AM 205 POV-Ray tutorial

September 30, 2021

1 Introduction

1.0.0.1 POV-Ray POV-Ray is a free software for producing high-quality computer
graphics. It uses the ray-tracing rendering technique. POV-Ray reads in a text file that
contains objects, lighting and camera viewpoint of a scene, and generates a high quality
image with realistic reflections, shading, perspective and other effects.

Figure 1: Realistic rendering of glasses using POV-Ray. Source: http://www.lilysoft.
org/CGI/SR/Spectral’20Render.htm

1.0.0.2 Ray-tracing Ray-tracing is an image rendering technique. It simulates how rays
of light travel in the real world, how the light rays hit on objects, and how the light rays
reflect or refract on the objects’ surfaces depending on the material properties of the objects.

Intuitively, how light rays travel results in how we see the world. We can perceive an
object and tell the material of the object because of the light bouncing off its surface. For
example, a metallic ball reflects a lot of light, and when we see the shiny surface we could
tell that it is made of metal. In comparison, a rubbery ball does not reflect light so much
and it is much dimmer. And we can easily tell the two materials apart. How we perceive
objects and their properties depends heavily on the visual effects they reflect or refract light.
And ray-tracing simulates the process.

http://www.lilysoft.org/CGI/SR/Spectral%20Render.htm
http://www.lilysoft.org/CGI/SR/Spectral%20Render.htm

(a) (b)
Figure 2: (a) a metallic texture ball; (b) a rubbery texture ball.

In POV-Ray, we can define a "camera", which is like our "eyes", our viewpoint. We can
also define light sources, which are the sources emitting lights in the scene. POV-Ray then
originate light rays from the camera and trace the rays "backwards" into the scene. When the
light rays hit an object, it will work out the color of the surface at the hit points, depending
on the material properties of the object and other scene setting. It will work out the amount
of light coming from each light source. In the end, colors of all the pixels in the image are
calculated, and you have a highly realistic scene in the image.

Image

Camera / 8 Light Source
\\\

View Ray

Scene Object

Figure 3: Schematic illustration of backward ray-tracing. Source: https://commons.
wikimedia.org/wiki/File:Ray_trace_diagram.svg

https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg

2 Basics

2.1 Setting the scene

Here, we need to define our viewpoint with "camera", the lights in the scene with "light
source", and the background color with "background".

2.1.0.1 coordinate system To start with, we need to know POV-Ray’s coordinate
system. It uses a "left-handed" coordinate system, where the positive y-axis points up, the
positive x-axis points to the right, and the positive x-axis points into the screen.

Figure 4: POV-Ray’s left-handed coordinate system. Source: https://www.povray.org/
documentation/3.7.0/t2_2.html

2.1.0.2 camera Camera sets our viewpoint, view angle and the direction we are looking
at. You may refer to the illustration below in understanding the different settings that go
into the syntax.

// basic syntax: usually, this is all we need to position the camera
camera {

location <x0,y0,z0> //where we are looking from

look_at <x1,yl,z1> //where we are looking at

//advanced options and modifiers
camera {
Location <x0,y0,z0>
look_at <x1,yl,z1>
//sky: you can think of this as an antenna pointing out of the top of
the camera, it tells us how the camera is tilted

https://www.povray.org/documentation/3.7.0/t2_2.html
https://www.povray.org/documentation/3.7.0/t2_2.html

image plane —_| look_at

right
location

Figure 5: Schematic illustration of camera. Source: http://www.povray.org/
documentation/view/3.7.0/246/

sky <x2,y2,z2>

//right and up: they let us specify the relative height and width of the
view screen. We can use the two options to "zoom in" to the image.

right 0.03*x

up 0.03*z*ximage_height/image_width

//rotate: rotate the camera with dl1 degree about the x-axis, d2 degree
about the y-axis, and d3 degree about the z-axis.

rotate <di1,d2,d3>

}
// example: a camera at location <-30,-30,50>, align the top with the z-axis
(0,0,1), looking into the direction towards point (0,0,0), and zoom
into the view with "right" and "up" options.
camera {
location <-30,-30,50>
sky z
right 0.033*x
up 0.033*z*image_height/image_width
look_at <0,0,0>

2.1.0.3 light source A point or area that emits light in a scene. We just need to specify
the location of the light source, and the color of the light that it emits.

http://www.povray.org/documentation/view/3.7.0/246/
http://www.povray.org/documentation/view/3.7.0/246/

(a) (b)
Figure 6: (a) looking at an object from far away; (b) looking at the same object with added
"right" and "up" options to zoom into the view.

