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Examples of fluid instability

1Rayleigh–Bénard instability: https://youtu.be/OM0l2YPVMf8
2Rayleigh–Taylor instability: https://fyfluiddynamics.com/2015/11/pouring-cream-in-coffee-produces-some-of-the-most/
2Rayleigh–Taylor instability: https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Taylor_instability
3Kelvin–Helmholtz instability: https://en.wikipedia.org/wiki/Kelvin%E2%80%93Helmholtz_instability
4Plateau–Rayleigh instability: https://youtu.be/wzEiZdcss88

https://youtu.be/OM0l2YPVMf8
https://fyfluiddynamics.com/2015/11/pouring-cream-in-coffee-produces-some-of-the-most/
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Taylor_instability
https://en.wikipedia.org/wiki/Kelvin%E2%80%93Helmholtz_instability
https://youtu.be/wzEiZdcss88
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Navier–Stokes equations
Generally, the governing equations for many fluid dynamics problems
are the incompressible2 Navier–Stokes equations:

ρ
Du
Dt

= −∇p+ µ∇2u + fbody and ∇ · u = 0 (1)

where ρ, u,µ are fluid density, velocity, and dynamic viscosity.

The material derivative D

Dt
is defined as a nonlinear operator:

D

Dt
def
=

∂

∂t
+ u · ∇ (2)

which describes the time rate of change of some physical quantity of
a material element moving with the flow at velocity u.

2Incompressibility means the fluid density is constant.
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Navier–Stokes equations: background
Although the equations are named after Claude-Louis Navier and
George Gabriel Stokes, they are in essence just mass conservation
and momentum conservation equations.

One fundamental hypothesis in studying continuum mechanics3 is
that the material we are studying, at the scale of interest, is a
continuum—rather than individual particles or molecules.

3e.g. fluid dynamics and solid mechanics

https://en.wikipedia.org/wiki/Claude-Louis_Navier
https://en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet
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Navier–Stokes equations: mass conservation
Mass conservation states that the rate of change in mass is equal to
the net flux. In differential form, we have:

ρt +∇ · (ρu) = 0 (3)

Expand the divergence operator, we have

=⇒ ρt + u · ∇ρ︸ ︷︷ ︸
material derivative

+ρ(∇ · u) = 0

=⇒ Dρ

Dt
= −ρ(∇ · u)

(4)

If ρ is constant everywhere (in space and time), we have

Dρ

Dt
= 0 =⇒ ∇ · u = 0︸ ︷︷ ︸

incompressibility
constraint

(5)
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Navier–Stokes equations: momentum conservation
Newton’s second law states that the net force in a system of
interest is equal to the change in momentum w.r.t. time, we have

D(ρu)
Dt

=
∑

forces (6)

Categorizing forces4 into body forces (e.g. gravity, electrostatic
force) and surface force (e.g. pressure, shear). We use fbody for all
body forces on the small continuum element, and represent surface
forces with Cauchy stress σ (derivation omitted here5, we have

D(ρu)
Dt

= ∇ ·σ︸ ︷︷ ︸
surface
forces

+ fbody︸ ︷︷ ︸
body
forces

(7)

4Precisely speaking, here we are working with force density: F = ma =⇒ F/area = p = ρa.
5If interested in the derivation, you can read p.p.46-49 in ES241 notes “Finite deformation: general theory”.

https://imechanica.org/files/Finite%20deformation%20general%20theory%202017%2008%2031.pdf
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Navier–Stokes equations: momentum conservation
Assume incompressible material6, we can simplify the derivative:

=⇒ ρ
Du
Dt

+ u
�
��
Dρ

Dt
= ∇ ·σ + fbody

=⇒ ρ
Du
Dt

= ∇ ·σ + fbody

(8)

which gives us the Cauchy momentum equation.

We can further simplify the Cauchy stress σ by assuming isotropic
material7:

σ = − p1︸︷︷︸
pressure

+ τ︸︷︷︸
deviatoric

stress

(9)

Therefore, the Cauchy momentum equation becomes

ρ (∂t + (u · ∇)u) = −∇p+∇ · τ + fbody (10)
6For compressible material, Dρ/Dt can be handled by mass conservation, so the same equation holds.
7Isotropic material means properties of a material are identical in all directions.
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Navier–Stokes equations: momentum conservation
So far, the Cauchy momentum equation is true for all materials (e.g.
solids or any continuum). We need to specify this equation for fluid,
which is realized through a constitutive model between τ and u.

Assume the fluid is Newtonian8, the constitutive model is

τ = µ
(
∇u + (∇u)T

)
︸ ︷︷ ︸

viscous stress

(11)

where µ is a constant called the dynamic viscosity. The viscous
stress represents the fluid resistance to applied deformation.

