
Harvard Applied Mathematics 205
Further Optimization Methods

Danyun He

November 11, 2021

Two non-derivative-based optimization methods

In AM205, we introduce the derivative-based optimization method:
Newton’s method. What if you don’t know the derivative? Here,
we introduce two non-derivative-based optimization methods:

1. Golden section search

2. Brent method

Golden section search: Unimodality[1]

A function f : R→ R is unimodal on an interval [a, b] if ∃ unique
x∗ ∈ [a, b] such that f (x∗) is the minimum of f on [a, b], and for
any x1, x2 ∈ [a, b] with x1 < x2,

x2 < x∗ =⇒ f (x1) > f (x2), and x1 > x∗ =⇒ f (x1) < f (x2).

Golden section search: Finding minimum

Suppose f (x) is unimodal on [a, b], pick two points x1 < x2 in the
interval [a, b], and compare function values f (x1) and f (x2), then
we can discard a sub-interval, either (x2, b] or [a, x1), and know
that the minimum lies in the remaining interval.

Golden section search: Finding minimum

Golden section search: Optimizing the method

How to achieve maximum efficiency of the method?

1. To make consistent progress in reducing length of the interval
containing the minimum, each pair of points should have the same
relative positions within the new interval. So we can reduce a fixed
fraction of length of an interval at each iteration.

2. Can we choose the two points x1, x2 such that: we can reuse
the point in the remaining interval as one of the x1 or x2 points in
the new interval, so we only need to find another point and
compute its function value in the new interval?

Golden section search: Optimizing the method

1. Decrease the length of the interval by a fixed fraction r at each
iteration:

Golden section search: Optimizing the method

1. Decrease the length of the interval by a fixed fraction r at each
iteration:

r =
x2 − 0

1− 0
=

1− x1
1− 0

=⇒ x2 = r , x1 = 1− r

Golden section search: Optimizing the method

2. Reuse the two points x1 and x2 in the previous iteration, such
that one becomes one of the end points of the new interval, and
another one becomes either x1 or x2 of the new interval.

Why it must be this way? What equation can you list from here?

Golden section search: Optimizing the method

Golden section search: Algorithm[1]

Golden section search: Algorithm

Jupyter Notebook

Golden section search: Exercise 1

Use your implemented algorithm to solve:

min f (x) = 0.5− xe−x
2

in interval [0, 2], with tolerance 0.001.

Before running the code, can we determine in advance the number
of iterations needed for the algorithm to terminate?

Golden section search: Exercise 1

Use your implemented algorithm to solve:

min f (x) = 0.5− xe−x
2

in interval [0, 2], with tolerance 0.001.

Before running the code, can we determine in advance the number
of iterations needed for the algorithm to terminate?

Yes. Remember that the algorithm shrinks the interval by a fix

fraction r =
√
5−1
2 ≈ 0.618 in each iteration, so

0.618n(2− 0) ≤ 0.001,

n = 16 iterations

Golden section search: Comments[1]

1. Great choice when function is not differentiable or difficult to
differentiate.

2. Always converge: safe method.

3. Slow convergent rate: linear. Rate of convergence ≈ 0.618.

Golden section search: Comments[1]

4. The method relies on the assumption that the function is
unimodal on the starting interval. But often we cannot assume
unimodality. Usually, in practice, one finds a suitable starting
interval with trial and error: search for three points such that the
two outer points have larger function value than the intermediate
point. With the starting interval, although the method always
converges, there is no guarantee to find the global minimum.

Golden section search: Comments[3]

5. Tolerance limited by rounding error:

Golden section search: Comments[3]

5. Tolerance limited by rounding error (continue):

Brent’s method

Golden-section Search(GSS) can handle function in the worst case.
However, it is not fast. For functions that are smooth, nicely
parabolic near the minimum, a parabola fitted curve take us to the
minimum much faster. The method that uses parabola fitting is
called Successive Parabolic Interpolation (SPI). It is faster than
GSS but not as safe as it.

Brent’s idea is to combines GSS and SPI. Use SPI when it is safe,
and switch to GSS when SPI fails. Linear convergence is
guaranteed for any function (as good as GSS) and on well-behaved
functions convergence is superlinear with order at least 1.325.

Successive Parabolic Interpolation (SPI)

1. Start with three initial guesses x0, x1, x2

2. Draw the parabola that interpolates the three points, take the
minimum point as x3 where

x3 = x2+
1

2

(x1 − x2)2[f (x2) + f (x0)]− (x0 − x2)2[f (x1)− f (x2)]

(x1 − x2)[f (x2)− f (x0)] + (x0 − x2)[f (x1)− f (x2)]

3. Repeat 2 with three lowest points among x0, x1, x2, x3 until
reach terminal condition

SPI

With arbitrary starting points, it might diverge or converge to the
maximum.

Brent’s method
Brent’s method keep track of six function points: a, b, u, v ,w , x
a: left bound
b: right bound
x : the least value f
w : second least value f
v : previous value of w
u: the most recent evaluated point

Brent’s method: Algorithm

Given a unimodal f (x) and bound [a, b]

1. Initialize v = w = x = a + (3−
√
5

2)(b − a)

2. Find the next point u via SPI with x ,w , v if it is well behaved,
otherwise, use GSS.

3. Evaluate f (u), f (x). Update u, v ,w , x , a, b accordingly. Note
when f (u) <= f (x), check if u >= x , then a = x , else b = x .
When f (u) > f (x), check if u < x , then a = u, else b = u.

