Mod- ℓ Galois image of Picard curves

Shiva Chidambaram

Massachusetts Institute of Technology

shivac@mit.edu

Joint work with Pip Goodman

Arithmetic Geometry informed by Computation Joint Mathematics Meetings 2023

January 5, 2023

Picard curves

Let *K* be a number field. ($K = \mathbb{Q}$ for most of the talk.)

Definition

A Picard curve over K is a smooth projective curve C over K of genus 3 given by an affine model

$$y^3 = f(x)$$

for a degree 4 polynomial $f(x) \in K[x]$.

The map $[\zeta_3] : (x, y) \mapsto (x, \zeta_3 y)$ is an automorphism of *C*.

Let $J = \text{Jac}(C) = \text{Pic}^{0}(C)$ denote the Jacobian of C. Then J is a principally polarised abelian variety of dimension 3 with $\text{End}(J) \supseteq \mathbb{Z}[\zeta_3]$.

Mod- ℓ Galois representations

Let $G_{\mathcal{K}} = \operatorname{Gal}(\overline{\mathcal{K}}|\mathcal{K})$. Let ℓ be a prime. Let $J[\ell]$ be the ℓ -torsion subgroup of J. $G_{\mathcal{K}}$ acts on $J[\ell]$, giving the mod- ℓ Galois representation

$$\overline{
ho}_{J,\ell}: \mathcal{G}_K o \mathsf{GSp}(6,\mathbb{F}_\ell)$$

such that $\chi_{sim} \circ \overline{\rho}_{J,\ell}$ is the mod- ℓ cyclotomic character χ_{ℓ} .

The endomorphism $[\zeta_3]$ preserves Weil pairing, so gives an element in Sp(6, ℓ) with characteristic polynomial $(t^2 + t + 1)^3$. Let $N(\ell)$ be the normalizer of $[\zeta_3]$ in GSp(6, ℓ). The image of $\overline{\rho}_{J,\ell}$ is contained in $N(\ell)$.

Questions

- 1. For which ℓ , is the image of $\overline{\rho}_{J,\ell}$ not conjugate to $N(\ell)$?
- 2. Can we find (conj class of) the image in those cases?

Galois images in genus 1 and 2

l-adic Galois images of elliptic curves.
 Serre, Mazur, Bilu-Parent-Robledo, Sutherland, Zywina, Rouse-Zureick–Brown-Sutherland

- For an abelian surface A/Q with End(A) = Z, Dieulefait gives an algorithm to determine the non-surjective primes ℓ for the mod-ℓ Galois representations p
 _{A,ℓ}.
 For each class of maximal subgroup H of GSp(4, ·), the algorithm computes a non-zero integer M. If the image of p
 _{A,ℓ} is contained in H, then ℓ must divide M.
- Banwait-Brumer-Kim-Klagsbrun-Mayle-Srinivasan-Vogt have a Sage implementation of this algorithm.

The maximal images $N(\ell)$

▶ $\ell = 1 \mod 3$: Then $N(\ell) \simeq (GL(3, \ell) \times \mathbb{F}_{\ell}^{\times}) \rtimes \langle \gamma \rangle$, where

$$\mathsf{GL}(3,\ell) imes \mathbb{F}_\ell^{ imes} o \mathsf{GSp}(6,\ell) \ (A,\mu) \mapsto egin{bmatrix} \mu A & 0 \ 0 & A^{-t} \end{bmatrix}$$

and γ permutes the two isotropic 3-dimensional subspaces.

ℓ = 2 mod 3: Then N(ℓ) ≃ ΔU(3, ℓ) ⋊ (Frob). Let V be a 3-dim vector space over F_{ℓ²} with a hermitian form, and an orthonormal basis v₁, v₂, v₃. Let

$$\begin{split} \Delta U(3,\ell) &:= \{T: V \to V | \langle Tv, Tw \rangle = \alpha \langle v, w \rangle \text{ for some } \alpha \in \mathbb{F}_{\ell}^{\times} \}. \\ \text{Frob} : V \to V \text{ is the semilinear map } \sum a_i v_i \mapsto \sum \overline{a_i} v_i. \end{split}$$

If $\xi \notin \mathbb{F}_{\ell}$ and ξ^2 is a primitive element in \mathbb{F}_{ℓ} , then $\operatorname{Tr}(\xi \langle \cdot, \cdot \rangle)$ is a symplectic \mathbb{F}_{ℓ} -bilinear pairing on V, and we can view $\Delta U(3, \ell) \subseteq \mathsf{GSp}(6, \ell)$ and $\operatorname{Frob} \in \mathsf{GSp}(6, \ell)$.