In summary, the incompressible Navier–Stokes equations are

ρ (∂tu + (u · ∇)u)︸ ︷︷ ︸
inertial force

= −∇p+ µ∇2u︸ ︷︷ ︸
viscous force

+fbody (12)

8In the Newtonian fluid model, viscous stresses are linearly proportional to the deformation rate. Examples where this is a good model
include air, water, and glycerol. Detailed calculations can be found at Wikipedia: Derivation of the NSE—incompressible Newtonian fluid.

https://en.wikipedia.org/wiki/Derivation_of_the_Navier%E2%80%93Stokes_equations#Incompressible_Newtonian_fluid


7 steps for solving instability problems

1. Set up the problem and illustrate the system.

2. Write down the governing equations.

3. Nondimensionalize the equations with dimensionless numbers.
(Extract dominant terms by scaling nondimensional equations.)

4. Find the steady state solutions.

5. Apply linear stability theory and linearize about steady state.

6. Simplify the PDEs and specify initial and boundary conditions.

7. Solve analytically or numerically for non-trivial solutions.
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Rayleigh–Bénard convection
A type of thermal convection: a layer of fluid is heated from below,
and the fluid develops a regular pattern of convection cells. RBC is
often studied for its analytical and experimental accessibility.

Henri Bénard did the experiment in 1900, and Lord Rayleigh did the
mathematical analysis9 in 1916.

Thermal convection is the force that drives fluid motion due to a
temperature gradient. Such fluid flows are everywhere, like boiling
water, the sun and all of its consequences, and geophysical flows.

9There was a small twist to the story: Lord Rayleigh’s original proof did not consider surface tension; however, Bénard’s experiment
was done in a millimetric dish, where Marangoni stress dominates. Nonetheless, the nomenclature stays.

9Convection cells (currents): https://taylorsciencegeeks.weebly.com/blog/convection-cells-currents

https://taylorsciencegeeks.weebly.com/blog/convection-cells-currents
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Rayleigh–Bénard convection: setup
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Rayleigh–Bénard convection: setup
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Derive the onset of instability
If the temperature difference between the two plates is increased by
small steps, the state of rest remains stable until ∆T reaches a
certain critical value, where an organized cellular motion starts.

Our goal is to find this critical temperature difference ∆T when the
onset of instability happens. We will be using techniques including

I nondimensionalization
I linear stability theory

and see how this very complicated instability problem/phenomenon
can be simplified to an eigenvalue problem.

We will be following the 7 steps in the note “Derive the onset of
instability for Rayleigh–Bénard convection”.
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Derive the onset of instability: Step 1
Set up the problem and illustrate the system.

variables parameters
fluid density ρ volume coefficient of thermal expansion α
fluid velocity u gravitation g
temperature T dynamic viscosity µ, kinematic viscosity ν = µ/ρ

pressure p thermal diffusivity κ
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Derive the onset of instability: Step 2
Write down the governing equations.

momentum: ρ0

(
∂u
∂t

+ (u · ∇)u
)

= −∇p+ µ∇2u− ρ0 (1 + α(T − T0)) gŷ

mass: ∇ · u = 0
energy: ∂tT + (u · ∇)T = κ∇2T

equation of state: ρ = ρ0 (1 + α(T − T0))
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Derive the onset of instability: Step 3
Nondimensionalize the equations with dimensionless numbers.

momentum: 1
Pr

(
∂u
∂t

+ (u · ∇)u
)
= −∇p+∇2u−Ra T ŷ

mass: ∇ · u = 0
energy: ∂tT + (u · ∇)T = ∇2T

with dimensionless number:

Prandtl number: Pr =
ν

κ
=

momentum diffusivity
thermal diffusivity

Rayleigh number: Ra =
α∆Tgh3

νκ
=

buoyant force
viscous force
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Derive the onset of instability: Step 4
Find the steady state solutions.

uSS = 0
vSS = 0

∂yp
SS(y) = −Ra TSSg

TSS(y) = y



Introduction RBC Visualization

Derive the onset of instability: Step 5
Apply linear stability theory and linearize about steady state.

momentum x̂ :
1
Pr

∂tũ = −∂xp̃+∇2ũ

momentum ŷ :
1
Pr

∂tṽ = −∂yp̃+∇2ṽ−Ra T̃g

energy : ∂tT̃ + ṽ∂yT
SS = ∇2T̃

mass : ∂xũ+ ∂yṽ = 0
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Derive the onset of instability: Step 6
Simplify the governing equations to ODE.

(D2 − k2)3v∗ = −Ra k2v∗

with linearized nondimensional boundary conditions:

at y = 0, 1 : v∗ = Dv∗ = (D2 − k2)2v∗ = 0
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Derive the onset of instability: Step 7
Solve the eigenvalue problem.