4. Repeat 2,3 until b − a < Tol , then return a+b
2

SPI: well behaved?

Recall that

x3 = x2 +
1

2

(x1 − x2)2[f (x2) + f (x0)]− (x0 − x2)2[f (x1)− f (x2)]

(x1 − x2)[f (x2)− f (x0)] + (x0 − x2)[f (x1)− f (x2)]

We find u in the form of

u = x +
p

q

SPI is well behaved if

q 6= 0

u ∈ [a, b]

The movement is smaller than the half of the last step
|pq | <

1
2 |e|, e is the previous p

q , to ensure it is converging

|e| is greater than some tolerance

Brent’s method

Brent’s method: Exercise 2

Use the library functions for Brent’s method (MATLAB: fminbnd;
Python: scipy.optimize.minimize scalar) to solve the problem in
exercise 1: min f (x) = 0.5− xe−x

2
in interval [0, 2], with tolerance

0.001.

How many number of iterations they use? Which one is faster?

Take home exercise 1

min f (x) = e−x − cos(x) in interval [0, 1], with tolerance 0.01.

1. Prove f (x) is unimodal on interval [0, 1]

2. Prove there is a unique global minimizer in (0, 1)

3. Calculate by hand the number of iterations needed to reach
the tolerance

4. Run your golden section search algorithm and report the
results x1, f (x1), x2, f (x2) for each iteration

5. Run Brent’s method and report the number of iterations
needed. Compare the result with golden section search

Take home exercise 2

min f (x) = sin(1
x) + cos(1√

(x)
)

Use your favorite method, find out how many minima does f (x)
have in interval [0.005, 0.2].

Report: submit pdf version of your jupyter notebook, including
in-class exercises 1&2, and take-home exercises 1&2. You are
welcome to submit as a group. Remember to list the names of
group members!

Reference

[1] Heath, M. T. (2002). Scientific computing: An introductory
survey. Boston: McGraw-Hill.

[2] Xu, Huifu. MATH3016: OPTIMIZATION notes.
http://web.tecnico.ulisboa.pt/mcasquilho/compute/com/

,Fibonacci/pdfHXu_ch1.pdf.

[3] William H. Press ... [and others]. Numerical Recipes in C : the
Art of Scientific Computing. Cambridge [Cambridgeshire] ; New
York :Cambridge University Press, 1992.

[4] Brent, R.P. 1973, Algorithms for Minimization without
Derivatives (Englewood Cliffs, NJ: Prentice- Hall); reprinted 2002
(New York: Dover), Chapter 5.[1]

http://web.tecnico.ulisboa.pt/mcasquilho/compute/com/,Fibonacci/pdfHXu_ch1.pdf
http://web.tecnico.ulisboa.pt/mcasquilho/compute/com/,Fibonacci/pdfHXu_ch1.pdf

Brent-Dekker’s method: a root finding technique

Brent’s minimization method is analogous to Brent-Dekker
method, which is a root finding method combining the bisection
method and secant method. It’s as fast as secant method and
guarantee convergence as bisection method.
Root finding problem: find x ∈ R such that f (x) = 0.

Bisection method

1. Initialize with two guesses x1, x2 such that f (x1)f (x2) < 0.

2. Calculate midpoint of x1 and x2, m = x1+x2
2 . Check if

f (m) < Tol , if not, check if f (x1)f (m) < 0, then newx2 = m,
else newx1 = m.

3. Repeat 2 until find some m that |f (m)| < Tol .

According to intermediate value theorem, there must exist a root
in [a, b]. Bisection method is guaranteed to find the solution.
Limitation: slow

Bisection method

Secant method

1. Initialize with two guesses x1, x2

2. Draw a secant using x1, x2, take the intersection point with
x-axis as x3

3. Repeat 2 until find xn such that |f (xn)| < Tol

Secant method is fast, it’s doing linear interpolation of the curve,
approaching closer and closer to the solution. However, it might
diverge (f (xi) = f (xi+1) or divide by zero (xi = xi+1).

Secant method

Inverse quadratic interpolation (IQI) method

1. Initialize with three guesses x1, x2, x3

2. Draw sideways quadratic using x1, x2, x3, take the intersection
point with x-axis as x4

3. Repeat 2 until find xn such that |f (xn) < Tol

IQI method is doing quadratic interpolation of the curve,
theoretically, it fits the curve better. It’s fast when starting with
points close the root. However, it fails when any two values of
f (xi), f (xi+1), f (xi+2) match

IQI method

Brent-Dekker method

The idea of Brent-Dekker method is to make use of the bisection
method, secant method and IQI method. It maintains the fast
speed as secant method while the convergence is guaranteed.

1. Initialize with three guesses a, b, c

2. Compute s using IQI with a, b, c . If IQI doesn’t work,
compute s with secant method using b, c . If secant method
doesn’t work, use bisection method. Update a, b, c

3. Repeat 2 until f (s) < Tol

python: scipy.optimize.brentq
matlab: fzerotx

Exercise

Make your own function. Run bisection method, secant method
and Brent-Dekker method. Compare: how many steps they use?
Do they converge?
Example functions: f (x) = x4 + x2 − 1

