
Harvard Applied Mathematics 205

The Kalman Filter

Presented By: Michael S. Emanuel

23-Sep-2021

Outline

I Introduction and Motivation

I Kalman Filter in One Dimension

I Kalman Filter in Rn

I Group Activity: Kalman Filter Exercise

Introduction and Motivation

Controlling a Spacecraft

How do you control a spacecraft?

I You receive a stream of noisy sensor readings.

I You also know the equations of motion and thrust.

I Each approach would give you a different estimate.

I What is the best way to combine them?

GPS vs. “Integrated Odometer”

Have you ever been in a car with a GPS system?

What happens when the signal is lost, e.g. in a tunnel?

If it’s a self driving car, the car can sense its speed and direction.

How should we estimate the car’s position?

Drone Navigation

Have you ever flown a drone or seen a friend do it?1

Recent models include stability control and automatic landing.

The GPS signals have an error tolerance on the order of 5 meters.

How do they do it?

1Danyun is a really good drone pilot.

Robot Control System

Suppose you work at Boston Dynamics on the robot dog spot.

You have a detailed physics model of how spot moves.

You also have sporadic and noisy sensor readings.

How do you plan the robot’s motion?

The Kalman Filter for Navigation and Control

The Kalman Filter provides an efficient procedure for combining
noisy signals in a system with well understood dynamics.

I Historically used by NASA in the US space program

I State estimation and control in many vehicles and robots

I Rigorous probabilistic model can derive equations

I Ostensibly a linear model, but many control problems can be
effectively linearized over the relevant time scale

Learning Goals

I Understand the theoretical underpinning of the Kalman Filter

I Learn the equations to update the estimated state x̂ and
variance P̂ after a sensor reading z

I Be positioned to use the Kalman Filter intelligently in
applications

I Give those new to control theory a useful introduction

Kalman Filter in One Dimension

Problem Specification

Setup: 1D dynamical system in discrete time.

xk+1 = Axk + w

zk+1 = xk + v

x is the state variable (e.g. position).
z is a noisy measurement from a sensor.
A is a scalar controlling the dynamics.
w and v are noise on the input and sensor readings with
distributions w ∼ N (0, τ2) and v ∼ N (0, σ2).

Random Variables and Scalar Parameters

At the risk of being pedantic, let’s carefully separate categories of
random variables from scalar parameters.

I x and z are random variables (state and sensor readings)

I w and v are random variables (noise on x and z)

I A is a known scalar parameter (dynamics of x)

I τ2 and σ2 are scalar variances that we assume

Realizations of Random Variables and Parameter Estimates

I zk is one realization of z at step k ; it is observed

I xk is one realization of x at step k , it is hidden

I x̂k is our estimate of the mean of x at the start of step k

I P̂k is our estimate of the variance of x at the start of step k

I Our belief starting step k is xk ∼ N (x̂k , P̂k)

Prediction of Position x1: Setup

Initial state: position x is normal with mean µ0 and variance P0:

x0 ∼ N (µ0,P0)

Calculate probability distribution of x1 using L.O.T.P.:

p(x1) =

∫
p(x1|x0)p(x0)dx0

The variable x1|x0 is distributed ∼ N (Ax0, τ
2), so p(x1|x0) is the

normal PDF of this distribution, namely

p(x1|x0) = (2π)−
1
2 exp

{
−1

2(x1 − Ax0)2/τ2
}

.

The variable x0 is distributed ∼ N (µ0,P), so p(x0) is the PDF

p(x0) = (2π)−
1
2 exp

{
−1

2x
2
0/P

2
0

}
.

Prediction of Position x1: Calculation

While it’s possible to do a messy integral in Mathematica...
Here is the clean Stat 110 way to calculate the distribution of x1:

I x1 = (Ax0) + w

I (Ax0) and w are both normally distributed random variables

I w is just random noise, so it’s independent of x0
I Theorem (Stat 110): The sum of two independent normal

random variables is also a normal random variable...

I and the means and variance just add up

I ⇒ x1 is normal with mean Aµ0 + 0 and variance A2P0 + τ2.

