Harvard Applied Mathematics 205

Group Activity: Fluid instability in coffee¹

Yue Sun

November 16 & 18, 2021

¹Based off notes from (a) ES220 Spring 2021 (b) MIT 18.357 Spring 2021 (c) AM205 Fall 2020 workshop by Nick Derr.

Outline

1 Introduction to fluid instability

Examples of fluid instability Navier–Stokes equations Procedure to solve instability problem

2 Onset of Rayleigh-Bénard instability

Rayleigh–Bénard convection
Derive the onset of instability [see note]
Numerical methods for eigenvalue problem

Streamlines, pathlines, and streaklines Schlieren imaging Turbulent Rayleigh-Bénard convection

Examples of fluid instability

Rayleigh-Bénard instability (convection)

Kelvin-Helmholtz instability

Rayleigh-Taylor instability

Plateau-Rayleigh instability

Rayleigh—Bénard instability: https://youtu.be/OM012YPVMf8

 $^{^2 \} Rayleigh-Taylor\ instability:\ https://fyfluiddynamics.com/2015/11/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most/pouring-cream-in-coffee-produces-some-of-the-most-pouring-cream-in-coffe$

²Rayleigh-Taylor instability: https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Taylor_instability

³Kelvin-Helmholtz instability: https://en.wikipedia.org/wiki/Kelvin%E2%80%93Helmholtz_instability

⁴Plateau-Rayleigh instability: https://youtu.be/wzEiZdcss88

Examples of fluid instability

Kelvin-Helmholtz instability

Rayleigh-Taylor instability

Plateau-Rayleigh instability

Rayleigh—Bénard instability: https://youtu.be/OM012YPVMf8

²Rayleigh-Taylor instability: https://fyfluiddynamics.com/2015/11/pouring-cream-in-coffee-produces-some-of-the-most/

²Rayleigh-Taylor instability: https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Taylor_instability

³ Kelvin-Helmholtz instability: https://en.wikipedia.org/wiki/Kelvin/Ke2%80%99Helmholtz_instability
⁴ Plateau-Rayleigh instability. https://youtu.be/wzEiZdcss88

Navier–Stokes equations

Generally, the governing equations for many fluid dynamics problems are the incompressible Navier–Stokes equations:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}_{\text{body}} \quad \text{and} \quad \nabla \cdot \mathbf{u} = 0$$
 (1)

where ρ, \mathbf{u}, μ are fluid density, velocity, and dynamic viscosity.

The material derivative $\frac{D}{Dt}$ is defined as a nonlinear operator:

$$\left| \frac{D}{Dt} \stackrel{\mathsf{def}}{=} \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right| \tag{2}$$

which describes the time rate of change of some physical quantity of a material element moving with the flow at velocity ${\bf u}$.

²Incompressibility means the fluid density is constant.

Navier-Stokes equations: background

Although the equations are named after Claude-Louis Navier and George Gabriel Stokes, they are in essence just mass conservation and momentum conservation equations.

One fundamental hypothesis in studying continuum mechanics³ is that the material we are studying, at the scale of interest, is a continuum—rather than individual particles or molecules.

³e.g. fluid dynamics and solid mechanics

Navier-Stokes equations: mass conservation

Mass conservation states that the rate of change in mass is equal to the net flux. In differential form, we have:

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{3}$$

Expand the divergence operator, we have

$$\implies \underbrace{\rho_t + \mathbf{u} \cdot \nabla \rho}_{\text{material derivative}} + \rho(\nabla \cdot \mathbf{u}) = 0$$

$$\implies \frac{D\rho}{Dt} = -\rho(\nabla \cdot \mathbf{u})$$
(4)

If ρ is constant everywhere (in space and time), we have

$$\frac{D\rho}{Dt} = 0 \quad \Longrightarrow \quad \underbrace{\nabla \cdot \mathbf{u} = 0}_{\text{incompressibility}} \tag{5}$$

Navier-Stokes equations: momentum conservation

Newton's second law states that the net force in a system of interest is equal to the change in momentum w.r.t. time, we have

$$\frac{D(\rho \mathbf{u})}{Dt} = \sum \text{forces} \tag{6}$$

Categorizing forces ⁴ into body forces (*e.g.* gravity, electrostatic force) and surface force (*e.g.* pressure, shear). We use f_{body} for all body forces on the small continuum element, and represent surface forces with Cauchy stress σ (derivation omitted here⁵, we have

$$\frac{D(\rho \mathbf{u})}{Dt} = \underbrace{\nabla \cdot \boldsymbol{\sigma}}_{\text{surface}} + \underbrace{\mathbf{f}_{\text{body}}}_{\text{body}}$$
forces
forces
$$(7)$$

⁴Precisely speaking, here we are working with force density: $\mathbf{F} = m\mathbf{a} \implies \mathbf{F}/\text{area} = p = \rho\mathbf{a}$.

