
Math 126: Homework 13 solutions

1. (a) The initial data can be parameterized according to

x = f (s) = s, y = g(s) = 0, u( f (s), g(s)) = h(s) = sin s.

The characteristics are determined by the ODE system

dx
dt

=
2xy

1 + y2 , (1)

dy
dt

= 1, (2)

dz
dt

=
−zy

4
. (3)

Equation 2 gives y = t, and hence

dx
dt

=
2xt

1 + t2

so
dx
x

=
2t dt

1 + t2

which gives
log x = C + log(1 + t2)

for some constant C. Hence, the characteristic passing through (s, 0) at t = 0 is

x = s(1 + t2).

Equation 3 then gives
dz
dt

= −zt
4

so
dz
z

= − t dt
4

which can be integrated to give

log z = − t2

8
+ D

for some constant D. By using the initial data, it can be seen that

z = Z(s, t) = e−t2/8 sin s

The family of characteristics for different values of s is shown is Fig. 1
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Figure 1: Characteristics of the partial differential equation considered in question 1, pro-
jected into the xy plane.

(b) From part (a), it can be seen that

s =
x

1 + y2 , t = y,

and hence

u(x, y) = Z(s, t) = e−y2/8 sin
(

x
1 + y2

)
. (4)

(c) Taking partial derivatives of Eq. 4 gives

ux(x, y) =
e−y2/8

1 + y2 cos
(

x
1 + y2

)
uy(x, y) = e−y2/8

(
−y

4
sin
(

x
1 + y2

)
− 2xy

(1 + y2)2 cos
(

x
1 + y2

))
Hence

2xy
1 + y2 ux =

2xye−y2/8

(1 + y2)2 cos
(

x
1 + y2

)
and so

2xy
1 + y2 ux + uy = −ye−y2/8

4
sin
(

x
1 + y2

)
= −yu

4
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Figure 2: Three-dimensional plot of the solution u(x, y) of question 1.

since the terms involving cosine will cancel each other. Thus u(x, y) satisfies
the PDE. In addition

u(x, 0) = e0 sin
(

x
1 + y2

)
= sin x

so the solution satisfies the initial data.

(d) Figure 2 shows a plot of the solution. It can be seen how the sinusoidal ini-
tial data is transported along the parabolic characteristics. A small amount of
decay is also visible in the y direction, due to the presence of the exp(−y2/8)
term in the solution.

2. The characteristics will be given by

dx
dt

= −y,
dy
dt

= x

which is equivalent to

0 = x dx− (−y)dy = x dx + y dy.
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This has a first integral
ψ(x, y) = x2 + y2

and thus the characteristics are given by the curves where ψ(x, y) is constant. Hence
a typical characteristic is

x2 + y2 = R2

for some constant R2, which corresponds to a circle of radius R. The characteristics
are a family of concentric circles centered on the origin. Since the solution is constant
along each characteristic a general solution can then be written as

u(x, y) = G(x2 + y2)

for some function G(λ). The initial condition states that

u(x, 0) = h(x) = G(x2)

and similarly
u(−x, 0) = h(−x) = G((−x)2) = G(x2).

For a solution to exist it is therefore necessary that h(x) = h(−x), so h is even. This
is reasonable, since any characteristic circle of radius R will intersect the initial data
at ±R, so the values must be consistent. For any even choice of h, a general solution
can be written as

G(λ) = h(
√

λ)

defined for λ ≥ 0, so that
u(x, y) = h(

√
x2 + y2).

Hence h being even is both a necessary and sufficient condition for a general solu-
tion to exist.

3. (a) The characteristics are given by the ODE system

dx
dt

= 1,
dy
dt

= 3x2,
dz
dt

= 3zx2

and the initial data can be can be parameterized according to

x = f (s) = s, y = g(s) = 0, u( f (s), g(s)) = h(s).

Hence
x = X(s, t) = s + t (5)

so
dy
dt

= 3(s + t)2

and therefore
y = Y(s, t) = (s + t)3 − s3 (6)

where the constants of integration have been chosen so that the characteristics
pass through the initial data when t = 0.
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Figure 3: Characteristics for the partial differential equation considered in question 3.