Let Dk = − (D
2 − k2)3

k2 = −
(∂2

y − k2)3

k2 and f = v∗, then

Dkf = Ra f (13)

There are multiple ways of solving this matrix equation:

I analytics/algebra (with Mathematica)
I Newton’s method, shooting method (root-finding methods)
I represent Dk as a matrix and find the eigenvalues
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Numerical methods for eigenvalue problem
Assume the ansatz v∗ = A exp(my) to the ODE, we have

(m2 − k2)3 +Ra k2 = 0 (14)

where m has 6 roots:
m1,2 = ±

√
k2 − 3√Ra k2/3

m3,4 = ±
√
k2 + 1

2 (1− i
√

3) 3√Ra k2/3

m5,6 = ±
√
k2 + 1

2 (1 + i
√

3) 3√Ra k2/3

(15)

A general homogeneous solution would be

v∗ = A exp(m1y) +B exp(m2y) +C exp(m3y)

+D exp(m4y) +E exp(m5y) + F exp(m6y)
(16)
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Numerical methods for eigenvalue problem
A,B,C,D,E,F are constants to be determined based on B.C.s:

v∗(0) = 0 A + B + C + D + E + F = 0

v∗(1) = 0 A exp(m1) + B exp(m2) + C exp(m3)

+D exp(m4) + E exp(m5) + F exp(m6) = 0

Dv∗(0) = 0 Am1 + Bm2 + Cm3 + Dm4 + Em5 + F m6 = 0

Dv∗(1) = 0 Am1 exp(m1) + Bm2 exp(m2) + Cm3 exp(m3)

+Dm4 exp(m4) + Em5 exp(m5) + F m6 exp(m6) = 0

(D2 − k2)2v∗(0) = 0 A(m2
1 − k2)2 + B(m2

2 − k2)2 + C(m2
3 − k2)2

+D(m2
4 − k2)2 + E(m2

5 − k2)2 + F (m2
6 − k2)2 = 0

(D2 − k2)2v∗(0) = 0 A(m2
1 − k2)2 exp(m1) + B(m2

2 − k2)2 exp(m2)

+C(m2
3 − k2)2 exp(m3) + D(m2

4 − k2)2 exp(m4)

+E(m2
5 − k2)2 exp(m5) + F (m2

6 − k2)2 exp(m6) = 0
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Numerical methods for eigenvalue problem
We now have a matrix equation Mb = 0:

1 1 1 1 1 1

exp(m1 ) exp(m2 ) exp(m3 ) exp(m4 ) exp(m5 ) exp(m6 )

m1 m2 m3 m4 m5 m6

m1 exp(m1 ) m2 exp(m2 ) m3 exp(m3 ) m4 exp(m4 ) m5 exp(m5 ) m6 exp(m6 )

(m2
1
− k2 )2 (m2

2
− k2 )2 (m2

3
− k2 )2 (m2

4
− k2 )2 (m2

5
− k2 )2 (m2

6
− k2 )2

(m2
1
− k2 )2 exp(m1 ) (m2

2
− k2 )2 exp(m2 ) (m2

3
− k2 )2 exp(m3 ) (m2

4
− k2 )2 exp(m4 ) (m2

5
− k2 )2 exp(m5 ) (m2

6
− k2 )2 exp(m6 )

 [ABCDE
F

]
=

[
0
0
0
0
0
0

]
(17)

where we numerically solve det(M) = 0.

When k is fixed, M only depends on the Rayleigh number. Thus,
the matrix equation simplifies to a 1D equation of Ra, and we can
solve for different Ra for different fixed k values.

Let us see the Mathematica notebook for three numerical
approaches: analytical, shooting method, and matrix equation.
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Numerical methods for eigenvalue problem
The critical Rayleigh number is found at Rac = 1707.63 numerically,
which is consistent with the literature Ra > 1708 instability onset.
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Numerical methods for eigenvalue problem
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Streamlines, pathlines, and streaklines
We can visualize the velocity field of fluid with three types of lines10:

I streamlines: curves that are tangent to the velocity field
I pathlines: trajectories of individual fluid particles follow
I streaklines: dye steadily injecting to fluid at fixed location

extends along streaklines

10Wikipedia: Streamlines, streaklines and pathlines
11Images taken from “An alblum of fluid motion”.

https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
http://courses.washington.edu/me431/handouts/Album-Fluid-Motion-Van-Dyke.pdf
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Schlieren imaging
We can use Schlieren visualization to examine the flow structure in
the temperature field,

Sch = exp
(
−k |∇T |

max |∇T |

)
(18)

(temperature field)
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Schlieren imaging
We can use Schlieren visualization to examine the flow structure in
the temperature field,

Sch = exp
(
−k |∇T |

max |∇T |

)
(19)

(Schlieren imaging)
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Turbulent Rayleigh–Bénard convection
Poster: Numerical simulation of Rayleigh–Bénard convection

http://sun-yue.com/programming/#rbc
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