⁵ If interested in the derivation, you can read p.p.46-49 in ES241 notes "Finite deformation: general theory".

Navier-Stokes equations: momentum conservation

Assume incompressible material⁶, we can simplify the derivative:

$$\Rightarrow \rho \frac{D\mathbf{u}}{Dt} + \mathbf{u} \frac{D\rho}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}_{body}$$

$$\Rightarrow \rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}_{body}$$
(8)

which gives us the Cauchy momentum equation.

We can further simplify the Cauchy stress σ by assuming isotropic material⁷:

$$\sigma = -\underbrace{p1}_{\text{pressure}} + \underbrace{\tau}_{\text{deviatoric}} \tag{9}$$

Therefore, the Cauchy momentum equation becomes

$$\rho \left(\partial_t + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla \cdot \boldsymbol{\tau} + \mathbf{f}_{\mathsf{body}}$$
 (10)

 $^{^{6}\}text{For compressible material, }D\rho/Dt$ can be handled by mass conservation, so the same equation holds.

⁷Isotropic material means properties of a material are identical in all directions.

Navier-Stokes equations: momentum conservation

So far, the Cauchy momentum equation is true for all materials (e.g. solids or any continuum). We need to specify this equation for fluid, which is realized through a constitutive model between τ and \mathbf{u} .

Assume the fluid is Newtonian⁸, the constitutive model is

$$\tau = \underbrace{\mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)}_{\text{viscous stress}} \tag{11}$$

where μ is a constant called the dynamic viscosity. The viscous stress represents the fluid resistance to applied deformation.

In summary, the incompressible Navier-Stokes equations are

$$\underbrace{\rho\left(\partial_{t}\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u}\right)}_{\text{inertial force}} = -\nabla p + \underbrace{\mu\nabla^{2}\mathbf{u}}_{\text{viscous force}} + \mathbf{f}_{\text{body}} \tag{12}$$

⁸In the Newtonian fluid model, viscous stresses are linearly proportional to the deformation rate. Examples where this is a good model include air, water, and glycerol. Detailed calculations can be found at Wikipedia: Derivation of the NSE—incompressible Newtonian fluid.

7 steps for solving instability problems

- 1. Set up the problem and illustrate the system.
- 2. Write down the governing equations.
- Nondimensionalize the equations with dimensionless numbers. (Extract dominant terms by scaling nondimensional equations.)
- 4. Find the steady state solutions.
- 5. Apply linear stability theory and linearize about steady state.
- 6. Simplify the PDEs and specify initial and boundary conditions.
- 7. Solve analytically or numerically for non-trivial solutions.

Rayleigh-Bénard convection

A type of thermal convection: a layer of fluid is heated from below, and the fluid develops a regular pattern of convection cells. RBC is often studied for its analytical and experimental accessibility.

Henri Bénard did the experiment in 1900, and Lord Rayleigh did the mathematical analysis⁹ in 1916.

Thermal convection is the force that drives fluid motion due to a temperature gradient. Such fluid flows are everywhere, like boiling water, the sun and all of its consequences, and geophysical flows.

⁹There was a small twist to the story: Lord Rayleigh's original proof did not consider surface tension; however, Bénard's experiment was done in a millimetric dish, where Marangoni stress dominates. Nonetheless, the nomenclature stays.

⁹Convection cells (currents): https://taylorsciencegeeks.weebly.com/blog/convection-cells-currents

Rayleigh-Bénard convection: setup

Rayleigh-Bénard convection: setup

If the temperature difference between the two plates is increased by small steps, the state of rest remains stable until ΔT reaches a certain critical value, where an organized cellular motion starts.

Our goal is to find this critical temperature difference ΔT when the onset of instability happens. We will be using techniques including

- nondimensionalization
- linear stability theory

and see how this very complicated instability problem/phenomenon can be simplified to an eigenvalue problem.