Here is a nice chart to pick your favorite color’s RGB value: https://tug.org/pracjourn/
2007-4/walden/color.pdf

// basic syntax

light_source {
<Location>, COLOR

}

// example: a light at location <-8,-20,30>, with RGB color <0.97, 0.55,
0.8>

light_source{<-8,-20,30>, color rgb <0.97,0.55,0.8> }

You can also try adding in a few more light sources at different locations and with different colors,
to light up the scene from different angles!

2.1.0.4 background This sets the background color. In another word, it assigns a color
to all rays that do not hit any object.

// basic syntax
background {
COLOR
}
// example: background with RGB color <0.4, 0.9, 0.9>
background{rgb <0.4,0.9,0.9>}

https://tug.org/pracjourn/2007-4/walden/color.pdf
https://tug.org/pracjourn/2007-4/walden/color.pdf

Figure 7: Background with RGB <0.4,0.9,0.9> gives a beautiful sky blue canvas!

2.2 Some basic objects and object modifiers

2.2.0.1 box This gives you a 3D rectangular prism. To construct it, you just need to
define the two diagonal corners of the shape.

corner 2

corner 1
Figure 8: The box object. Source: https://www.povray.org/documentation/view/3.6.
1/276/

//basic syntax
box {
<Corner_1>, <Corner_2>
[OBJECT _MODIFIERS...]
}
//basic example:
box { <-0.5,-0.5,-0.5>,<0.5,0.5,0.5> }

//prettier example: We will talk about object modifier later!
#include "stones.inc"
box {

<-0.5,-0.5,-0.5>,<0.5,0.5,0.5>

texture {

https://www.povray.org/documentation/view/3.6.1/276/
https://www.povray.org/documentation/view/3.6.1/276/

T_Stone25 // Pre-defined from stones.inc library

3

(a) (b)

Figure 9: (a) box from basic example; (b) prettier example box with stone texture.

2.2.0.2 sphere A sphere object. In the most basic syntax, you just need to specify the
center (point coordinate) and radius (number) of the sphere.

radius
center

Figure 10: The sphere object. Source: http://www.povray.org/documentation/view/3.6.
1/283/

//basic syntax

sphere {
<Center>, Radius
[OBJECT_MODIFIERS...]

http://www.povray.org/documentation/view/3.6.1/283/
http://www.povray.org/documentation/view/3.6.1/283/

//basic example: A sphere centered at (0,0,0) with radius 1.
sphere { <0,0,0>, 1 }

//prettier example: We will introduce object modifiers later!
#include "colors.inc"
sphere {
<0,0,0>, 1
texture{
pigment { BrightGold }
finish {
ambient 0.3
diffuse 0.7
specular 0.5
roughness .2
phong .75
phong_size 10

(a) (b)
Figure 11: (a) sphere from basic example; (b) prettier example sphere with bright gold color
and surface effects

2.2.0.3 plane This is a simple way to define an infinite flat surface in the scene. For
example, it can be the "ground" or the "table surface" in your scene. Here, we need to specify

<Normal>, which is a vector normal to the plane. Then, we need to specify "Distance",
which gives the distance along the normal that the plane is from the origin.

A plane divides a space in two parts, any point that is "under" the plane is inside, and
any point that is "above" the plane is outside.

//basic syntax

plane {
<Normal>, Distance
[OBJECT_MODIFIERS...]

//basic example: a plane with normal vector (0,1,0), that’s 4 distance away
from the origin.
plane { <0, 1, 0>, 4 }

//The above is equivalent to the following, using the x, y or z built-in
vector identifiers
plane { y, 4 }

//Prettier example: checkerboard patterns. We will introduce adding object
modifiers later.

#include "colors.inc"

plane {
y, -1
texture{ pigment {checker White Tan} }

(a)
Figure 12: (a) plane from basic example; (b) prettier example plane with checkerboard
patterns.

2.2.0.4 torus Donut shape! A torus is a 4* order quartic polynomial shape that looks
like a donut or inner tube. Here, as shown in the picture below, we need to define the major
radius and minor radius.

minor radius

center line

Figure 13: The torus object. Source: https://www.povray.org/documentation/view/3.6.
1/288/

//basic syntax

torus {
Major, Minor
[OBJECT_MODIFIERS...]