Main result

Algorithm

Input: a degree 4 polynomial $f(x) \in \mathbb{Q}[x]$ with no repeated roots. *Output:* A finite list of primes containing all the primes ℓ such that $\overline{\rho}_{J,\ell}$ has non-maximal image, i.e., im $\overline{\rho}_{J,\ell} \subsetneq N(\ell)$.

Ingredients:

- [Bray-Holt-Roney–Dougal] The Maximal Subgroups of the Low-Dimensional Finite Classical Groups.
- ▶ [Goodman] Superelliptic curves with large Galois images.
- [Asif-Fite-Pentland] Computing L-polynomials of Picard curves from Cartier Manin matrices.
- [Bouw-Koutsianas-Sijsling-Wewers] Conductor and discriminant of Picard curves.

Example

Let $C: y^3 = x^4 - x^2 - x + 1$. Conductor of C is $3^8 23^2$.

The mod- ℓ Galois representation of Jac(C) has maximal image for all primes ℓ outside the set

 $\{2,3,5,7\} \cup \text{Bad Primes}(C) \cup \{\}.$

$\ell = 1 \mod 3$. Maximal subgroups of $GL(3, \ell)$.

Let V be a 3-dim vector space over \mathbb{F}_{ℓ} . Up to conjugacy, the maximal subgroups of $GL(3, \ell)$ not containing $SL(3, \ell)$ are:

- 1. **Reducible:** Stabilizer of a subspace $U \subsetneq V$ where dim U = 1 or 2. Both cases yield conjugate subgroups inside $GSp(6, \ell)$.
- 2. Imprimitive: Stabilizer of a decomposition $V \simeq \bigoplus_{i=1}^{3} V_i$. Isomorphic to $GL(1, \ell)^3 \rtimes S_3$.
- Field extension subgroup: A subgroup isomorphic to GL(1, ℓ³) ⋊ Gal(F_{ℓ³}|F_ℓ).
- 4. Symplectic type subgroup: If $\ell = 4,7 \mod 9$, a subgroup with projective image isomorphic to $C_3^2 \rtimes SL(2,3)$.

$\ell = 2 \mod 3$. Maximal subgroups of $GU(3, \ell)$.

Let V be a 3-dim vector space over \mathbb{F}_{ℓ^2} with a hermitian form. Recall $GU(3, \ell)$ is the unitary group consisting of all \mathbb{F}_{ℓ^2} -linear maps preserving the form. Up to conjugacy, the maximal subgroups of $GU(3, \ell)$ not containing $SU(3, \ell)$ are:

- 1. Reducible:
 - Stabilizer of an isotropic 1-dim subspace $U \subsetneq V$.
 - Stabilizer of a non-degenerate 1-dim subspace $U \subsetneq V$.

In both cases, the semisimplification of V contains a 1-dim non-degenerate constituent.

- 2. Imprimitive: Stabilizer of an orthogonal decomposition $V \simeq \bigoplus_{i=1}^{3} V_i$. Isomorphic to $GU(1, \ell)^3 \rtimes S_3$.
- Field extension subgroup: A subgroup isomorphic to GU(1, ℓ³) ⋊ Gal(F_{ℓ³}|F_ℓ).
- 4. Symplectic type subgroup: If $\ell = 2,5 \mod 9$, a subgroup with projective image isomorphic to $C_3^2 \rtimes SL(2,3)$.

Reducible case: Dihedral representations

Lemma

Suppose we are in the (absolutely) reducible case. Then there exists an odd two dimensional representation τ of $G_{\mathbb{Q}}$ satisfying the following.

- ► τ restricted to $G_{\mathbb{Q}(\zeta_3)}$ is contained in the semisimplification of $\overline{\rho}_{J,\ell} \mid_{\mathbb{Q}(\zeta_3)}$.
- the projective image of τ is dihedral, such that the quadratic field cut out by the projectivisation of τ is Q(ζ₃).

$$\tau|_{I_{\ell}} = \mathbf{1} + \chi_{\ell} \text{ or } \theta_2 + \theta_2^{\ell}.$$

Such representations τ come from cusp forms with CM by $\mathbb{Q}(\zeta_3)$, or alternatively from algebraic Hecke characters ψ of $\mathbb{Q}(\zeta_3)$.

Test for reducible case: Algorithm

Let N be the conductor of J. Let S be a set of primes $p = 1 \mod 3$.