Prediction of Position x1: Result

It’s customary to drop the notation µ0 and just call the expected
initial position x0. Then

x1 ∼ N (Ax0,A
2P0 + τ2) (1)

We write the predicted position x̂1 and updated variance as P1:

x̂1 = Ax0

P̂1 = A2P0 + τ2

x1 ∼ N (x̂1, P̂1)

Correction of Position x1: Setup

After we see the sensor reading z1, what is the updated probability
distribution of x1? Use Bayes’ Rule!

p(x1|z1) ∝ p(z1|x1)p(x1)

We know the prior x1 from Eq. 1. And the conditional distribution
of z1 given x1 is a normal that just adds noise of variance σ2,

z1|x1 ∼ N (x1, σ
2)

Multiplying the two terms:

p(x1|z1) ∝ exp

(
−1

2

(z1 − x1)2

σ2

)
exp

(
−1

2

(x1 − x̂1)2

P1

)

Correction of Position x1: Calculation

Now choose x̂1 to maximize log of posterior p(x1|z1).

∂ log p(x1|z1)

∂x1
= −(x1 − z1)

σ2
− (x1 − x̂1)

P̂1

= 0

⇒ x1 =

(
z1
σ2

+
x̂1

P̂1

)/(
1

σ2
+

1

P̂1

)
=

P̂1z1 + σ2x̂1

P̂1 + σ2

(2)

Kalman Gain Definition

There is a special way to write Eq. 2. Label the previous estimate
of x̂p1 (for the predictor step) to disambiguate it from this revised
estimate, x̂1. Similarly, label the previous variance estimate P̂p

1 .
Define the Kalman gain, K1 by

K1 ≡
P̂p
1

P̂p
1 + σ2

(3)

Then the updated position mean x̂1 and variance P̂1 are

x̂1 = x̂p1 + K1(z1 − x̂p1)

P̂1 = (1− K1)P̂p
1

(4)

Kalman Filter 1D Summary

Here is one full update cycle from (x̂k−1, P̂k−1) to (x̂k , P̂k):

I x̂pk = Ax̂k−1 (predictor step - position)

I P̂p
k = A2P̂k−1 + τ2 (predictor step - variance)

I Kk =
P̂p
k

P̂p
k+σ2

(Kalman gain)

I x̂k = x̂pk + Kk(zk − x̂pk) (corrector step - position)

I x̂k = (1− Kk)P̂p
k (corrector step - variance)

Key insight: the model always updates the probability distribution
of xk and Pk to be normal!
The above recipe was derived to calculate x̂1 and P̂1 from x̂0, P̂0

and z1 but it works for any other k equally well.

Two Extreme Cases: σ = 0 or σ =∞

When σ2 = 0, our sensors have no noise.

I The Kalman gain K1 goes to one

I The corrector step simplifies to x̂1 = z1.

I Intuition: when the sensor is perfect, our estimate is to
parrot back the sensor reading.

When σ2 =∞, our sensors are random number generators.

I The Kalman gain K1 goes to zero

I The corrector step simplfies to x̂1 = x̂p1 .

I Intuition: when the sensor is garbage, ignore it and keep the
prior.

Kalman Filter in Rn

Dynamical System Specification

We model a linear dynamical system with update rule

xk+1 = Axk + Buk + wk (5)

I Vector x ∈ Rn - the state of the system

I Matrix A ∈ Rnxn - the transition matrix

I Vector u ∈ Rr - the control inputs vector

I Matrix B ∈ Rnxr - the control output matrix

I Vector w ∈ Rn - Gaussian input noise, w ∼ N (0,Q)

The terms B and u are optional for problems that have control
inputs. They can also be abused to shoehorn locally linear
problems into this framework.

Measurement Process

Measurements are linear in the inputs, with noise added

zk = Hxk + vk (6)

I Vector z ∈ Rm - the measurement outputs

I Matrix H ∈ Rmxn - the connection matrix (x to z)

I Vector v ∈ Rm - the sensor noise ∼ N (0,R)

Estimation Error and Noise Covariance

Define x̂k as the estimate of current state at step k.
The estimation error ek is

ek = xk − x̂k (7)

Define the covariance matrix Pk of the estimation errors by

Pk = E[eke
T
k] = E[(xk − x̂k)(xk − x̂k)T] (8)

Define matrices Q and R for the covariances of w and v:

Q = E[wwT]

R = E[vvT]

These are assumed to be positive semi-definite.