//basic example: A torus with major radius 4 and minor radius 1.
torus { 4, 1}

//prettier example: A pink donut with shiny texture
#include "colors.inc"

torus {
4, 1
rotate -90%x // rotate -90 degrees around x axis
texture{
pigment { Pink }
finish {
ambient 0.3
diffuse 0.7
specular 0.3
roughness .2
phong .75
phong_size 10
}
}

10

https://www.povray.org/documentation/view/3.6.1/288/
https://www.povray.org/documentation/view/3.6.1/288/

(a) (b)
Figure 14: (a) donut from basic example; (b) prettier example donut with pink color and
shiny surface (icing? :)).

2.2.0.5 Exercise 1 Try setting your own scene with camera, light source(s), and back-
ground. And put (an) object(s) in the scene! Adjust your settings till you are satisfied with
the scene! For now, if you don’t add in any object modifiers, your object would just look like
a solid black block. But that’s okay! In what follows, we will introduce some object modifiers,
which will add surface properties and textures to your object(s).

2.3 Object modifiers

Adding object modifiers to your object gives it a more realistic appearance, visualized by the
different colors, textures and finishes of the surface!

2.3.0.1 texture We can use the "texture" statement to simulate an object’s surface.
The following description taken from POV-Ray documentation (http://wiki.povray.org/
content/Reference:Texture) makes it clear what "texture" does:

e Textures are combinations of pigments, normals, and finishes.
e Pigment is the color or pattern of colors inherent in the material.

e Normal is a method of simulating various patterns of bumps, dents, ripples or waves by
modifying the surface normal vector.

e Finish describes the reflective properties of a material.

11

http://wiki.povray.org/content/Reference:Texture
http://wiki.povray.org/content/Reference:Texture

//Example syntax

texture {
pigment { MyPigment }
normal { MyNormal }
finish { MyFinish }

}

2.3.0.2 pigment The specifies colors of objects.
1. Using pre-defined colors in the library, color.inc: Check out the list of colors here:
http://povray.tashcorp.net/library/colors.inc/

//Example:
#include "color.inc"
sphere{

<0,0,0>, 1

texture{ pigment { SlateBlue } }

2. Specify RGB colors: use color rgb <COLOR > syntax. "color" is optional and can be
omitted in the syntax.

//Example:
sphere{
<0,0,0>, 1
texture{ pigment { color rgb <0.9,0.5,0.4> } }

3. Specifying "filter" and "transmit" with RGBF or RGBFT: (Source:http://www.,
povray.org/documentation/view/3.7.1/230/)

"F" stands for filter, it specifies the amount of filtered transparency of the material. This
value is useful to specify in materials like stained glass. Default is 0.

"T" stands for transmit, which is the amount of non-filtered light transmitted through the
surface. Some real world examples are thin see-through cloth, or dust on a surface. Default
is 0. A value between 0 and 1 also gives transparency effect of the material.

//Example 1: rgbf follows a 4-term vector. The following creates 60%
transparency of the object.

sphere{
<0,0,0>, 1

12

http://povray.tashcorp.net/library/colors.inc/
http://www.povray.org/documentation/view/3.7.1/230/
http://www.povray.org/documentation/view/3.7.1/230/

Figure 15: "The yellow balls have progressive “filter” values. The red balls have progressive
“transmit” values. Note that if the transmit value is 1, then the object becomes invisible.Both
“filter” and “transmit” let light pass through. Their difference is that filter will tint the light
with the object’s surface texture, while transmit will not. (look at their shadows)."-excerpt
and photo from source: http://xahlee.info/3d/povray-glassy.html

texture{ pigment { color rgbf <0.9,0.5,0.4, 0.6> } }
b
//Example 2: rgbft follows a 5-term vector. The following creates 0.6
transparency and 0.7 contrast in colors.
sphere{
<0,0,0>, 1
texture{ pigment { color rgbft <0.9,0.5,0.4, 0.6, 0.7> } }
+
//Example 3: alternatively, we can use the transmit and filter keywords
#include "color.inc"
sphere{
<0,0,0>, 1
texture{ pigment { Pink filter 0.5 transmit 0.3 } }

4. Declared your own color variables to use in your program. We can define our own colors,
store in a variable, and use throughout the program. This uses the "4 declare" keyword in
defining the variable.

