
Math 126: Homework 12 solutions

1. For this equation, the flux is given by q(u) = u2/2. Let the trajectory of the shock
starting from x = 1 be given by s(t). By the Rankine–Hugoniot condition,

ṡ(t) =
q(1)− q(0)

1− 0
=

1
2

and thus s(t) = 1 + t
2 initially. From the regions where u(x, 0) = 0, the characteris-

tics will have velocity zero, and from the regions where u(x, 0) = 1, the characteris-
tics will have velocity one. This will lead to a rarefaction fan of characteristics in the
region 0 < x < t where the characteristics are

x = q′(u)t

and hence ufan(x, t) = x/t. The front of the rarefaction fan is at x = t, and will hit
the shock when

t = s(t) = 1 +
t
2

corresponding to t = 2. After this time, the shock’s velocity will be given by

ṡ(t) =
q(ufan(s(t), t))− q(0)

ufan(s(t), t)− 0
=

ufan(s(t), t)
2

=
s(t)
2t

,

and thus the shock’s velocity will satisfy the ODE

ds
dt

=
s
2t

which can be integrated to
s(t) = K

√
t

for some constant K. Since s(2) = 2, K =
√

2, and so

s(t) =
√

2t

for t ≥ 2. Hence the general solution is

u(x, t) =


0 for x < 0
x/t for 0 ≤ x < t and x < s(t)
1 for x ≥ t and x < s(t)
0 for x ≥ s(t).

The characteristics and shock are shown in Fig. 1(a). Since q(u) = u2/2, it follows
that q′′(u) = 1 > 0. In this situation, the entropy condition implies that q′(u+) <
ṡ < q′(u−) at a shock, which is satisfied for the shock in this solution. Hence the
solution is physical.
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An unphysical integral solution can be constructed as a function with shocks, such
that it is a classical solution away from the shocks, and satisfies the Rankine–Hugoniot
condition at the shocks. In a similar manner to the examples considered in the text-
book, a possible solution is

u(x, t) =


0 for 2x < t
1 for t ≤ 2x < t + 2
0 for 2x ≥ t + 2.

Away from the two shocks, the function is constant and is therefore a classical solu-
tion. At the first shock, the Rankine–Hugoniot condition gives

ṡ1 =
q(1)− q(0)

1− 0
=

1
2

which is consistent with the solution. Similarly, at the second shock, the Rankine–
Hugoniot condition gives

ṡ2 =
q(0)− q(1)

0− 1
=

1
2

which is also consistent. Hence the function is an integral solution to the equation.
The characteristics are shown in Fig. 1. It can be seen that the solution is unphysical
since characteristics emanate from the shock at 2x = t. In this situation, the entropy
condition that u− > u+ at a shock is violated for 2x = t.

2. (a) The shock’s velocity is given by

ṡ(t) =
q( ρm

2 )− q(0)
ρm
2

= vm

(
1−

ρm
2

ρm

)
=

vm

2

and hence the density is

ρ(x, t) =
{

0 for x < vmt
2

ρm
2 for x ≥ vmt

2 .

(b) Substituting ρ(x, t) = U(x− vt) = U(ξ) into the differential equation gives

−v
dU
dξ

+ vm

(
1− 2U

ρm

)
dU
dξ

= ε
d2U
dξ2

which can be integrated to give

−vU + q(U) = ε
dU
dξ

+ C
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Figure 1: Characteristics for the problem in question 1, for (a) the physical solution and
(b) an example of a unphysical solution where the entropy condition is not satisfied. The
characteristics are shown in light blue, with those marking the boundaries between the
different regions shown in dark blue. The shocks are shown in red.
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for some constant C. By assuming that dU/dξ → 0 as ξ → ±∞, it follows that

−vρm

2
+ q(ρm/2) = C

−0 + q(0) = C

so C = 0 and v = vm/2. The differential equation for U therefore becomes

ε
dU
dξ
− vmU

(
1− U

ρm

)
+

vmU
2

= 0

so

ε
dU
dξ

=
vmU

2

(
1− 2U

ρm

)
.

By separating variables, this can be written as

dU
U(ρm − 2U)

=
vm

2ρmε
dξ.

which can be expanded as

dU
ρm

(
1
U

+
2

ρm − 2U

)
=

vm

2ε
dξ.

This can be integrated to give

log U − log(ρm − 2U) =
vmξ

2ε
+ B

for some constant B. Hence

U
ρm − 2U

= D exp
(

vmξ

2ε

)
for some constant D, and thus

U =
ρmD exp

(
vmξ
2ε

)
1 + 2D exp

(
vmξ
2ε

) .

The constant D just corresponds to a translation of the solution. Choosing D =
1/2 ensures symmetry so that U(0) = ρm/4, which is halfway between the
function limits. Hence

ρ(x, t) =
ρm

2

exp
(

vm(x−vt)
2ε

)
1 + exp

(
vm(x−vt)

2ε

)
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which can be also be written as

ρ(x, t) =
ρm

4

(
1 + tanh

(
vm(x− vt)

4ε

))
.

The solution is plotted in Fig. 2 for several different values of ε. It can be seen
that as ε → 0, the function solutions approaches the shock solution from part
(a).
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Figure 2: Plots of the travelling wave solution to the traffic equation for several different
sizes of the viscous term. The shock solution corresponding to no viscous term is also
plotted. Here, L is an arbitrary length scale.
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