Predictor Setup

In the predictor step we calculate an a priori estimate

x̂pk = Ax̂k−1 + Buk−1 (9)

Calculate the covariance Pp
k of the measurement error ek

Pp
k = E[(xk − x̂pk)(xk − x̂pk)T] (10)

Simplify the difference term:

xk − x̂pk = Axk−1 + Buk−1 + wk−1 − Ax̂k−1

= Aek−1 + Buk−1 + wk−1

Predictor Covariance Calculation

Recall that constants don’t affect covariance, i.e.
Cov[X + c ,Y + c] = Cov[X ,Y].
Buk−1 is assumed known so it’s like a constant and

Pp
k = Var[Aek−1 + wk−1]

The error ek−1 accumulated prior to step k − 1, so it is
independent of the signal noise wk−1, which occurs between steps
k − 1 and k. Therefore the two terms are independent and the
variances add.

Predictor Covariance Calculation

Completing the calculation of the covariance from last page:

Var[Aek−1] = E[(Aek−1)(Aek−1)T]

= E[A(ek−1e
T
k−1)AT] = APk−1A

T

Var[wk−1] = E[wwT] = Q

Combining the two terms we find

Pp
k = APk−1A

T + Q (11)

Predictor Covariance: Comparison to Scalar Case

Compare the matrix / vector covariance of the predictor in Eq. 11
with the scalar result.

I The term A2Pk−1 has been replaced by APk−1A
T .

I If we view the scalar A as a 1× 1 matrix, we can see these are
in fact consistent.

I The noise variance σ2 has been replaced by the noise
covariance matrix Q

I This is also consistent since the 1× 1 “covariance matrix” of
a scalar is just its variance.

A recurring theme in numerical linear algebra is that a matrix
times its transpose is often analogous to a squared scalar number
in a 1D problem.

Corrector Step: Setup

Now suppose a sensor measurement zk becomes available.
We will update x̂k to xk via the equation

x̂k = x̂pk + Kk(zk −Hxpk) (12)

The term zk −Hxpk is called the measurement residual.

Why is that? If our prediction xpk had been correct, the
measurement would have been Hxpk .

The actual result was zk , so the measurement residual is the
“surprise” (new information gleaned).

The 1D measurement residual was just zk − x̂k since we had no H
matrix in that case.

Corrector Step: Measurement Error

Substitute using zk = Hxk + v in Eq. 12 and

x̂k = x̂pk + Kk(Hxk + v −Hxpk)

= (In −KkH)x̂pk + KkHxk + Kkvk
(13)

Now substitute (13) for x̂k in the error covariance in Eq. 8

Pk = E[(xk − x̂k)(xk − x̂k)T]

First simplify the measurement error term:

xk − x̂k = xk −
{

(In −KkH)x̂pk + KkHxk + Kkvk
}

= (In −KkH)xk − (In −KkH)x̂pk −Kkvk

= (In −KkH)(xk − x̂pk)−Kkvk

(14)

Corrector Step: Variance

Now calculate the variance Pk using Eq. 14 (measurement error).
Notice the term (In −KkH)(xk − x̂pk) is a random variable that is
determined before the noise vector vk is drawn from N (0,R).
So the cross terms vanish and Pk is the sum of two variances.

Pk = E[
{

(In −KkH)(xk − x̂pk)
}{

(In −KkH)(xk − x̂pk)
}T

]

+ E[(Kkvk)(Kkvk)T]

= E
[
(In −KkH)

{
(xk − x̂pk)(xk − x̂pk)T

}
(In −KkH)T

]
+ E

[
Kk

{
vkv

T
k

}
Kk

] (15)

Now, by definition, the first term in blue is just Pp
k (the variance

before we did the correction). And the second term in blue is just
the noise covariance R.

Corrector Step: Optimization

Putting the pieces of this epic calculation together,

Pk = (In −KkH)Pp
k(In −KkH)T + KkRK

T
k (16)

It remains to choose Kk to minimize a suitable error.
A natural choice is the total variance of the estimates,
TV =

∑
Pkk . This is just the trace tr(Pk).