#declare White = rgb <1,1,1>;
#declare LightGray = Whitex0.8;
sphere{

<0,0,0>, 1

texture{ pigment { LightGray } }

13

http://xahlee.info/3d/povray-glassy.html

Something fun: Let’s make a beautiful pink transparent donut!

torus {
4, 1
rotate -90*x
texture {
pigment { Pink filter 0.5 transmit 0.3}
finish {
ambient 0.3
diffuse 0.7
specular 0.3
roughness .2
phong .75
phong_size 10
b
+
}

Figure 16: A beautiful pink transparent donut.

14

2.3.0.3 finish This specifies the reflective properties of a material. The content of this
section can be referred to in the source POV-Ray documentation: http://www.povray.org/
documentation/view/3.6.0/79/

1. ambient and diffuse These two specifies where the light that illuminates the object
comes from.

Keyword "ambient" simulates the amount of light scattered around the object that does
not come directly from a light source.

Keyword "diffuse" simulates the amount of light directly from a light source.

Figure 17: (a) ambient 0, diffuse 0; (b) diffuse 0.7; (¢) ambient 0.3; (d) ambient 0.3, diffuse
0.7.

Usually, we want the light source to contribute the majority of lighting in the scene.
Therefore, usually the diffuse value is larger than the ambient value. In most cases, we can
use an ambient value of 0.1 ... 0.2 and a diffuse value of 0.5 ... 0.7.

2. phong and phong _size

The two keywords generate effects of highlights of a hard and shiny surface.

The float that follows "phong" determines the brightness of the highlight. The float
following "phong size" determines its size. The larger the "phong size" value, the harder
and shinier surface, and the smaller the highlight is. Figure [I§] shows some examples with
different values of the two parameters.

3. specular and roughness

Another way to create highlighting effects is to use "specular" and "roughtness" keywords.

The "specular" value is typically in between 0.0 and 1.0. Value 0.0 means no highlight.
Value 1.0 means complete saturation to the color of the light source at the brightest spots of
the highlight.

Keyword "roughness" specifies the size of the highlight. Typical values range from 1.0
(very rough - large highlight) to 0.0005 (very smooth - small highlight). The default value, if
roughness is not specified, is 0.05 (plastic). Figure |19 shows some examples with different
values of the two parameters.

Generally, the highlighting effects generated by "specular" is more realistic than "phong".
But you can play with both when designing the texture.

4. reflection

15

http://www.povray.org/documentation/view/3.6.0/79/
http://www.povray.org/documentation/view/3.6.0/79/

Figure 18: (a) phong 0.3, phong size 25; (b) phong 0.8, phong size 25; (c¢) phong 0.8,
phong size 150.

Figure 19: (a) specular 1.0, roughness 0.005; (b) specular 1.0, roughness 0.1; (c) specular 0.4,
roughness 0.1.

We can specify a value from 0.0 to 1.0 to specify how reflective the surface is. 0.0 would
be no reflection, and 1.0 would be perfect reflection, like a mirror.

Generally, to get a more realistic look, you may find that the higher "reflection" is,
the lower "diffuse" and "ambient" should be. Figure [21] shows some examples of different
reflection values. Notice how the ambient and diffuse values change too.

2.3.0.4 Exercise 2 Try adding object modifiers to the objects in your scene. Try adjust-
ing the settings till it meets your artistic standards!
Example syntax for object modifiers:

‘sphere{ ‘
 <0,0,05, 4 |

16

Figure 20: (a) ambient 0.3, diffuse 0.8, specular 0.8, roughness 0.006, reflection 0; (b) ambient
0.2, diffuse 0.6, specular 0.8, roughness 0.006, reflection 0.3; (c) ambient 0.1, diffuse 0.3,
specular 0.8, roughness 0.006, reflection 0.8

texture {
pigment { Pink filter 0.5 transmit 0.3}
finish {
ambient 0.1
diffuse 0.3
specular 0.8
roughness .006
//phong 0.8
//phong_size 150
reflection {0.8%}

2.4 Operations on the object

2.4.0.1 Transformations We can define transformation of objects by rotate, scale,
translate and transformation matrix.

1. translate The keyword "translate" just move an object in space. It follows a vector,
< a, b, c >, meaning move the object in the z,y, z directions for a, b, ¢ distance, respectively.

‘//Example: translating a sphere to be centered at <1-7,2+4,3+3>=<-6,6,6> ‘
‘sphere { ‘
<1, 2, 3,1 |
‘ translate <-7, 4, 3> ‘

17

2. scale We can also scale the size of an object. It follows a vector, < a, b, ¢ >, meaning
the amount of scaling in each of the x,y, 2z directions.

