Reconstruction

� If S = QΛQT is the eigendecomposition of S with orthogonal
eigenvectors in Q and diagonal matrix of eigenvalues Λ, then
B can be determined as B = QΛ1/2.



3D Reconstruction

I However, B is still not unique! Multiplication by an arbitrary
rotation such as B = QΛ1/2R still results in
BBT = (QΛ1/2R)(RTΛ1/2QT ) = QΛQT = S by the
orthonormality of columns of a rotation matrix.

I It’s acceptable to simply take R = I , but we acknowledge that
our final solution for the object matrix O will be unique up to
a rotation.

I Thus, our final factorization is

M = ÛB = Û(QΛ1/2R)

O = B−1Σ̂V̂ T = (RTΛ−1/2QT )Σ̂V̂ T

and the 3D object is recovered in O.
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