(b) The characteristics are shown in Fig. 3. The Jacobian is given by

J(s, t) =

∣∣∣∣ Xs(s, t) Ys(s, t)
Xt(s, t) Yt(s, t)

∣∣∣∣
=

∣∣∣∣ 1 3(s + t)2 − 3s2

1 3(s + t)2

∣∣∣∣
= 3(s + t)2 − 3(s + t)2 + 3s2 = 3s2

and thus J(s, 0) = 3s2. At s = 0, the Jacobian vanishes, implying that the char-
acteristics and the initial data are tangent, which is in agreement with shapes of
characteristics shown in Fig. 3. As described in the textbook, for a C1 solution
to exist,

rank
(

a(0, 0, z0) b(0, 0, z0) c(0, 0, z0)
f ′(0) g′(0) h′(0)

)
= 1.

This can be written as

rank
(

1 0 0
1 0 h′(0)

)
= 1

and hence h′(0) = 0.

(c) To find the general solution, first consider the differential equation for z given
above:

dz
dt

= 3zx2.
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Thus
dz
z

= 3(s + t)2dt

and hence
log z = (s + t)3 + C

for some integration constant C. Using the initial condition shows that

z = Z(s, t) = h(s)e(s+t)3−s3
.

Equations 5 and 6 show that

s = S(x, y) = 3
√

x3 − y

and
t = T(x, y) = x− 3

√
x3 − y

so the general solution is

u(x, y) = Z(S(x, y), T(x, y)) = h( 3
√

x3 − y)ey

If h(x) = x2, then h′(0) = h(0) = 0, so the condition from part (b) is satisfied.
However,

u(x, y) = (x3 − y)2/3ey

and hence

uy(x, y) =

(
−2

3 3
√

x3 − y
+ (x3 − y)2/3

)
ey

so

uy(0, y) =
(

2
3 3
√

y
+ (−y)2/3

)
ey

which is unbounded as y → 0 and thus u is not C1 in a neighborhood of the x
axis. This implies that while the condition from part (b) is necessary for a C1

solution to exist, it is not sufficient. Note that other choices of h(s) would lead
to a C1 solution: if h(s) = s3, then

u(x, y) = (x3 − y)ey

which is C1 everywhere.

4. This problem can be expressed as

F(x, y, u, ux, uy) = u2
x + u2

y − 4u = 0.
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Following the notation of the textbook, the last two variables of F can be denoted as
p = ux and q = uy, so

F(x, y, u, p, q) = p2 + q2 − 4u. (7)

The characteristic system is then given by

dx
dt

= Fp = 2p (8)

dy
dt

= Fq = 2q (9)

dz
dt

= pFp + qFq = 2p2 + 2q2 (10)

dp
dt

= −Fx − pFu = 4p (11)

dq
dt

= −Fy − qFu = 4q. (12)

The initial data is

f (s) = cos s, g(s) = sin s, h(s) = 1.

Let ϕ(s) and ψ(s) be the initial conditions on p and q respectively. Equation 7 re-
quires that

ϕ2 + ψ2 = 4

and the condition h′(s) = ϕ(s) f ′(s) + ψ(s)g′(s) requires that

−ϕ sin s + ψ cos s = 0.

This gives one solution as

ϕ = 2 cos s, ψ = 2 sin s

and a second solution as

ϕ = −2 cos s, ψ = −2 sin s.

Consider the first solution for the initial data. Equation 12 shows that q = Ce4t for
some constant C, and to be consistent with the initial data, this leads to

q = 2e4t sin s.

Equation 9 then becomes
dy
dt

= 4e4t sin s

and hence
y = e4t sin s + C2
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for some constant C2. Using the initial data g(s) = sin s gives

y = e4t sin s.

A similar consideration of Eqs. 11 and 8 gives

p = 2e4t cos s, x = e4t cos s.

Thus
dz
dt

= 8e8t(cos2 s + sin2 s) = 8e8t

and hence
z = e8t.

To find a general solution u(x, y), note that

x2 + y2 = e8t(cos2 s + sin2 s) = e8t

and thus
u(x, y) = z = x2 + y2.

Now consider the second case for the initial data. Then

q = −2e4t sin s

and hence Eq. 9 becomes
dy
dt

= −4e4t sin s,

and by considering the initial data g(s) = sin s,

y = (2− e4t) sin s.

Similarly
p = −2e4t cos s, x = (2− e4t) cos s.

The equation for dz/dt is the same with the same initial data and hence z = e8t still
holds. To find a general solution u(x, y), note that

x2 + y2 = (2− e4t)2

so
e4t = 2−

√
x2 + y2

and thus the general solution is

u(x, y) =
(

2−
√

x2 + y2
)2

.

Note that extending this solution outside of the disk x2 + y2 = 4 would require
further analysis, since t→ −∞ as x2 + y2 → 4.
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