//Example: stretch the sphere in the x-direction to twice the original
length, and squish in the z-direction to half the original length. We
get an ellipsoid.

sphere {
<0,0,0>, 1

scale <2,1,0.5>

3. rotate
We can rotate an object too. It follows a vector, < a,b,c >, which are the number of
degrees to rotate about the r—, y—, z—axes.

//Example: rotate the ellipsoid around the x-axis for 30 degrees, around the
y-axis for 20 degrees and around the z-axis for -60 degrees.
sphere {
<0,0,0>, 1
scale <2,1,0.5>
rotate <30,20,-60>

4. matrix Using matrix syntax is useful when you have more complicated transformations.
Its syntax is:

matrix <ValOO, ValO1l, ValO2,
Valil0, Valill, Valil2,
Val20, Val21l, Val22,
Val30, Val31l, Val32>

Val00 to Val32 are floating numbers. For a point, P =< px, py, pz >, the matrix transform
it into Q) =< qz, qy, qz > by:

gxr = Val00 % px + Vall0 % py + Val20 * pz + Val30
qy = Val0l x px + Valll x py + Val2l x pz + Val31

qz = Val02 x px + Vall2 x py + Val22 x pz + Val32

18

2.4.0.2 Set operations 1. union; 2. intersection; 3. difference

//Example: difference of a box with a cylinder. We can then add object
modifiers to this new object generated.

difference {
box { <-1.5, -1, -1>, <0.5, 1, 1> }
cylinder { <0.5, 0, -2>, <0.5, 0, 2>, 1 }

textureq{
pigment { Pink }
finish {
ambient 0.3
diffuse 0.7
specular 0.8
roughness .006

}

//the "difference" keyword above can be changed to "union" or "intersection"
to get different objects. The results are shown in the figure below.

(b) ()

Figure 21: (a) union; (b) intersection; (c) difference

2.4.0.3 Exercise 3 Construct and visualize the interesting shape that is the intersection
of the three cylinders 22 + 92 < 1,22 + 22 < 1,12 + 22 < 1.

19

2.5 Define shapes using mathematical expressions

The section is perhaps very useful for our purposes - as we are mathematically oriented users!
It allows us to use mathematical functions and expressions to define the shape of an object.

2.5.0.1 isosurface '"isosurface" generates objects whose shapes are defined by mathe-
matical expressions. Its syntax is:

//Example syntax of a sphere
isosurface {
function { sqrt(pow(x,2) + pow(y,2) + pow(z,2)) - 1 }
contained_by { box { -10, 10 } } //here, -10 is short for -10%<1,1,1>
[threshold FLOAT_VALUE]
[open]
[OBJECT_MODIFIERS...]

In "function", we would enter the function that define the shape. Here, for a sphere
defined by y/22 + y2 + 22 — 1 = 0, we would put the left hand side of the equation in.

There is an optional argument, "threshold", which defaults to 0. Here, the syntax means
to generate a shape defined by "function"="threshold". Therefore, if we input "threshold 3",
the sphere would become /22 + y? + 22 — 1 = 3, which would have radius 2, instead of 1.

Figure 22: A sphere generated by isosurface.

"contained by" require input of a box object or a sphere object. The object poses a
limit /bound of the shape generated by the function. Here, in order for the sphere to show,
the box needs to be larger than the sphere, so that it contains the sphere object. For example,
in Fig , both (a) and (b) are generated with function input vx? + 22 — 1, which gives a
cylinder surface with radius 1. However, (a) is contained by a box from < —2, -2, -2 > to

20

< 2,2,2 >, and therefore, the height of the cylinder is bounded by the box and is 4; (b) is
contained by a box half the size, and o the height of the cylinder is 2.

There is also an option of "open", which would hide the object defined in "contained by",
and only show the surface defined by the mathematical function. This is shown in (c¢) in

Fig. 23

L BRSSO
)

| J J

(a) (b) (c)
Figure 23: (a) box -2,2; (b) box 1,1; (c¢) box -1,1, with "open" keyword

//Example syntax of a cylinder

isosurface {
function { sqrt(pow(x,2) + pow(z,2)) - 1 }
contained_by { box { -1, 1 } }
open

textured{
T_Stonel9
scale 5
finish {
ambient 0.3
diffuse 0.7

2.5.0.2 polynomial object Keyword "poly" is used in building a polynomial object.
Let’s look at a simple example of how to build a sphere from scratch, using "poly". The

sphere function is:
Vet tyr+ 2=

21

Converting this to polynomial form,
24yt 4+ 22—t =0.