We will be following the 7 steps in the note "Derive the onset of instability for Rayleigh–Bénard convection".

Set up the problem and illustrate the system.

variables	parameters
fluid density $ ho$	volume coefficient of thermal expansion $lpha$
fluid velocity ${f u}$	gravitation g
temperature ${\cal T}$	dynamic viscosity μ , kinematic viscosity $ u = \mu/\rho$
$pressure\ p$	thermal diffusivity κ

Write down the governing equations.

momentum:
$$\rho_0 \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right)$$

$$= -\nabla p + \mu \nabla^2 \mathbf{u} - \rho_0 \left(1 + \alpha (T - T_0) \right) g \hat{y}$$
mass:
$$\nabla \cdot \mathbf{u} = 0$$
energy:
$$\partial_t T + (\mathbf{u} \cdot \nabla) T = \kappa \nabla^2 T$$
equation of state:
$$\rho = \rho_0 \left(1 + \alpha (T - T_0) \right)$$

Nondimensionalize the equations with dimensionless numbers.

momentum:
$$\frac{1}{Pr} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla^2 \mathbf{u} - Ra \, T \hat{y}$$

 $\text{mass:} \quad \nabla \cdot \mathbf{u} = 0$

energy: $\partial_t T + (\mathbf{u} \cdot \nabla)T = \nabla^2 T$

with dimensionless number:

Prandtl number:
$$Pr = \frac{\nu}{\kappa} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}}$$

Rayleigh number:
$$Ra = \frac{\alpha \Delta T g h^3}{\nu \kappa} = \frac{\text{buoyant force}}{\text{viscous force}}$$

Find the steady state solutions.

$$u^{SS} = 0$$

$$v^{SS} = 0$$

$$\partial_y p^{SS}(y) = -Ra T^{SS} g$$

$$T^{SS}(y) = y$$

Apply linear stability theory and linearize about steady state.

momentum
$$\hat{x}$$
: $\frac{1}{Pr}\partial_t \tilde{u} = -\partial_x \tilde{p} + \nabla^2 \tilde{u}$

$$\begin{array}{ll} \text{momentum } \hat{x}: & \frac{1}{Pr}\partial_t \tilde{u} = -\partial_x \tilde{p} + \nabla^2 \tilde{u} \\ \\ \text{momentum } \hat{y}: & \frac{1}{Pr}\partial_t \tilde{v} = -\partial_y \tilde{p} + \nabla^2 \tilde{v} - Ra\,\tilde{T}g \end{array}$$

energy :
$$\partial_t \tilde{T} + \tilde{v} \partial_y T^{SS} = \nabla^2 \tilde{T}$$

$$\mathsf{mass} \;:\;\; \partial_x \tilde{u} + \partial_y \tilde{v} = 0$$

Simplify the governing equations to ODE.

$$(D^2 - k^2)^3 v^* = -Ra \, k^2 v^*$$

with linearized nondimensional boundary conditions:

at
$$y = 0, 1$$
: $v^* = Dv^* = (D^2 - k^2)^2 v^* = 0$

Solve the eigenvalue problem.

Let
$$D_k = -\frac{(D^2 - k^2)^3}{k^2} = -\frac{(\partial_y^2 - k^2)^3}{k^2}$$
 and $f = v^*$, then
$$D_k f = Ra f \tag{13}$$

There are multiple ways of solving this matrix equation:

- analytics/algebra (with Mathematica)
- Newton's method, shooting method (root-finding methods)
- ightharpoonup represent D_k as a matrix and find the eigenvalues

Assume the ansatz $v^* = A \exp(my)$ to the ODE, we have

$$(m^2 - k^2)^3 + Ra k^2 = 0 (14)$$

where m has 6 roots:

$$\begin{cases}
m_{1,2} = \pm \sqrt{k^2 - \sqrt[3]{Ra} k^{2/3}} \\
m_{3,4} = \pm \sqrt{k^2 + \frac{1}{2} (1 - i\sqrt{3}) \sqrt[3]{Ra} k^{2/3}} \\
m_{5,6} = \pm \sqrt{k^2 + \frac{1}{2} (1 + i\sqrt{3}) \sqrt[3]{Ra} k^{2/3}}
\end{cases}$$
(15)

A general homogeneous solution would be

$$v^* = A \exp(m_1 y) + B \exp(m_2 y) + C \exp(m_3 y) + D \exp(m_4 y) + E \exp(m_5 y) + F \exp(m_6 y)$$
(16)