Algorithm

- Find all algebraic Hecke characters ψ of Q(ζ₃) of modulus m satisfying Norm(m)|(N/3³), and some further absolute bounds on ord_pNorm(m) for each prime p.
- 2. For each $p \in S$, compute the Euler factor

$$x^{2} - (\psi(\mathfrak{p}) + \psi(\overline{\mathfrak{p}}))x + \psi(p)$$

for each ψ in (1). Take the product over all ψ . Call it $F_p(x)$.

- For each p ∈ S, compute the L-polynomial of J at p. Call it G_p(x). Note that its reduction mod ℓ is the characteristic polynomial of p
 _{J,ℓ}(Frob_p).
- 4. Let $M := \operatorname{gcd}_{p \in S} \operatorname{Res}(F_p(x), G_p(x)).$

If $J[\ell]$ is reducible, then ℓ must divide M.

Action of inertia at ℓ

Let λ be a prime of $\mathbb{Z}[\zeta_3]$ lying above ℓ . Let ρ_{λ} denote the Galois action on $J[\lambda]$.

Proposition(Goodman)

Suppose J has good reduction at ℓ . If $\ell = 1 \mod 3$, then

$$\det \rho_{\lambda} \mid_{l_{\lambda'}} = \begin{cases} \chi_{\ell}^2 & \text{ if } \lambda' = \lambda \\ \chi_{\ell} & \text{ if } \lambda' = \overline{\lambda} \end{cases}$$

If ℓ = 2 mod 3, then det ρ_λ |_{I_λ} = θ₂^{2+ℓ}, where θ₂ is a fundamental character of level 2.

Action of inertia at ℓ

Accordingly, we get using Raynaud's theorem about the constituents in the semisimplification of $\rho_{\lambda} \mid_{I_{\lambda'}}$

Proposition

Let θ_n is a fundamental character of level n.

• If $\ell = 1 \mod 3$, then

$$\begin{split} \rho_{\lambda}^{\mathrm{ss}} \mid_{l_{\overline{\lambda}}} &= 2\mathbf{1} + \chi_{\ell}, \mathbf{1} + \theta_{2} + \theta_{2}^{\ell} \text{ or } \theta_{3} + \theta_{3}^{\ell} + \theta_{3}^{\ell^{2}}, \text{ and} \\ \rho_{\lambda}^{\mathrm{ss}} \mid_{l_{\lambda}} &= \chi_{\ell} \otimes \left(\rho_{\lambda}^{\mathrm{ss}} \mid_{l_{\overline{\lambda}}}\right)^{-T} \end{split}$$

• If $\ell = 2 \mod 3$, then $\rho_{\lambda}^{ss} \mid_{I_{\lambda}} = 2\theta_2 + \theta_2^{\ell}$ or $\mathbf{1} + \chi_{\ell} + \theta_2$.

Test for Imprimitive case

Suppose that $\operatorname{im} \overline{\rho}_{J,\ell}$ is contained in the imprimitive maximal subgroup $H \simeq \operatorname{GL}(1,\ell)^3 \rtimes S_3$, or $\operatorname{GU}(1,\ell)^3 \rtimes S_3$. We consider the projectivisation of $\overline{\rho}_{J,\ell}$.

$$\blacktriangleright P \rho_{\lambda}^{ss} \mid_{I_{\lambda'}} = 2\mathbf{1} + \theta_2^{1 \pm \ell}.$$

- The Galois image in the S_3 -quotient is either C_3 or S_3 .
- In either case, this quotient is only ramified at primes dividing N, and not ramified at ℓ.
- Case 1: There exists a C₃ extension L|Q(ζ₃) unramified away from N, such that whenever Frob_p is non-trivial in Gal(L/Q(ζ₃)), we have Trρ_λ(Frob_p) = 0 mod λ.
- Case 2: There exists a C₂ extension L/Q(ζ₃) unramified away from N, such that whenever Frob_p is non-trivial in Gal(L/Q(ζ₃)), we have ab = c mod λ where x³ + ax² + bx + c is the char poly of Frob_p.

Summary

The algorithm has been implemented in Magma at https://github.com/shiva-chid/Picard.

It takes as input a degree 4 polynomial f(x), and optionally the conductor of the curve $y^2 = f(x)$, and produces a finite set S of primes containing all non-surjective primes.

Remarks

- ► For small primes l, the distribution of the characteristic polynomials almost exactly determines the subgroup of the maximal group (except in the reducible case).
- ► Thus, sampling *L*-polynomials gives a probablistic method to recover the image exactly in these cases. Reducible case and large *ℓ* seem hard.

Thank you