This means that we need a 2"¢ degree polynomial, with the corresponding coefficients for
each term in the equation.

//example syntax for creating a sphere using poly
#declare Radius=1;

1,0,0,0,1,
0,0,1,0,-Radius*Radius>

The 10 entries in the vector < Al, A2, A3,..., A10 > in the syntax above, corresponds to

the coefficients of each term in a 2°¢ degree polynomial.
20 |y ez | @ |2 yz |y |22]2 | 1

T Y Z
coefficients | A1 [A2 | A3 | A4 | A5 [A6 | A7 | A8 | A9 | A10

Here are some shortcuts of different degrees of polynomials:
e 27 degree: quadric

e 3'4 degree: cubic

o 40 degree: quartic

So, for example, the sphere can alternatively be constructed using "quadric" keyword:

//example syntax for creating a sphere using shortcut of 2nd degree poly
#declare Radius=1;
quadric
{
<1,0,0,0,1,
0,0,1,0,-Radius*Radius>

22

2.5.0.3 Exercise 4 Our favorite donut shape (torus) has polynomial representation:
ot 2027 422722 = 2(ri D)t oyt 22 2(r —)yt 2t = 2(rE) 2 4 (ri —12)? = 0.

Could you make a donut shape using poly, or one of the shortcuts? What degree of polynomial
should we use? To match the coefficients and the terms in the polynomial, you can refer to
the table provided in POV-Ray documentation: http://www.povray.org/documentation/
view/3.6.1/298/

2.5.0.4 superellipsoid This is useful when we want to generate boxes with rounded
corners. The syntax is:

superellipsoid

{

<e, n>
[OBJECT_MODIFIERS...]

where 0 < e,n < 1. This gives a shape defined by the mathematical equation
2 2, (e 2

If we choose e = 1,n = 1, we get a sphere.

2.5.0.5 Exercise 5 Recall the superellipsoid movie Chris shown in class... We can define
a superellipsoid shape with the 4-vector-norm. For example,

(z* +y* + 24)% R

As a practice for the syntax, could you construct three superellipsoid using the above three
methods respectively: (a) using "isosurface"; (b) using "poly" or its shortcuts; (c¢) using
"superellipsoid" keyword, what values of r,n should you choose? Lastly, consider assigning
them different colors and textures! :)

2.6 Generating POV-Ray file from program outputs

A note on scientific visualization here! If you have outputs from some program, for example, a
set of points, you can have the output written in POV-Ray syntax when printing the outputs,
and save in ".pov" format. Then, the file can be rendered in POV-Ray!

Example: liss 3d.py, liss_3d.pov for a 3D Lissajous figure. https://mathcurve.com/
courbes3d.gb/lissajous3d/lissajous3d.shtml

23

http://www.povray.org/documentation/view/3.6.1/298/
http://www.povray.org/documentation/view/3.6.1/298/
https://mathcurve.com/courbes3d.gb/lissajous3d/lissajous3d.shtml
https://mathcurve.com/courbes3d.gb/lissajous3d/lissajous3d.shtml

2.6.0.1 Exercise 6 Creativity time! Create whatever scene you like! The only require-
ment is that it contains an object defined by mathematical expressions. What mathematical
shapes you find beautiful? Try adjusting the lights, surface properties, etc, till it meets
your artistic standards! Alternatively, you can create you object(s) based on some program
outputs!

Exercise 5, 6 are take home exercises. The deadline for submission is Thursday, October
7 at 5pm, via Canvas. Please prepare a PDF with your rendered images, labeled for each
exercise. Also, write down the names of members in your group on the PDF. Please also
prepare the code files you use for the exercises. Lastly, please put everything in a ZIP file
and submit on Canvas.

3 Reference

http://www.povray.org/documentation/

http://www.lilysoft.org/CGI/SR/Spectral/20Render.htm

https://tug.org/pracjourn/2007-4/walden/color.pdf

https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg

24

http://www.povray.org/documentation/
http://www.lilysoft.org/CGI/SR/Spectral%20Render.htm
https://tug.org/pracjourn/2007-4/walden/color.pdf
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg

	Introduction
	Basics
	Setting the scene
	Some basic objects and object modifiers
	Object modifiers
	Operations on the object
	Define shapes using mathematical expressions
	Generating POV-Ray file from program outputs

	Reference