A, B, C, D, E, F are constants to be determined based on B.C.s:

$$\begin{cases} v^*(0) = 0 & A + B + C + D + E + F = 0 \\ v^*(1) = 0 & A \exp(m_1) + B \exp(m_2) + C \exp(m_3) \\ + D \exp(m_4) + E \exp(m_5) + F \exp(m_6) = 0 \end{cases}$$

$$Dv^*(0) = 0 & Am_1 + Bm_2 + Cm_3 + Dm_4 + Em_5 + Fm_6 = 0 \\ Dv^*(1) = 0 & Am_1 \exp(m_1) + Bm_2 \exp(m_2) + Cm_3 \exp(m_3) \\ + Dm_4 \exp(m_4) + Em_5 \exp(m_5) + Fm_6 \exp(m_6) = 0 \end{cases}$$

$$(D^2 - k^2)^2 v^*(0) = 0 & A(m_1^2 - k^2)^2 + B(m_2^2 - k^2)^2 + C(m_3^2 - k^2)^2 \\ + D(m_4^2 - k^2)^2 + E(m_5^2 - k^2)^2 + F(m_6^2 - k^2)^2 = 0 \end{cases}$$

$$(D^2 - k^2)^2 v^*(0) = 0 & A(m_1^2 - k^2)^2 \exp(m_1) + B(m_2^2 - k^2)^2 \exp(m_2) \\ + C(m_3^2 - k^2)^2 \exp(m_3) + D(m_4^2 - k^2)^2 \exp(m_4) \\ + E(m_5^2 - k^2)^2 \exp(m_5) + F(m_6^2 - k^2)^2 \exp(m_6) = 0 \end{cases}$$

We now have a matrix equation Mb = 0:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \exp(m_1) & \exp(m_2) & \exp(m_3) & \exp(m_4) & \exp(m_5) & \exp(m_6) \\ m_1 & m_2 & m_3 & m_4 & m_6 \\ m_1 \exp(m_1) & m_2 \exp(m_2) & m_3 \exp(m_3) & m_4 \exp(m_4) & m_6 \exp(m_6) & m_6 \exp(m_6) \\ (m_1^2 - k^2)^2 & (m_2^2 - k^2)^2 & (m_2^2 - k^2)^2 & (m_4^2 - k^2)^2 & (m_2^2 - k^2)^2 & (m_2^2 - k^2)^2 \\ (m_1^2 - k^2)^2 \exp(m_1) & (m_2^2 - k^2)^2 \exp(m_2) & (m_2^2 - k^2)^2 \exp(m_3) & (m_2^2 - k^2)^2 \exp(m_4) & (m_2^2 - k^2)^2 \exp(m_5) & (m_2^2 - k^2)^2 \exp(m_6) \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ B \\ F \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where we numerically solve $det(\mathbf{M}) = 0$.

When k is fixed, \mathbf{M} only depends on the Rayleigh number. Thus, the matrix equation simplifies to a 1D equation of Ra, and we can solve for different Ra for different fixed k values.

Let us see the Mathematica notebook for three numerical approaches: analytical, shooting method, and matrix equation.

The critical Rayleigh number is found at $Ra_c=1707.63$ numerically, which is consistent with the literature Ra>1708 instability onset.

Streamlines, pathlines, and streaklines

We can visualize the velocity field of fluid with three types of lines¹⁰:

- streamlines: curves that are tangent to the velocity field
- pathlines: trajectories of individual fluid particles follow
- streaklines: dye steadily injecting to fluid at fixed location extends along streaklines

¹⁰ Wikipedia: Streamlines, streaklines and pathlines

¹¹ Images taken from "An alblum of fluid motion".

Schlieren imaging

We can use Schlieren visualization to examine the flow structure in the temperature field,

$$Sch = \exp\left(-k\frac{|\nabla T|}{\max|\nabla T|}\right) \tag{18}$$

(temperature field)

Schlieren imaging

We can use Schlieren visualization to examine the flow structure in the temperature field,

$$Sch = \exp\left(-k\frac{|\nabla T|}{\max|\nabla T|}\right) \tag{19}$$

(Schlieren imaging)

Turbulent Rayleigh-Bénard convection

Poster: Numerical simulation of Rayleigh-Bénard convection