Select Kk to minimize tr(Pk). Use scalar-matrix differentiation
techniques2 and we obtain

∂tr(Pk)

∂Kk
= −2(HPp

k)T + (HPp
kH

T + R)−1 (17)

2A good reference is The Matrix Cookbook

Corrector Step: Kalman Gain

Set the derivative in Eq. 17 to zero for the optimal Kalman gain

Kk = Pp
kH

T
(
HPp

kH
T + R

)−1
(18)

Use this matrix for Kk in Eq. 12 to update x̂pk to x̂k .
We can substitute Eq. 18 for Kk in Eq. 16. The result after a
somewhat messy calculation is

Pk = (In −KkH)Pp
k (19)

Kalman Filter: Summary

Here is one full update cycle from (xk−1,Pk−1) to (xk ,Pk)

I x̂pk = Ax̂k−1 + Buk (Eq. 9, Predictor)

I Pp
k = APk−1A

T + Q (Eq. 11, Predictor Variance)

I Kk = Pp
kH

T
(
HPp

kH
T + R

)−1
(Eq. 18, Kalman Gain)

I x̂k = x̂pk + Kk(zk −Hxpk) (Eq. 12, Corrector)

I Pk = (In −KkH)Pp
k (Eq. 19, Corrector Variance)

I Invariant: xk ∼ N (x̂k ,Pk) after measurement zk

Comparing Vector to Scalar: Perfect Correspondence!

We can build intuition by comparing the vector formulas to the
scalar formulas.
Assume here that H = I, i.e. the measurement zk = xk + vk

Var Shape Vector Scalar

x̂pk nxn Ax̂k−1 + Buk Ax̂k−1 + Buk

Pp
k nx1 APk−1A

T + Q A2Pk−1 + Q

Kk nxm Pp
k

(
Pp
k + R

)−1
(P̂p

k)(P̂p
k + R)−1

x̂k nx1 x̂pk + Kk(zk − xpk) x̂pk + Kk(zk − x̂pk)

Pk nxn (In −Kk)Pp
k (1− Kk)P̂p

k

In making the comparison, I renamed τ2 to Q and σ2 to R.

Group Activity: Kalman Filter Exercise

Group Activity: Kalman Filter Simulation

Problem: A projectile is launched from the ground at position
(x , y) = (0, 0) with initial velocity (u, v) = (50, 100).

The equations of motion are assumed to be

ẋ = u u̇ = 0

ẏ = v v̇ = g
(20)

where g = 9.80m/s2 is Earth’s gravitational field.

Projectile Problem: Equations of Motion

Discretize time using a constant time step dt.

Assume the input noise w is in velocity units.

Assume the initial conditions are known exactly, i.e. P0 = 0I4.
The equations of motion are

xk+1 = xk + udt + wdt

yk+1 = yk + vdt + wdt

uk+1 = ukdt + wdt

vk+1 = vkdt − gdt + wdt

(21)

Baseline Simulation and Synthetic Data

Analyze this problem with a Kalman Filter, synthetically simulating
your own data.

I Use the state vector x = [x , y , u, v]T to formulate the
dynamics in matrix form.

I Simulate the evolution of the projectile until T=25 sec or it
hits the ground. Use dt = 0.005s and τ = 0.2m

s .
Consider this to be the “ground truth.”

I Code a function to create synthetic data with noisy sensor
measurements of the position.
The sensor readout is (x , y) with σ = 10m. What is H?

Kalman Filter and Simulated Runs

Now experiment with a Kalman Filter on the simulated data

I Code a Kalman filter to estimate the projectile’s trajectory.
Feed it input data every Nfreq steps; Nfreq is a parameter.

I Set Nfreq = 1 and plot three series: the true trajectory, the
measured trajectory, and the filtered trajectory.

I Repeat this previous step, this time using Nfreq = 500.

I Experiment with changing σ and τ .

	Introduction and Motivation
	Kalman Filter in One Dimension
	Kalman Filter in Rn
	Group Activity: Kalman Filter Exercise

