AMZ205: Introduction to the command line

In the AM205 command-line workshop, we covered a wide range of basic commands for
the Linux terminal environment, and we played several rounds of the unique number
game on an Amazon Cloud server. A short writeup should be submitted to Canvas by
September 22 at 5pm, consisting of the following!

1. Submit the command you used for Exercise 2(a) to solve the first code, involving
substituting prime and non-prime numbers. (You may optionally submit the decoded
messages for second and third codes.)

2. Submit a strategy for the unique number game (Exercise 3, listed below).

As for all AM205 group activities, you can can submit solutions in groups of 1-3. If you
submit in a group, only one member needs to upload a writeup and list the names of
groupmates on the submission.?

The unique number game is described in more detail in the following sections. You can
get the associated files in two places:

1. On the Amazon Cloud server which is accessible via SSH at 3.89.49.217. The files are
in the /shared/ung_files directory.

2. In the AM205 group activities Git repository, linked to from the front page of the
AM205 website.

While you can develop your strategy for the unique number game on your own computer,
we recommend that you try running it on the Amazon Cloud server to practice Linux
terminal commands. Note that the temporary Amazon Cloud server will be terminated in
the evening of October 1, so please ensure any files are copied off it by then.

The unique number game

In the unique number game, there are n players and each must choose an integer between
0 and 99. The winner is the person who chose the smallest number that was not chosen by
anyone else. For example, if n = 5 the players might make the following choices:

Player‘A‘B‘C‘D‘E
Choice | 0 [5]2[3 [0

In this example, players A and E both chose zero so they invalidate each other. Player C
made the lowest remaining choice and is therefore the winner. In certain rare cases, such
as if B and D switched their choices to two, a game may result in no winner.

ISince exercise 1 was very brief, you aren’t required to submit anything for this.
2Since this was an introductory workshop we expect most students will find it easiest to write solutions
themselves. Subsequent workshops will likely require more group interaction.

1

https://github.com/chr1shr/am205_g_activities

If the unique number game is played with human players, then choosing a number
requires some psychology about what the other players will pick. Lower numbers are more
desirable, but they are risky choices since there may be a greater probability that others
will also choose them. While at the University of Cambridge, Chris played this game twice
with n = 100 undergraduate friends. The winning number in the first game was two,
and the winning number in the second game was thirteen. For many repeated games, we
expect that a mixed-strategy Nash equilibrium may exist, where different numbers are
chosen with different probabilities.

The game

We are going to play many repeated unique number games in AM205. Your job is to write
a Python® function that implements a strategy in this repeated game. The function should
be called play and should accept five inputs n, hist, 1w, 1c, y—these will be discussed in
more detail later. A simple strategy, given in fixed_choice.py, would be just to pick a
tixed number:

def play(n,hist,lw,lc,y):

Just always return 2
return 2

Alternatively, as in random_choice.py, one could choose the numbers from 0 to 11 with
equal probability:

from random import randint
def play(n,hist,lw,lc,y):

Return a random number between 0 and 11
return randint (0,11)

Your function should be called firstname_lastname.py and should be uploaded to Canvas
with your assignment.

Once we have collected all of the programs we will run a hundred sets of ten million
rounds each. The number of wins for each player will be counted across all 10° rounds.

Testing a strategy

We have provided you with a program called game_test.py that can be used to test
different strategies against each other. It is currently set up to simulate 20,000 rounds
with n = 36 players. 35 of the players use the random_choice.py strategy, and the last
player uses a very basic strategy in test_strategy.py. Currently the player using the test
strategy only wins a small fraction of approximately 0.92% of the rounds, much less than

31f you are not familiar with Python, the teaching staff will help to translate your function.

https://en.wikipedia.org/wiki/Nash_equilibrium

an equal share of % = 2.78% of the rounds. You can try modifying this function to do
better.

More available information

The function play will be passed additional information about the current state of the
game and what has happened in previous rounds. If you wish, you can make use of some
of this information to devise a strategy. The five inputs are as follows:

n The total number of players. This will likely be between 35 and 40.

hist A list of length 100, containing the total number of choices of each number across all
previous rounds that have been played so far.

1w The winning number in the previous round. If there was no winner in the previous
round this will be set to 100. In the very first round, before anything has been played,
this will be set to zero.

lc A list of length n of all of the players’ choices in the previous round. In the very
tirst round, before anything has been played, all entries will be set to zero. Each
player will occupy the same entry in the list throughout the game; for example, by
repeatedly examining 1c [6] you could see the entire history of one particular player.

y Your position within the 1c list. Hence 1c[y] will be equal to your choice in the
previous round.

Three sample strategies that make use of some of this information are provided for you to
review:

prev.py If the previous winning choice was 1w, then that may be a good number in general.
This function returns 1w-1, 1w, or lw+1 with equal probability.

histo.py This function chooses the lowest number whose probability of occurrence in the
previous games is less than %, and adds a small random displacement.

mean.py This function calculates the mean of the winning choices in all previous games and
chooses that, rounded to the nearest integer.

Exercise 3

Devise a strategy for the unique number game following the description and
rules above. Anything is acceptable, and you can even copy verbatim or
modify one of the basic examples discussed above. Submit it with name
firstname_lastname.py.

Technicalities

The following technicalities should not be relevant for any basic strategy but may come
into play if you want to try something more elaborate:

1.

We will review all submissions prior to playing the game. If we notice any functions
that are liable to crash, we may contact you or make minor fixes.

Designing strategy that involves cooperation beforehand with other students is
allowed. For example, if you restrict your choice to odd numbers, and your friend
restricts his/her choice to even numbers, then at least you know that you will
never invalidate each other’s choices. However, this a small advantage that may be
outweighed by many other factors. Within the game, active communication between
two strategies, such as by sharing data, is not allowed. The positions of each player
within 1c will be randomized, so there will be no straightforward way to identify
your friend.

. If your function returns a value less than zero, it will be treated as choosing zero. If

your function returns a value greater than 99, it will be treated as choosing 99.

The function can make use of any of the standard Python libraries, as well as SciPy
and NumPy. However, the routine that you submit should be pure Python—calling
some other pre-compiled code is not allowed.

. There will be a limit on how long your function can take. If a function (a) takes

longer than 0.1 s more than 100 times in any set of rounds, (b) ever takes longer than
10's, or (c) crashes, it will be disqualified and the game will be reset to not include
this function. The hundred sets of rounds will be run on a variety of Linux and Mac
workstations.

The games will be run on machines with at least two gigabytes of memory. In the
unlikely event that the games run out memory, functions that consume the most
memory will be disqualified and the game will be reset.

The teaching staff may disqualify any entry that is deemed to be subverting the rules
or not in the spirit of the game.

