
Math 126: Homework 11 solutions

1. The equation of a characteristic starting from ξ ∈ [0, L] is

x = q′(ρ(ξ))t + ξ

= vm

(
1− L + ξ

2L

)
t + ξ

=
vm(L− ξ)t

2L
+ ξ. (1)

As ξ increases, the velocities of the characteristics decrease, and thus it should be
expected that at some point the characteristics will intersect. To verify this, note that
at t = 2L/vm,

x = (L− ξ) + ξ = L

and hence all characteristics for ξ ∈ [0, L] meet at (x, t) = (L, 2L/vm). Since all the
characterisitcs intersect here, there will be no intersections at an earlier time, and
thus the time to the first shock is ts = 2L/vm.

On the positive side of the shock, the density will be ρm/2, and on the negative side
of the shock, the density will be ρm/4. Hence the shock will move with constant
velocity

ṡ(t) =
q(ρm/2)− q(ρm/4)

ρm/4
= vm

1
4 −

3
16

1/4
=

vm

4
.

Figure 1 shows the characteristics and the shock. From the diagram, the regions
that are covered with characteristics starting from x ≤ 0 or x > L will have constant
density. The only area that must be calculated explicitly is for (x, t) within the tri-
angle of converging characteristics that start in the range 0 < x ≤ L. In this region,
Eq. 1 can be rearranged to show that the characteristic passing through (x, t) starts
from

ξ =
2x− vmt
2− vmt

L

and thus

ρ(x, t) = ρ(ξ, 0) =
ρm

4L

(
L +

2x− vmt
2− vmt

L

)
=

ρm

2

(
L + x− vmt

2L− vmt

)
.

Hence the general solution is given by

ρ(x, t) =


ρm
4 for x < vmt

2 and t < ts, or x < s(t) and t ≥ ts
ρm
2

(
L+x−vmt
2L−vmt

)
for vmt

2 ≤ x < L and t < ts
ρm
2 for x ≥ L and t < ts, or x ≥ s(t) and t ≥ ts.
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Figure 1: Characteristics for the problem in question 1, plotted in non-dimensionalized
units. The characteristics are shown in light blue, with those marking the boundaries
between the different regions shown in dark blue. The shock starting at ts = 2L/vm is
shown in red.

2. (a) Initially, the car is a region of maximum density, and is therefore stationary.
It will start to move when the rarefaction fan passes it at time −a/vm. The
position of the car will then be given by differential equation

dc
dt

= v(ρ(c(t), t))

= vm

(
1− 1

2

(
1− c

vmt

))
=

vm

2

(
1 +

c
vmt

)
which can be rearranged to give

2
dc
dt
− c

t
= vm. (2)

Consider the substitution c(t) = b(t)t1/2; this gives

db
dt

=
dc
dt

t−1/2 − c
2

t−3/2 =
1

2
√

t

(
2

dc
dt
− c

t

)

2
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Figure 2: Characteristics for the problem in question 2, plotted in non-dimensionalized
units. The characteristics are shown in light blue, with those marking the boundaries
between the different regions shown in dark blue. The car’s trajectory starting at x = −a
is shown in purple.

which can substituted into the equation for c(t) to give

db
dt

=
vm

2
√

t
.

This can be integrated to give

b(t) = vm
√

t + C

for some constant C, and hence

c(t) = vmt + C
√

t.

Since c(−a/vm) = a, it follows that

c(t) = vmt− 2
√
−avmt.

The characteristics and the trajectory of the car and are shown in Fig. 2.

(b) The car’s velocity is
dc
dt

= vm −
√
−avm√

t
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and thus as t → ∞, dc/dt → vm. The distance between the car and the front of
the rarefaction fan is

d(t) = 2
√
−avmt

and thus d(t)→ ∞ as t→ ∞. Note that even though the velocity of the car and
rarefaction fan approach the same limit, the car becomes further and further
away from the front of the fan.

3. (a) Initially, the density on the negative side of the shock is zero, and the density
on the positive side of the shock is ρm, so the shock’s velocity will be

ṡ(t) =
q(ρm)− q(0)

ρm
= 0

and hence the shock will initially remain at x = L. However, the shock will be-
gin to move when the rarefaction fan hits it at t = L/vm. Within the rarefaction
fan, the density will be given by

ρfan(x, t) =
ρm

2

(
1− x

vmt

)
and hence the shock velocity will be

ṡ(t) =
q(ρm)− q(ρfan(s(t), t))

ρm − ρfan(s(t), t)

=
0− ρmvm

2

(
1− s

vmt

) (
1− 1

2

(
1− s

vmt

))
ρm − ρm

2

(
1− s

vmt

)
=
− ρmvm

2

(
1− s

vmt

) (
1
2 +

s
2vmt

)
ρm

(
1
2 +

s
2vmt

)
= −vm

2

(
1− s

vm
t
)

which can be rearranged to give

2
ds
dt
− s

t
= −vm.

This is the same as Eq. 2 but with the sign of vm reversed. Hence the solution is

s(t) = −vmt + C
√

t

for some constant C. Since s(L/vm) = L, it follows that

s(t) = −vmt + 2
√

Lvmt.
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Figure 3: Plots of the traffic density for four different times, plotted in non-
dimensionalized units. After the rarefaction fan hits the shock, the shock begins to move
in the negative direction.
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Figure 4: Characteristics for the problem in question 3, plotted in non-dimensionalized
units. The characteristics are shown in light blue, with those marking the boundaries
between the different regions shown in dark blue. The car’s trajectory starting at x = −a
is shown in purple, and the shock starting from x = L is shown in red. For this plot,
L = −2a.
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Since s(t) > −vmt for all t, it follows that as t → ∞, the shock will remain
between the rarefaction fan and the jammed traffic, so no further change in
behavior will occur.

(b) The traffic density will be the same as the green light problem, but with cars
encountering jammed traffic after the shock. Hence the density is given by

ρ(x, t) =


ρm for x ≤ −vmt or x > s(t)
ρm
2

(
1− x

vmt

)
for |x| < vmt and x ≤ s(t)

0 for x ≥ vmt and x ≤ s(t).

Plots of the density for four different times are shown in Fig. 3.

(c) Until the car reaches the shock, the traffic density it encounters is exactly the
same as the green light problem considered previously. Hence the car will be
stationary for t < −a/vm, and then follow

c(t) = vmt− 2
√
−avmt.

The car will meet the shock when

c(t) = s(t)

corresponding to

vmt− 2
√
−avmt = −vmt + 2

√
Lvmt

from which it follows that

2vm
√

t = 2(
√
−avm +

√
Lvm) = 2

√
vm(
√
−a +

√
L)

and hence

t =
(
√
−a +

√
L)2

vm
.

The car’s position will then be

c

(
(
√
−a +

√
L)2

vm

)
= (

√
−a +

√
L)2 − 2

√
−a(
√
−a +

√
L)

= −a + L + 2
√
−aL + 2a− 2

√
−aL

= a + L.

Once the car has passed the shock, it enters the jammed traffic ahead of the
shock and must therefore be stationary, so that

c(t) = a + L.
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This should be expected. Initially, the car at x = a has a region of jammed
traffic of width −a ahead of it. These cars will move forward until they hit the
jammed traffic at L. Since the car from x = a cannot overtake the cars in front
of it, it follows that its final position will be a distance −a behind the location
of the initial jam at x = L. The characteristics, shock, and the car’s trajectory
are plotted in Fig. 4.
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